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Abstract

Exact analytical solutions for steady-state axisymmetric creeping flow of
a viscous incompressible fluid in the presence of a compound multiphase
droplet are derived. The two spherical surfaces constituting a vapor-liquid
compound droplet are assumed to overlap with a contact angle /2. It is
further assumed that the surface tension forces are sufficiently large so that
the interfaces have uniform curvature. The singularity solutions for the flow
induced by a stokeslet in the presence of a compound droplet are obtained
by the method of reflections. The flow patterns are discussed in the case
of a flow induced by a pair of opposite stokeslets. Toroidal eddy patterns
are observerd in the continous phase for some fixed value of the viscosity
ratio. The eddy changes its size and shape if the locations of the initial
stokeslets are altered. These observations may be useful in the study of
hydrodynamic interactions of droplets with other objects in a viscous fluid.
We also provide a brief discussion of our results in connection with the
computation of mobility functions. The exact results presented here can be
useful in validating numerical algorithms and codes on multiphase flow and

fluid-droplet interactions.



1 Introduction

In recent years, there has been a general surge of interest in understanding
the behavior of compound multiphase drops as a result of their occurrence
in a variety of engineering systems. These drops occur in processes such
as melting of ice particles in the atmosphere, liquid membrane technology
as well as in other industrial operations. Gas-liquid compound drops are
also found as transient configurations during rapid evaporations of drops
near the super heat limit [1] and disruptive combustion of free droplets
of multi-component fuels [2]. The studies concerning the lipid bilayer [3]
and polymer grafted [4] membranes in concentrated solutions also reveal
the existence of compound drops. The experimental evidences recorded in
those studies initiated the relevant theoretical investigations in the last few
decades.

Some perspectives on the theoretical fluid mechanics of multiphase droplets
are discussed for instance in Avedisian and Andres [5], Johnson and Sad-
hal [6], Sadhal et. al. [7] among many others. The compound drop is usually
modeled as two overlapping spherical surfaces with a contact angle. This
model has been used in the electric field-induced cell-to-cell fusion process
to predict the fusion of biological cells [8]. In hydrodynamics, similar models
have been employed to analyze the flow fields in and around a compound
droplet [9, 10, 11]. In [9], the translation of a vapor-liquid compound drop
was solved by the use of toroidal frame. The expressions for the flow fields
and hydrodynamic force were obtained in terms of a rather complicated con-
ical functions. For the overlapping spheres with a contact angle 7/2, simple
singularity solutions for the Stokes flow past an encapsulated droplet (com-
pound drop) were presented later in [10]. This simple approach has been
further exploited more recently in [11] to derive solutions for a compound
drop suspended in complicated flow fields. The analyses provided in [10, 11]
form the basis for the present study.

We discuss here some flow patterns in connection with droplet-fluid in-
teractions in complex flow situations. In particular, we provide singularity
solutions for axisymmetric flow induced by a stokeslet in the presence of
a compound droplet which describe the flow fields in the continuous and
dispersed phase fluid regions, respectively. The flow patterns displayed here
explains the flow behavior in and around a compound droplet suspended in
stokeslet induced flows. The plots of drag force acting on the droplet illus-
trate several interesting features. The calculations of the present study can
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Figure 1: Schematic of a vapor-liquid compound droplet I

provide the basis for computing mobility functions. It is worth mentioning
here that one of the primary motivations behind this work has been to pro-
vide exact solutions to somewhat complicated, yet analytically tractable,
problems that can be used to validate numerical algorithms and codes on

multiphase flow and fluid-droplet interactions.

2 Geometry of the compound droplet

The two-sphere geometry of the compound droplet is depicted in Fig. 1.
This geometry consists of two unequal overlapping spheres S, and S, of
radii @ and b with centers O and O’ respectively. We assume that these
spheres intersect orthogonally. The boundary of the droplet is denoted by
I' =T, Ul'y, where I', is part of the boundary where r = a and I'j is part
of the boundary where » = b (see Fig. 1). Since the spheres overlap at a
contact angle /2, the two centers share a common inverse point D. In the
right-angled triangle OAO’, ¢ = a? 4 b?, where OO’ = c. In the meridian
plane, the line AB intersects OO’ at D. Hence, OD = a?/c and DO’ = b?/c.
Let (r,6,¢), (7,0, ¢) and (R, O, ¢) be the spherical polar coordinates of any
point outside the assembly I with O, O’ and D as origins respectively. The
geometrical relations that follow from Fig. 1 are given in [11].

Part of the sphere S, contains a liquid with viscosity different from the

viscosity of the liquid around the droplet, and part of the sphere S, contains



vapor. It should be remarked that the interface separating the vapor and
the dispersed phase liquid joins points A and B, and is not the the line
AB shown in the Fig. 1. This interface between the phases is assumed to
have a uniform curvature different from that of the spheres S, and S,. We
designate the fluid region exterior to I' as I and the spherical regions Sj
and S, as II and III respectively. The surface tension forces are assumed
to be large enough to keep the interfaces in a spherical shape. The vapor-
liquid configuration exists at rest with contact angle approximately 90° if
Y1,11 = 711,011 >> 71,0111 Which is in agreement with the Laplace law on
all interfaces. Here the 74, denotes the surface tension at the interface

separating regions a and b.

3 Formulation of the Problem

We consider a stationary compound drop submerged in an arbitrary ax-
isymmetric flow of a viscous fluid. The Reynolds number of the flow fields
is assumed to be small so that all inertial effects are negligible. In this case,
the governing equations for fluid flow are the linearized steady Navier-Stokes

equations, also called creeping flow equations or Stokes equations,
pOv2qW = vp®, v.q =0, (1)

where ¢ = 1, 2 refers to continuous and dispersed phase liquids respectively,
g, p(M and p are the velocities, pressures and viscosities in the respective
phases. The boundary and interface conditions are as follows: (i) velocity
and pressure far from the droplet are that of the underlying flow; (ii) zero
normal velocity on T'; (iii) continuity of tangential velocity and shear stress
at the liquid-liquid interface T'p; and (iv) zero shear-stress at the vapor-
liquid interface I';. The governing Stokes equations subject to the above
far-field and interface conditions constitute a well-posed problem whose so-
lution provides the velocities and pressures prevailing in the presence of the
compound droplet.

As the flow is axially symmetric about the z—axis, it is convenient to
use the Stokes stream function formulation which requires the solution of

the fourth-order scalar equation

L%ﬂ/) = 07 (2)



where L_; is the axisymmetric Stokes operator given by
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for the coordinates (r,0) with n = cosf. Now the velocity components in

terms of the stream function are given by
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and the pressure is obtained from
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The boundary and the interface conditions stated at the beginning of this
section can also be expressed in terms of the stream function (see [11] for
details).

4 Results

The solutions for the above problem for various axisymmetric underlying
flows can be obtained by the method of successive reflections. Since the
two spheres intersect at a contact angle 7/2, it is easy to see that the
solutions are arrived at the third reflection. The solutions are conveniently
represented in cylindrical coordinates if we define (p, ¢, 2), (0, ¢, 2’) and
(I, ¢, Z) as the cylindrical polar coordinates with respect to O, 0’ and D
as origins, respectively (see Fig. 1).

We now consider the underlying flow to be the flow induced by a stokeslet

of strength %’ located at a point (0,0,c + d), say E1, outside I'. The

2
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(p1,21) are the cylindrical coordinates with E; as origin. The flow fields

free-space stream function due to this stokeslet is ¥g(p, 2) =

in the presence of a compound droplet with a stokeslet outside it can be
obtained by taking continous reflections as explained in [10, 11]. For the sake

of brevity, we omit the details and give here the solutions in the respective



phases. For the continous phase, the solution is

2 2 2\ 2
D (p, 2) Ds pi_ D3 @ pp, Ds 4 b (s U 3ps
ru® ry SruM c+dry  Srul) 2d d? ) r3
L P@ )R V(@) | D RN
2d° r3 (d* r3 Sl drs
D 2 2 2
n 3 A ab 5 b*(c+d) Pi
8D 2(b% 4 cd) (0% +cd)? )| 1y
B a’b3(d? — b?)(c + d) pizy B a’b3(d? — b?)? p_ﬁ
(b2 + cd)* r3 2(b2 4 cd)® 1}
D5 ab pi
1-A =
+ 8L ( )b2 +ecdry’ (6)
and for the dispersed phase, the solution becomes
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where (p2,22), (pa, 24), (pa, z4) are the cylindrical polar coordinates of a
point with FEs, F3, Fy as origins respectively, and r; = r? — 200;r cos +
003%,j = 1,2,3,4. Here 00, = ¢ +d,00; = 2,005 = Y4 and
00,4 = % respectively. Note that Fs and Fj3 lie inside the spheres S,
and S, respectively, but outside the overlap region and the point Fj lies
inside the overlap region. The image singularities are now located at these
points (i.e., at Fa, F3 and Ejy). Tt is clear that the locations of the image
points are indeed dictated by the location of the initial stokeslet. Now the
image system in the continuous phase consists of stokeslets at Fs, F3 and
Ey4, Stokes-doublets at E3 and E; and Degenerate Stokes-quadrupoles at
E5 and E4. The strengths of the image singularities depend on radii, the
location of the initial stokeslet and the viscosity ratio. It is interesting to
note that the image system for a stokeslet near a viscous drop also has the
same type of singularities (with different strengths) as the compound drop.
But the location of the image singularities in the former is at a single point.
The solutions for a pair of stokeslets in the presence of a compound droplet
may also be derived in a similar fashion.

Below we present the flow patterns for the case when the droplet is placed

between two stokeslets of opposite strengths. We use the terminology “two
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Figure 2: Flow patterns for a pair of opposite stokeslets with a =1, b = 2,
A=06. (a)dy =b+5,dy =a+5,(b)dy=0+3,d, =a+5; (c)d=b+5,
de =a+2;(d)d=0b+5,d, =a+ 1. Here dy,d, denote the locations of

the stokeslets from the liquid and vapor spherical surfaces, respectively.

opposite stokeslets” to refer to two stokeslets: one with the positive strength,
and the other with equal but negative strength. We choose the one which
is on the vapor side to have positive strength and the other on the liquid
side to have an equal but negative strength. Fig. 2(a)-(d) shows the flow
patterns for the case of two opposite stokeslets for various locations. If the
two stokeslets are far from the droplet, the interaction of the stokeslets is
not stronger in the neighborhood of the droplet (see Fig. 2(a)). When they
are moved closer, a single toroidal eddy structure appears in front of the
liquid sphere. This eddy moves further close to the droplet as the stokeslets
are moved nearer to the compound drop. We notice that the size and shape
of these closed streamlines also change due to the stokeslets moving closer
to the droplet. Since we have determined the solutions in singularity form,
it is a straightforward task to derive formula for the drag force acting on
the compound droplet. The strengths of the image stokeslets determine the
drag and for the stokeslet induced flow the drag force (obtained from (6))
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Figure 3: Drag force in a (single) stokeslet flow. (a) Variation with the
stokeslet location d for a fixed a« = 1,b = 2; (b) Variation with the liquid
sphere radius b for a fixed a = 2,d = b + 1.
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Here F = (F,, F,, F.). It can be seen from (8) that the drag force on the
compound drop in a stokeslet flow depends on the viscosity ratio, the radii
and the location of initial stokeslet. We discuss briefly the variation of drag

force with these parameters. In Fig. 3(a) we have plotted EZ against the




location of the stokeslet d for different viscosity ratios with a = 1 and b = 2.
The drag decreases monotonically with increasing values of d as expected.
This means that the droplet experiences greater resistance in stokeslet flow
if the stokeslet is closer to it. Fig. 3(b) shows variation of the drag force

with radius ‘b’

when the stokeslet is at a distance d = 1. In this case, the
drag force decreases until b ~ 0.5 and then starts increasing with increasing
values of b. This, in turn, implies that the resistance is greater when the
liquid volume is large compared to the vapor volume. It may be noticed
that the drag force in general lies between the vapor-solid and vapor-vapor
assemnbly limits. When A = 1, the expression (8) yields the force on a vapor-
solid assembly while for A = 0, it reduces to the drag force on a vapor-vapor

assembly (composite bubble).

4.1 Mobility functions

The image solutions for Stokes singularities may be employed in a method
of reflections type of calculation for the interactions between a compound
drop and an arbitrary small particle. The key idea is that over length
scales associated with the compound drop, the disturbance fields produced
by a small particle may be approximated by those produced by equivalent
Stokes singularities (stokeslet, degenerate stokes-quadrupole etc.). In the
reflections at the small sphere we can truncate the multipole expansion at
the desired order in aj/cy, where a; is the radius of the smaller particle
and c¢; is the distance between the location of the small particle and the
center of the compound drop. For reflections at the large sphere, we retain
the entire multipole solution, which of course is the image systems of the
Stokes singularities. The mobility functions may then be computed in the
same way as explained in [12]. The complete calculations of the mobility
functions and the hydrodynamic interactions will be discussed elsewhere.
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