
Numerical Algorithms 23 (2000) 71–96 71

A parallel version of a fast algorithm for singular integral
transforms

Leonardo Borges and Prabir Daripa ∗

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
E-mail: {borges;daripa}@math.tamu.edu

Received 10 April 1999; revised 11 February 2000
Communicated by C. Brezinski

The mathematical foundation of an algorithm for fast and accurate evaluation of singular
integral transforms was given by Daripa [9,10,12]. By construction, the algorithm offers
good parallelization opportunities and a lower computational complexity when compared
with methods based on quadrature rules. In this paper we develop a parallel version of
the fast algorithm by redefining the inherently sequential recurrences present in the origi-
nal sequential formulation. The parallel version only utilizes a linear neighbor-to-neighbor
communication path, which makes the algorithm very suitable for any distributed memory
architecture. Numerical results and theoretical estimates show good parallel scalability of
the algorithm.

Keywords: singular integral transform, fast algorithm, parallel processing, distributed mem-
ory, pipelining algorithm

AMS subject classification: 65E05, 65R10, 65Y05, 65Y20

1. Introduction

Fast algorithms for the accurate evaluation of singular integral operators are of
fundamental importance in solving elliptic partial differential equations using integral
equation representations of their solutions. For example, the following singular integral
transform arises in solving Beltrami equations [10]:

Tmh(σ) = − 1
π

∫ ∫
B(0;1)

h(ζ)
(ζ − σ)m

dξ dη, ζ = ξ + iη, (1)

where h is a complex valued function of σ defined on B(0; 1) = {z: |z| < 1}, for a
suitable finite positive integer m [12]. Daripa [10,11] used the Beltrami equation for
quasiconformal mappings [10] and for inverse design of airfoils [8]. Singular integral
operators arise in solving problems in partial differential equations [3,4,7,9,17–19],
fluid mechanics [2,8], and electrostatics [16] using integral equation methods.

∗ Corresponding author.

 J.C. Baltzer AG, Science Publishers

72 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

The use of quadrature rules to evaluate (1) presents two major disadvantages:
First, the complexity of the method is O(N4) for an N2 net of grid points. In terms
of computational time, it represents an impracticable approach for large problem sizes
(also, quadrature methods deliver poor accuracy when employed to evaluate certain
singular integrals). Daripa [9,10] and Daripa and Mashat [12] presented a fast and accu-
rate algorithm for rapid evaluation of the singular integral (1). The algorithm is based
on some recursive relations in Fourier space together with FFT (fast Fourier trans-
form). The resulting method has theoretical computational complexity O(N2 log2N)
or equivalently O(log2 N) per point, which represents substantial savings in compu-
tational time when compared with quadrature rules. Furthermore, results are more
accurate because the algorithm is based on exact analyses.

Practical industrial problems may handle an excessive amount of data. This class
of applications presents large memory requirements and intensive floating point com-
putations. Consequently, the design of fast algorithms does not eliminate the need for
improved computing resources. An immediate consequence is the demand for parallel
computing. Distributed-memory multiprocessors provide the resources to deal with
large-scale problems. Data can be partitioned along processors so that the storage
constraints and the communication overhead are minimized. In this paper we present
a parallel algorithm to solve the singular integral operator (1). The recursive relations
of the original algorithm [9,12] (see section 2 below) are redefined in a way that mes-
sage lengths depend only on the number of Fourier coefficients being evaluated, so
that communication costs are independent of the number of annular regions in use.
The implementation is based on having two simultaneous fluxes of data traversing
processors in a linear path configuration. It allows overlapping of computational work
simultaneously with data-exchanges, and having a minimal number of messages in the
communication channels. The resulting algorithm is very scalable and independent of
a particular distributed-memory configuration.

The remainder of the paper is organized as follows. In section 2, we review the
sequential algorithm from [12]. In section 3, we describe the parallel implementation.
Section 4 presents the analysis of the parallel algorithm. In section 5, we present
our approach to analyze the scalability of the algorithm. In section 6, we present and
discuss the numerical results, and finally we make our concluding remarks in section 7.

2. The algorithm

The fast algorithm to evaluate the singular integral transform (1) was developed
in [10,11]. The method divides the interior of the unit disk B(0; 1) into a collection
of annular regions. The integral and h(σ) are expanded in terms of Fourier series with
radius dependent Fourier coefficients. The good performance of the algorithm is due
to the use of scaling one-dimensional integrals in the radial direction to produce the
solution over the entire domain. Specifically, scaling factors are employed to define
exact recursive relations which evaluate the radius dependent Fourier coefficients of

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 73

the singular integral (1). Then inverse Fourier transforms are applied on each circle
to obtain the value of the singular integrals on all circles.

To review the mathematical foundation of the algorithm, we state the following
theorem verbatim from [11]:

Theorem 2.1. If Tmh(σ) exists in the unit disk as a Cauchy principal value, and
h(r eiα) =

∑∞
n=−∞ hn(r) einα, then the nth Fourier coefficient Sn,m(r) of Tmh(r eiα)

can be written as

Sn,m(r) =


Cn,m(r) +Bn,m(r), r 6= 0,

0, r = 0 and n 6= 0,

S0,m(0), r = 0 and n = 0,

(2)

where

Cn,m(r) =



2(−1)m+1

rm−1

(
−n− 1
m− 1

)∫ r

0

(
r

ρ

)m+n−1

hm+n(ρ) dρ, n 6 −m,

0, −m < n < 0,

− 2
rm−1

(
m+ n− 1
m− 1

)∫ 1

r

(
r

ρ

)m+n−1

hm+n(ρ) dρ, n > 0,

(3)

and Bn,m(r) and S0,m(0) are defined as follows.

• Case 1. If h(σ) is Hölder continuous in the unit disk with exponent γ, 0 < γ < 1
and m = 1 or 2, then

S0,m(0) =−2 lim
ε→0

∫ 1

ε
ρ1−mhm(ρ) dρ, (4)

Bn,m(r) =

{
0, m = 1,
hn+2(r), m = 2.

(5)

• Case 2. If h(σ) is analytic in the unit disk and m is a finite positive integer, then

S0,m(0) =−hm(r = 1), (6)

Bn,1(r) = 0, (7)

and for m > 2

Bn,m(r) =


0, n < −1, n 6= −m,

(−1)m r2−m h0(r), n = −m,(
m+ n− 1
m− 2

)
r2−m hm+n(r), n > −1.

(8)

The strength of the above theorem is evident when considering the unit disk
B(0; 1) discretized by N ×M lattice points with N equidistant points in the angular
direction and M equidistant points in the radial direction. Let 0 = r1 < r2 <

74 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

· · · < rM = 1 be the radii defined on the discretization. The following corollaries of
theorem 2.1 are presented verbatim from [11]:

Corollary 2.1. It follows from (3) that Cn,m(1) = 0 for n > 0, and Cn,m(0) = 0 for
n 6 −m. We repeat from (3) that Cn,m(r) = 0 for −m < n < 0 for all values of r in
the domain.

Corollary 2.2. If rj > ri and

Ci,jn,m =


2(−1)m+1

rm−1
j

(
−n− 1
m− 1

)∫ rj

ri

(
rj
ρ

)m+n−1

hm+n(ρ) dρ, n 6 −m,

2

rm−1
i

(
m+ n− 1
m− 1

)∫ rj

ri

(
ri
ρ

)m+n−1

hm+n(ρ) dρ, n > 0,

(9)

then

Cn,m(rj) =

(
rj
ri

)n
Cn,m(ri) + Ci,jn,m, n 6 −m, (10)

Cn,m(ri) =

(
ri
rj

)n
Cn,m(rj)− Ci,jn,m, n > 0. (11)

Corollary 2.3. Let 0 = r1 < r2 < · · · < rM = 1, then

Cn,m(rl) =



l∑
i=2

(
rl
ri

)n
Ci−1,i
n,m for n 6 −m and l = 2, . . . ,M ,

−
M−1∑
i=l

(
rl
ri

)n
Ci,i+1
n,m for n > 0 and l = 1, . . . ,M − 1.

(12)

Corollary 2.2 defines the recursive relations that are used in the calculation of the
Fourier coefficients Sn,m of the singular integrals in (1). It prescribes two recursive
relations based on the sign of the index n of the Fourier coefficient Sn,m being eval-
uated. We will address the coefficients (such as Cn,m) with index values n 6 −m as
negative modes and the ones with index values n > 0 as positive modes. Equation (10)
shows that negative modes are built up from the smallest radius r1 towards the largest
radius rM . Conversely, equation (11) constructs positive modes from rM towards r1.
We summarize these concepts with a formal description of the algorithm in figure 1.

Although steps 3 and 4 are very appropriate to a sequential algorithm, they may
represent a bottleneck in a parallel implementation. In the next section, we overcome
this problem by redefining the formal description of algorithm 2.1.

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 75

Algorithm 2.1 (Sequential algorithm).
Given m > 1, M , N and the grid values h(rl e2πik/N), l ∈ [1,M], k ∈ [1,N], the

algorithm returns the values of Tmh(rl e2πik/N), l ∈ [1,M], k ∈ [1,N].

1. Compute the Fourier coefficients hn(rl), n ∈ [−N/2+m,N/2], for M sets of data
at l ∈ [1,M].

2. Compute the radial one-dimensional integrals Ci,i+1
n,m , i ∈ [1,M − 1], n ∈

[−N/2,−m] ∪ [0,N/2] as defined in (9).

3. Compute coefficients Cn,m(rl) for each of the negative modes n ∈ [−N/2,−m] as
defined in (10):

(a) set Cn,m(r1) = 0,

(b) for l = 2, . . . ,M

Cn,m(rl) =

(
rl
rl−1

)n
Cn,m(rl−1) + C l−1,l

n,m .

4. Compute coefficients Cn,m(rl) for each of the positive modes n ∈ [0,N/2] as
defined in (11):

(a) set Cn,m(rM) = 0,

(b) for l = M − 1, . . . , 1

Cn,m(rl) =

(
rl
rl+1

)n
Cn,m(rl+1)− C l,l+1

n,m .

5. If m > 1, set Cn,m(rl) = 0, l ∈ [1,M], for n ∈ [−m,−1].

6. Compute the Fourier coefficients Sn,m(rl), l ∈ [1,M], n ∈ [−N/2,N/2 −m], as
defined in theorem 2.1.

7. Compute

Tmh
(
rl e2πik/N) =

N/2−m∑
n=−N/2

Sn,m(rl) e2πikn/N , k ∈ [1,N],

for each radius rl, l ∈ [1,M].

Figure 1. Sequential description of the fast algorithm for the evaluation of the singular integral trans-
form (1).

3. Parallel implementation

The performance of a parallel system is largely determined by the degree of con-
currency of its processors. The identification of intrinsic parallelism in the method
leads to our choice for data partitioning [14]. The fast algorithm employs two groups
of Fourier transforms (steps 1 and 7) which can be evaluated independently for each

76 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

fixed radius rl. Consequently their computations can be performed in parallel. Since
each FFT usually engages lengthy computations, the computational granularity of each
processor will be large and therefore very well suited for MIMD architectures. Neg-
ative effects resulting from communication delays in a MIMD computer can be min-
imized by an efficient implementation. Mechanisms to reduce communication delays
on message-passing architectures include: evenly distributed load balancing between
processors, overlapping of communication and computations, reduced message lengths,
and reduced frequency in exchanging messages. Often the above mechanisms are con-
flicting and, in practice, a tradeoff will define an efficient implementation. We address
this issue in this section.

The fast algorithm in section 2 requires multiple Fourier transforms to be per-
formed. Specifically, it computes M FFTs of length N in steps 1 and 7 of algorithm 2.1.
For the sake of a more clear explanation, let P be the number of available processors
and M be a multiple of P . There are distinct strategies to solve multiple FFTs in
parallel systems [5,13]. Three approaches are summarized in [5]:

(1) parallel calls to FFTs,

(2) parallel FFT with inner loop, and

(3) truncated parallel FFT.

In the first case, one sequential N -point FFT algorithm is available on each processor.
For a total of P processors, the M sequences are distributed between processors so
that each one performs M/P calls to the FFT routine. For the second case, only one
parallel FFT is implemented. In this case, the data manipulated by the algorithm is
a set of N vectors, each vector of length M , such that each component of a vector
belongs to a distinct M sequence. It corresponds to substituting single complex oper-
ations in the parallel FFT algorithm by an inner loop over M . In the third case, the
bit-reversal is applied individually on each input sequence and then a unique sequence
of length MN is obtained by concatenating all M sequences. A parallel FFT is ap-
plied but only for log2 N stages. Therefore, the Fourier coefficients for a given M
sequence can be extracted from the original place where it was concatenated. Since,
both the parallel FFT with inner loop and the truncated parallel FFT approach present
identical computational loads and synchronization overheads [5], their performance
is very similar. Perhaps the major disadvantage of the truncated FFT version is the
cumbersome programming overhead when M is not a power of 2. Parallel calls to
sequential FFTs perform bit-reversal setup and sine–cosine calculations M/P times
on each processor: it represents an overhead that may produce larger running times
when comparing this strategy against parallel FFT with inner loop or truncated parallel
FFT. Conversely, parallel calls to sequential FFTs presents no synchronization over-
head because no interprocessor communication occurs. As a final remark, methods
to maximize bandwidth utilization and minimize communication overhead for parallel
FFTs may experience network congestion when aiming to overlap communication by
computations [6].

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 77

We adopt an improved implementation of parallel calls to sequential FFTs by
assigning grid points within a group of circles to each processor. The FFT transforms
present in the algorithm contribute the most to the computational cost of the algorithm.
Also, each FFT calculation presents a high degree of data dependency between grid
points rl e2πik/N for a fixed radius rl, l ∈ [1,M]. Data locality is preserved by
performing Fourier transforms within a processor. Specifically, given P processors pj ,
j = 0, . . . ,P − 1, data is distributed so that processor pj contains the data associated
with the grid points rl e2πik/N , k ∈ [1,N] and l ∈ [jM/P + 1, (j + 1)M/P]. Thus,
each FFT can be evaluated in place without communication. This approach is free of
network congestion. Moreover, several different forms of the FFT algorithm exist [1].
But all of them proceed in a similar way by recursively reordering the array of sample
points. By having a group of data associated with l ∈ [jM/P + 1, (j + 1)M/P] in
the same processor pj , all M/P Fourier transforms can be performed simultaneously.
In practice, it means that mechanisms like bit-reversal and calls to sines and cosines
are computed only once on each processor.

A straightforward formulation for the parallel algorithm might attempt to use
two sets of communication. The first set is related with step 2 in algorithm 2.1 and
encompasses communication between neighbor processors to exchange the boundary
Fourier coefficients required in equation (9). The second set arises from the inherently
sequential recurrences in steps 3 and 4, where a given coefficient Cn,m(rl) depends on
all terms Ci−1,i

n,m with i ∈ [2, l], if n 6 −m, or Ci,i+1
n,m with i ∈ [l,M − 1] if n > 0.

Assume that there is no interprocessor communication. The only coefficients Ci,kn,m that
can be computed on processors pj are Ci,kn,m; i, k ∈ [jM/P +m+1, (j+1)M/P −m].
Consequently, a message-passing mechanism must be used to exchange coefficients
Ci,jn,m across processors. A closer look into the algorithm reveals that a better parallel
implementation can be formulated.

The mechanism of redundant computations, that is, computations that are per-
formed on more than one processor, can be used to improve performance of par-
allel programs on distributed memory machines. The first set of communications
can be totally eliminated. Since the algorithm employs equations (10) and (11)
that only utilize consecutive radii, only terms of the form C l−1,l

n,m and C l,l+1
n,m , l ∈

[jM/P + 1, (j + 1)M/P], are required in the processor pj . Notice that pj already
evaluates the Fourier coefficients hn(rl), l ∈ [jM/P + 1, (j + 1)M/P]. In the case of
a numerical integration based on the trapezoidal rule and m = 1, for example, only the
Fourier coefficients for l = jM/P and l = (j + 1)M/P + 1 must be added to the set
of known coefficients for processor pj . That is, if the initial data is overlapped so that
each processor evaluates coefficients for radii rl, l ∈ [jM/P , (j + 1)M/P + 1], there
is no need for communication. The number of circles whose data overlap between any
two neighbor processors remain fixed regardless of the total number of processors in
use. Consequently, this strategy does not compromise the scalability of the algorithm.

The second set of communication arises from the fact that recurrences (10)
and (11) should be evaluated on the same processor. If terms Ci−1,i

n,m and Ci,i+1
n,m are not

transfered from one processor to another, the data dependency imposed by (10) and (11)

78 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

indicates that at most two processors (one for n 6 −m and other for n > 0) would
be performing computations and keeping all remaining processors idle. It basically
implies that the data partitioning scheme must be reverted to allow processor pj to eval-
uate the coefficients Cn,m(rl), l ∈ [1,M], for n ∈ [jN/P −N/2, (j+ 1)N/P −N/2].
When understanding data as an N ×M matrix distributed in a row-wise partition-
ing, the above data-reversion operation (swap) corresponds to a matrix transposition
problem, which may flood communication channels either with messages of length
O(NM), or messages of the broadcast type. In both cases, it can easily result on large
communication overhead for the algorithm.

However, corollary 2.3 leads to a more efficient parallelization strategy as shown
below. To achieve this, we first rewrite the sums in equation (12) as

Cn,m(rl) = rnl

l∑
i=2

(
1
ri

)n
Ci−1,i
n,m for n 6 −m and l = 2, . . . ,M , (13)

Cn,m(rl) = −rnl
M−1∑
i=l

(
1
ri

)n
Ci,i+1
n,m for n > 0 and l = 1, . . . ,M − 1, (14)

so that sums

l∑
i=2

(
1
ri

)n
Ci−1,i
n,m and

M−1∑
i=l

(
1
ri

)n
Ci,i+1
n,m

will be distributed across processors. Before we carry out computations with formu-
lae (13) and (14), we should note that these new formulae are unstable for large values
of n.

The above computations can be stabilized by performing more regular calcula-
tions as in the original recurrences (10) and (11). In both approaches, computations
evaluate terms of the form (

α

β

)n
, (15)

where n ∈ [−N/2,N/2 −m] depends on the number N of Fourier coefficients. In
the case of (10) and (11), we have α/β = rl/rl−1, l = 2, . . . ,M , for n 6 −m, and
α/β = rl/rl+1, l = 1, . . . ,M − 1, for n > 0. Since rl−1 < rl < rl+1, the algorithm
in essence only evaluates increasing positive powers of values on the interval (0, 1).
Moreover, for the case of M equidistant points in the radial direction we have rl =
(l− 1)/(M − 1), l = 1, . . . ,M , which implies that those values belong to the interval
[0.5, 1). Unfortunately, in the case of (13) and (14) we have α/β = 1/ri, ri ∈ (0, 1],
which may imply on either a fast overflow for large absolute values of n 6 −m, or a
fast underflow for large values of n > 0. We overcome this problem by making use

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 79

of the stabilized recurrences
q−1 (n) = 0,

q−l (n) =

(
rl+1

rl

)n(
q−l−1(n) + C l−1,l

n,m

)
, l = 2, . . . ,M , ∀n 6 −m,

(16)

where we have defined rM+1 = 1, and
q+
M (n) = 0,

q+
l (n) =

(
rl−1

rl

)n(
q+
l+1(n) +C l,l+1

n,m

)
, l = M − 1, . . . , 1, ∀n > 0.

(17)

A first observation is that the above recurrences are stable as in the case of the
original recurrences (10) and (11) because terms (α/β)n are also increasing positive
powers of values on the interval (0, 1). Secondly, recurrences (16) and (17) can be
used to evaluate formulae (13) and (14). In fact, for a fixed l ∈ [2,M] and n 6 −m
we obtain

q−l (n) =

(
rl+1

rl

)n[
q−l−1(n) + C l−1,l

n,m

]
=

(
rl+1

rl

)n[(rl
rl−1

)n(
q−l−2(n) + C l−2,l−1

n,m

)
+ C l−1,l

n,m

]
= rnl+1

[
q−l−2(n)

rnl−1
+
C l−2,l−1
n,m

rnl−1
+
C l−1,l
n,m

rnl

]

= rnl+1

[
q−1 (n)
rn2

+
l∑
i=2

(
1
ri

)n
Ci−1,i
n,m

]
= rnl+1

l∑
i=2

(
1
ri

)n
Ci−1,i
n,m , (18)

which implies that equation (13) can be rewritten as

Cn,m(rl) =

(
rl
rl+1

)n
q−l (n) for n 6 −m and l = 2, . . . ,M. (19)

Similarly, for a fixed l ∈ [1,M − 1] and n > 0 recurrence (17) evaluates

q+
l (n) = rnl−1

M−1∑
i=l

(
1
ri

)n
Ci,i+1
n,m , (20)

leading equation (14) to

Cn,m(rl) = −
(

rl
rl−1

)n
q+
l (n) for n > 0 and l = 1, . . . ,M − 1. (21)

For the purpose of achieving an even distribution of computational load across
processors, it is helpful to split the computational work when performing recur-

80 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

rences (16) and (17). We define the following partial sums for each processor pj ,
j = 0, . . . ,P − 1. For the case n 6 −m, let

t−0 (n) = rnM/P+1

M/P∑
i=2

(
1
ri

)n
Ci−1,i
n,m ,

t−j (n) = rn(j+1)M/P+1

(j+1)M/P∑
i=jM/P+1

(
1
ri

)n
Ci−1,i
n,m , j = 1, . . . ,P − 1,

(22)

and for n > 0, let
t+P−1(n) = rn(P−1)M/P

M−1∑
i=(P−1)M/P+1

(
1
ri

)n
Ci,i+1
n,m ,

t+j (n) = rnjM/P

(j+1)M/P∑
i=jM/P+1

(
1
ri

)n
Ci,i+1
n,m , j = 0, . . . ,P − 2.

(23)

Since coefficients Ci−1,i
n,m (n 6 −m) and Ci,i+1

n,m (n > 0) are already stored in the
processor pj when i ∈ [jM/P + 1, (j + 1)M/P], partial sums t−j and t+j can be
computed locally in the processor pj . Moreover, these computations are carried out
using the same stable recurrences defined for q− and q+ in equations (16) and (17).

If the accumulated sums ŝ−j and ŝ+
j , j = 0, . . . ,P − 1, are defined by

ŝ−0 (n) = t−0 (n), n 6 −m,

ŝ−j (n) =

(
r(j+1)M/P+1

rjM/P+1

)n
ŝ−j−1(n) + t−j , n 6 −m,

(24)

and 
ŝ+
P−1(n) = t+P−1(n), n > 0,

ŝ+
j (n) =

(
rjM/P

r(j+1)M/P

)n
ŝ+
j+1(n) + t+j , n > 0,

(25)

then we have a recursive method to accumulate partial sums t−j and t+j computed in
processors pj , j = 0, . . . ,P − 1. The resulting formulas for ŝ−j and ŝ+

j are given by

ŝ−j (n) = rn(j+1)M/P+1

(j+1)M/P∑
i=2

(
1
ri

)n
Ci−1,i
n,m for n 6 −m, (26)

and

ŝ+
j (n) = rnjM/P

M−1∑
i=jM/P+1

(
1
ri

)n
Ci,i+1
n,m for n > 0. (27)

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 81

In fact, for the case of negative modes one can verify that

ŝ−j (n) =

(
r(j+1)M/P+1

rjM/P+1

)n[(rjM/P+1

r(j−1)M/P+1

)n
ŝ−j−2(n) + t−j−1

]
+ t−j

= rn(j+1)M/P+1

[
ŝ−j−2(n)

r(j−1)M/P+1
+

jM/P∑
i=(j−1)M/P+1

(
1
ri

)n
Ci−1,i
n,m

+

(j+1)M/P∑
i=jM/P+1

(
1
ri

)n
Ci−1,i
n,m

]

= rn(j+1)M/P+1

[
t−0 (n)
rM/P+1

+

(j+1)M/P∑
i=M/P+1

(
1
ri

)n
Ci−1,i
n,m

]

= rn(j+1)M/P+1

(j+1)M/P∑
i=2

(
1
ri

)n
Ci−1,i
n,m . (28)

A similar proof holds for accumulated sums ŝ+
j .

Accumulated sums ŝ−j and ŝ+
j can now be used to calculate coefficients Cn,m

locally on each processor. Given a fixed radius rl, the associated data belongs to
processor pj , where l ∈ [jM/P + 1, (j+ 1)M/P]. Computations in pj only make use
of accumulated sums from neighbor processors. For n 6 −m local updates in proces-
sor p0 are performed as described in corollary 2.2. Local updates in processors pj ,
j = 1, . . . ,P − 1, use the accumulated sum ŝ−j−1 from the previous processor:

Cn,m(rjM/P+1) = ŝ−j−1(n) + CjM/P ,jM/P+1
n,m ,

Cn,m(rl) =

(
rl
rl−1

)n
Cn,m(rl−1) + C l−1,l

n,m .
(29)

For n > 0, local updates in processor pP−1 are also performed as described in corol-
lary 2.2. Local updates in processors pj , j = 0, . . . ,P − 2, use the accumulated sum
ŝ+
j+1 from the next processor:

Cn,m(r(j+1)M/P) = −ŝ+
j+1(n)− C (j+1)M/P ,(j+1)M/P+1

n,m ,

Cn,m(rl) =

(
rl
rl+1

)n
Cn,m(rl+1)− C l,l+1

n,m .
(30)

The advantage of using equations (30) and (29) over original recurrences (10)
and (11) is that accumulated sums ŝ−j and ŝ+

j are obtained using partial sums t−j and t+j .
Since all partial sums can be computed locally (without message passing) and hence
simultaneously, the sequential bottleneck of the original recurrences (10) and (11)
is removed. It may be worth pointing out now that the data-dependency between

82 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

Figure 2. Message distribution in the algorithm. Two streams of neighbor-to-neighbor messages cross
communication channels simultaneously.

processors appears only in equations (24) and (25). The only sequential component in
this process is the message-passing mechanism to accumulate the partial sums, which
will be explained in the next sections. The notation in equations (24) and (25) will be
simplified to allow a clear exposition:

• relation s−j = s−j−1 + t−j represents the updating process in recurrence (24), and

• relation s+
j = s+

j+1 + t+j represents updating (25).

Figure 2 presents the general structure for the algorithm. Processors are divided
into three groups: processor pP/2 is defined as the middle processor, processors
p0, . . . , pP/2−1 are in the first half, and pP/2+1, . . . , pP−1 are the second half proces-
sors. Due to the choice for data distribution, processors in the first half are more
likely to obtain the accumulated sum s−j before the accumulated sum s+

j . In fact, any
processor in the first half has less terms in the accumulated sum s−j when compared
against s+

j . Additionally, the dependency is sequential. The accumulated sum s−j on
a first half processor pj depends on s−j−1, which in turn depends on s−j−2. It suggests
the creation of a negative stream (negative pipe): a message started from processor p0

containing the values s−0 = t−0 and passed to the neighbor p1. Processor p1 updates
the message to s−1 = s−0 + t−1 and sends it to processor p2. Generically, processor pj
receives the message s−j−1 from pj−1, updates it as s−j = s−j−1 + t−j , and sends the
new message to processor pj+1. It corresponds to the downward arrows in figure 2.
In the same way, processors on the second half start computations for partial sums s+

k .
A positive stream starts from processor pP−1: processor pj receives s+

j+1 from pj+1

and sends the updated message s+
j = s+

j+1 + t+j to pj−1. The resulting algorithm is
composed by two simultaneous streams of neighbor-to-neighbor communication, each

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 83

Figure 3. Coordination scheme to minimize delays due to interprocessor communication. The middle
processor (MP) plays a key role to forward the positive stream to the first half of processors (FP) and to

forward the negative stream to the second half of processors (SP).

one with messages of length N . In short, one pipe started on processor p0 (negative
stream), and a reverse pipe which starts on pP−1 (positive stream). The scheme is
free of data-reversion and communication costs are lower than the same for a matrix
transposition process.

Load balance is a fundamental issue in parallel programming. Additionally,
communication overhead is typically several orders of magnitude larger than hard-
ware overhead [20]. Coordination between processors must (1) attempt to have the
local computational work performed simultaneously under the same time frame, and
(2) avoid a message passing mechanism that delays local work. Thus, messages must
arrive and leave the middle processor as early as possible so that idle times are min-
imized. As soon as one processor receives a message, it updates the information and
forwards it to the next processor in the pipe. Figure 3 summarizes the strategy. The
algorithm is divided into nine time frames (from (a) to (i)). The top row (FP) rep-
resents one processor belonging to the first half, the second row (MP) represents the
middle processor, and the bottom row (SP) corresponds to one processor in the second
half. Rectangles indicate the computational work performed by one processor: the
left side represents computations for negative modes (n 6 −m), and the right side
indicates computational work for positive modes (n > 0). Interprocessor communi-
cation is represented by an arrow. Upward arrows belong to the positive stream, and
downward arrows form the negative stream. On the first time frame (a), all processors
perform the same amount of work by evaluating FFT transforms and either the partial
sum (t+) or the partial sum (t-). On frames (b), (c) and (d), negative and positive
streams arrive at the middle processor (it corresponds to the intersection point at the
center of figure 2). A processor pj on the first half receives a message from pj−1, and
a processor pk on the second half receives a message from pk+1 as indicated on (b).
In frame (c), processor pP/2+1 obtains the accumulated sum s+ and sends it to the
middle processor pP/2. Similarly, processor pP/2−1 updates the accumulated sum s-
which is sent to pP/2−1 in frame (d). The empty slots on (b) and (c) represent the
delay due to interprocessor communication. On (b), the middle node is idle waiting

84 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

for the negative and positive streams to arrive. On this example, time frames for
the processor on the top of the figure are shifted by one time slot in (c) because the
middle node gives precedence to the incoming message from the positive stream. On
frames (d) and (e), all processors evaluate their remaining partial sums. The middle
processor updates the accumulated sums and sends s- to the second half of proces-
sors (f), and s+ to the first half (g). The empty slots in frames (e) and (f) indicate the
delay for the outgoing messages to arrive at processors p0 and pP−1. The last step is
to have all processors obtaining terms Cn,m and performing inverse FFT transforms
in (h) and (i).

Figure 3 also suggests an improvement for the algorithm. Note that the last
group of computations on each processor is composed by the calculation of the terms
Cn,m, n ∈ [−N/2,N/2], in (1) and the inverse Fourier transforms. For the first half
processors, Fourier coefficients associated with negative modes (n 6 −m) only depend
on the accumulated sums s− which are evaluated in time frame (d). It indicates that
these coefficients can be obtained earlier within the empty time frame (f). The tradeoff
here is that lengthy computations for the Fourier coefficients may delay the positive
stream and, consequently, delay all the next processors waiting for a message from
the positive stream. Thus, the best choice depends on the problem size given by N
and M , and also the number of processors P . The same idea applies for processors
on the second half: Fourier coefficients associated with positive modes (n > 0) can
be evaluated in time frame (e). We distinguish these variants of the algorithm by
defining

• the late computations algorithm as the original version presented in figure 3 where
each processor evaluates all the Fourier coefficients after all the neighbor-to-
neighbor communications have been completed; and

• the early computations algorithm as the version in which half of the Fourier coef-
ficients are evaluated right after one of the streams have crossed the processor.

In the next section, we analyze the late computations algorithm in detail and
compare it with other approaches.

4. Analysis of the parallel algorithm

4.1. Complexity of the stream-based algorithm

When designing the above coordination scheme, one can formulate a timing
model for the stream-based algorithm. The parallel implementation presents a high de-
gree of concurrence because major computations are distributed among distinct proces-
sors. However, interprocessor communication is always a source of parallel overhead.
Different problem sizes correspond to distinct levels of granularity which implies that
there is an optimal number of processors associated with each granularity. A com-
plexity model plays a key role in the investigation of these characteristics. For the
timing analysis, we consider ts as the message startup time and tw as the transfer

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 85

time for a complex number. To normalize the model, we adopt constants c1 and c2

to represent operation counts for distinct stages of the algorithm. The model follows
the dependencies previously discussed in figure 3. Each processor performs a set of
M/P Fourier transforms in (c1/2)(M/P)N log2N operations, and computes the ra-
dial integrals Ci,i+1

n,m using (c2/3)(M/P)N operations. To evaluate either M/P partial
sums t+ or M/P partial sums t−, each processor takes (c2/3)(M/P)(N/2) opera-
tions. Positive and negative streams start from processors pP−1 and p0, respectively,
and each processor forwards (receive and send) a message of length N/2 towards
the middle node. The total time is 2((P − 1)/2)(ts + (N/2)tw). On the next stage,
each processor performs either a partial sum t+ or partial sum t− at the cost of
(c2/3)(M/P)(N/2) operations. Positive and negative streams restart from the mid-
dle node and arrive in p0 and pP−1, respectively, after 2((P − 1)/2)(ts + (N/2)tw)
time units for communication. Additionally, the coefficients Cn,m are computed in
(c2/3)(M/P)N operations. Finally, (c1/2)(M/P)N log2 N operations are used to ap-
ply inverse Fourier transforms. The parallel timing for our stream-based algorithm is
given by

T stream
P = c1

M

P
N log2 N + c2

M

P
N + 2(P − 1)

(
ts +

N

2
tw

)
. (31)

To analyze the performance of the parallel algorithm, one must compare the above
equation against the timing estimate for the sequential algorithm. In the later case,
the algorithm starts performing M Fourier transforms in (c1/2)MN log2N operations.
Radial integrals are obtained after (c2/3)MN operations, and the timing for evaluat-
ing the Fourier coefficients is also (c2/3)MN . Finally, M inverse Fourier transforms
take (c1/2)MN log2 N computations. Therefore, the sequential timing Ts is given
by

Ts = c1MN log2 N +
2
3
c2MN. (32)

Clearly, most of the parallel overhead must be attributed to the communication term
in equation (31). Although each processor performs an extra set of (c2/3)(M/P)N
computations when obtaining the partial sums t− and t+, the overhead of the ex-
tra cost is still amortized as the number of processors P increases. An immediate
consequence is that overheads are mainly due to increasing number of angular grid
points N . No communication overhead is associated with the number of radial grid
points M . This scenario is made clear when obtaining the speedup Sstream for the
algorithm

Sstream =
Ts

T stream
P

=
c1MN log2 N + (2/3)c2MN

c1(M/P)N log2 N + c2(M/P)N + 2(P − 1)(ts + (N/2)tw)
(33)

=P
c1MN log2N + (2/3)c2MN

c1MN log2 N + c2MN + 2P (P − 1)(ts + (N/2)tw)
, (34)

86 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

and the resulting efficiency

Estream

=
Sstream

P
=

c1MN log2 N + (2/3)c2MN

c1MN log2 N + c2MN + 2P (P − 1)(ts + (N/2)tw)
(35)

=
1

1 + ((c2/3)MN + 2P (P − 1)(ts + (N/2)tw))/(c1MN log2N + (2/3)c2MN)
.

(36)

Efficiency measures the fraction of the total running time that a processor is devoting
to perform computations of the algorithm, instead of being involved on interprocessor
coordination stages. From the above equation, one can detect the sources of overhead
which makes Estream < 1. It shows that the efficiency decays quadratically in the
number of processors P .

For the asymptotic analysis of the algorithm, we drop the computational terms of
lower order in (31) since they represent a small amount of overhead when compared
against the communication term in (35). The resulting asymptotic timing T

asymp
P for

the parallel algorithm is given by

T
asymp
P = c1

M

P
N log2 N + 2(P − 1)

(
ts +

N

2
tw

)
. (37)

Since message lengths depend on N and computational work depends also on M , dis-
tinct problem sizes will present different performances. The number of processors for
which the asymptotic parallel running time T asymp

P achieves its minimum is determined
by ∂TP /∂P = 0. In the case of (37), we have

P
asymp
opt =

√
c1MN log2 N

2(ts + (N/2)tw)
, (38)

which can be understood as an approximation for the value of P which minimizes the
numerator in (36) for given values of M and N .

4.2. Comparison with other approaches

Estimate (31) can also be used to compare the performance of the parallel algo-
rithm against an implementation based on matrix transposition. As stated earlier, this
approach aims to evaluate recurrences (10) and (11) within a processor. Consequently,
data must be reverted in all processors as exemplified on figure 4 for the case where
P = 4. Initially, each processor contains data for evaluating M/P Fourier transforms.
It corresponds to each row on figure 4(a). To calculate recurrences sequentially, each
processor must exchange distinct data of size NM/P 2 with all P−1 remaining proces-
sors. At the end of the communication cycle, processor pj contains all the terms Ci−1,i

n,m ,
n ∈ [jN/P − N/2, (j + 1)N/P − N/2]. Figure 4(b) describes the communication
pattern. Rows are divided into P blocks of size NM/P 2 so that the processor pj

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 87

Figure 4. Coordination pattern based on all-to-all personalized communication: (a) M/P Fourier trans-
forms are evaluated locally; (b) each two processors exchange blocks of size MN/P 2.

exchanges distinct data-blocks with different processors. The data-transfer pattern in-
volves an all-to-all personalized communication as in a parallel matrix transposition
procedure. For a mesh architecture, the estimated communication timing [15] is given
by

T transpose
comm = 2

(√
P − 1

)(
2ts +

MN

P
tw

)
, (39)

and the total parallel timing T transpose
P is obtained by adding the timing for M/P Fourier

transforms, the timing to apply the recurrences, the same T transpose
comm to revert back data

into the original ordering, and the timing for M/P inverse Fourier transforms. The
basic difference in the computational timing when comparing with the case of positive
and negative streams approach is that there is no need for the extra set of partial
sums with cost (c2/3)(M/P)N . The final estimate for the matrix transposition based
algorithm is then given by

T transpose
P = c1

M

P
N log2N +

2
3
c2
M

P
N + 4

(√
P − 1

)(
2ts +

MN

P
tw

)
, (40)

which shows the different degree of scalability between both algorithms. In fact,
for the case of the stream-based algorithm, interprocessor communication introduces
a delay of order PN depending on the problem size as it can be derived from the
coefficients in tw in estimate (31). Under the same principle, an algorithm based on
matrix transposition generates a delay of order 4MN/

√
P . In a large scale application,

clearly M � P due to practical limitations on the number of available processors
which makes PN � 4MN/

√
P . It implies that the stream-based algorithm must scale

up better than the second approach because of a smaller communication overhead.
Theoretical estimates can also be used to compare the proposed algorithm against

an implementation based on parallel FFT coding as discussed in section 3. For this
purpose, we consider a parallel binary-exchange algorithm for FFT as described in [15].

88 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

In binary-exchange FFT, data is exchanged between all pairs of processors with label-
ing indices differing in one bit position. Although interprocessor communication takes
place only during the first log2 P iterations of the parallel FFT algorithm, the commu-
nication pattern is prone to produce large overheads. For a mesh architecture with

√
P

rows and
√
P columns, the distance between processors which need to communicate

grows from one to
√
P/2 links. In practice, it means that links between processors

will be shared by multiple messages. It results from the fact that fast Fourier algo-
rithms impose a large interdependency between the elements of the input data. Since
a mesh architecture does not present the same degree of interprocessor connectivity as
in a hypercube, for example, contention for the communication channels may occur.
Considering the parallel FFT with inner loop described in section 3, the amount of
communication due to the binary-exchange algorithm is given by [15]

T binary
comm = (log2 P)ts + 4

NM√
P
tw, (41)

which is equivalent to a communication delay with the same order O(NM/
√
P) as

in the case of the communication timing (39) for the matrix transposition approach.
Consequently, the previous analysis for the matrix transposition approach also applies
here, and the stream-based algorithm presents better parallel scalability than the parallel
binary-exchange approach.

5. Analysis for a coarse-grained data distribution

The degree of parallelism indicates the extent to which a parallel program matches
the parallel architecture. Speedup captures the performance gain when utilizing a par-
allel system [21]:

• True speedup is defined as the ratio of the time required to solve a problem on a
single processor, using the best-known sequential algorithm, to the time taken to
solve the same problem using P identical processors.

• For the relative speedup the sequential time to be used is determined by scaling
down the parallel code to one processor.

Efficiency indicates the degree of speedup achieved by the system. The lowest
efficiency E = 1/P is equivalent to leave P − 1 processors idle and have the algo-
rithm executed sequentially on a single processor. The maximum efficiency E = 1 is
obtained when all processors devote the entire execution time to perform computations
of the algorithm, with no delays due to interprocessor coordination or communication.
In practice, performance critically depends on the data-mapping and interprocessor
coordination process adopted for a coarse-grain parallel architecture. By limiting the
amount of data based on memory constraints imposed by a single-processor version of
the algorithm, one cannot perform numerical experiments to validate a timing model
for coarse-grain data distribution when using large values of P . To allow the usage

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 89

of large problem sizes to observe speedups and efficiencies in a coarse-grained data
distribution, we define

• Modified speedups S[20] and modified efficiencies E[20] which are calculated by
comparing performance gains over the parallel algorithm running on a starting
configuration with 20 processors. Specifically we have

S[20] =
20 · T20

Tp
and E[20] =

S[20]

P
, (42)

where TP is the parallel running time obtained using P processors.

Comparing with the actual definition for relative speedup, the modified speedup
S[20] adopts 20T20 as the running time for the sequential version of the algorithm. It
basically corresponds to assuming optimal speedups and efficiencies when using 20
processors, that is, S = 20 and E = 1 for P = 20. Although the actual efficiency
for 20 processors is smaller than 1, the analysis allows us to observe the performance
of the algorithm for a large number of processors without having strong constraints
on problem sizes: values for M and N which could be used on a single processor
represent an extreme low level of granularity for an increasing number of processors.
Speedups and efficiencies can be analyzed for up to 60 processors by using P = 20
as a reference configuration. We present and discuss our numerical results in the next
section.

6. Numerical results

For performance evaluation purposes, equation (1) was solved for m = 1 on
a discretization of the unit disk B(0; 1) with N ×M lattice points composed by N
equidistant points in the angular direction, and M equidistant points in the radial direc-
tion. Problem configurations where N = 512, 1024, 2048, and M = 600, 1200, 2400.
Parallel experiments were carried out on an Intel Paragon computer using up to 60
processors.

To observe the scalability of the algorithm, two experiments were performed. For
a fixed number N = 512 of angular grid points, three distinct numbers of radial grid
points were employed: M = 600, 1200 and 2400. Tables 1–3 present actual running
times when increasing the number of processors from P = 20 to P = 60. Similarly,
three distinct numbers of angular grid points (N = 512, 1024 and 2048) were adopted
on a discretization with a fixed number of radial grid points M = 600, as shown
in tables 1, 4 and 5. The first observation derived from tables 1–5 is that saving in
running times are more prominent as the dimension of the problem increases. For
the case where N = 512 is fixed and M = 600, 1200 and 2400, total times decrease
faster for M = 2400 (table 3) than for M = 1200 (table 2), which in turn decreases
faster than for M = 600 (table 1). As it was expected, larger levels of granularity,
i.e., larger problems sizes, imply more computational work performed locally on each
processor and, consequently, better performance for the algorithm. Similar behavior is

90 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

Table 1
Actual running times, modified speedups S[20] and efficiencies E[20] based on
the timing for 20 processors when applied for a problem of size N = 512 and

M = 600.

Number of Time Modified Modified
processors (s) speedup S[20] efficiency E[20]

20 0.5402 20.0000 1.0000
30 0.4035 26.7764 0.8925
40 0.3750 28.8131 0.7203
50 0.3830 28.2117 0.5642
60 0.3942 27.4094 0.4568

Table 2
Actual running times, modified speedups S[20] and efficiencies E[20] based on
the timing for 20 processors when applied for a problem of size M = 1200

and N = 512.

Number of Time Modified Modified
processors (s) speedup S[20] efficiency E[20]

20 1.0802 20.0000 1.0000
30 0.7535 28.6733 0.9558
40 0.6053 35.6946 0.8924
50 0.5459 39.5730 0.7915
60 0.5167 41.8090 0.6968

Table 3
Actual running times, modified speedups S[20] and efficiencies E[20] based on
the timing for 20 processors when applied for a problem of size M = 2400

and N = 512.

Number of Time Modified Modified
processors (s) speedup S[20] efficiency E[20]

20 2.1257 20.0000 1.0000
30 1.4709 28.9039 0.9635
40 1.1514 36.9250 0.9231
50 0.9808 43.3475 0.8670
60 0.8671 49.0284 0.8171

observed for M = 600 fixed and N = 512, 1024 and 2048. The larger granularity for
the case N = 2048 and M = 600 in table 5 provides a better scalability for increasing
number of processors when compared against problem sizes N = 1024 and M = 600
in table 4, and N = 512 and M = 600 in table 1.

Tables 1–5 also describe the scalable performance of the algorithm. Since mem-
ory requirements for the testing problems exceed the capacity of a single processor, we
performed our analysis based on running times for 20 processors as described in the
previous section. Tables 1–5 contain modified speedups S[20] and efficiencies E[20]

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 91

Table 4
Actual running times, modified speedups S[20] and efficiencies E[20] based on
the timing for 20 processors when applied for a problem of size M = 600

and N = 1024.

Number of Time Modified Modified
processors (s) speedup S[20] efficiency E[20]

20 1.1615 20.0000 1.0000
30 0.8365 27.7706 0.9257
40 0.6885 33.7395 0.8435
50 0.6277 37.0103 0.7402
60 0.6069 38.2774 0.6380

Table 5
Actual running times, modified speedups S[20] and efficiencies E[20] based on
the timing for 20 processors when applied for a problem of size M = 600

and N = 2048.

Number of Time Modified Modified
processors (s) speedup S[20] efficiency E[20]

20 2.5798 20.0000 1.0000
30 1.8541 27.8278 0.9276
40 1.5054 34.2744 0.8569
50 1.3435 38.4044 0.7681
60 1.2877 40.0679 0.6678

for all problem configurations. Recall from estimate (31) that the performance of the
parallel algorithm is mainly determined by the number of processors and the com-
munication overhead which also depends on N . Although both configurations with
either M or N fixed present running times for problems of same order N ×M , one
can notice that the algorithm is more sensitive to changes in N due to larger messages.
When comparing efficiencies for problems of the same order of magnitude but with
different values of N , larger efficiencies occur in the case of smaller values for N .
Indeed, efficiencies are higher for M = 1200 and N = 512 (table 2) than their coun-
terparts for M = 600 and N = 1024 (table 4). This contrast is even more visible when
comparing the efficiencies for M = 2400 and N = 512 in table 3 against the efficien-
cies for M = 600 and N = 2048 in table 5. Figure 5 present plots for all speedups
S[20]. In the first case 5(a), message lengths are constant with N = 512 and only the
problem of size M = 600 cannot scale up to 60 processors. For M = 1200 and 2400,
both curves indicate that more processors would deliver even larger speedups. In the
case of figure 5(b), problems of size N = 1024 and 2048 present increasing message
lengths and are almost at the highest value for speedup, that is, adding a few more
processors to the system will not provide any substantial savings in running times.

The above variations on speedups are closely related with the optimal number
of processors obtained in estimate (38). Specifically, the condition ∂TP /∂P = 0
implies that ∂S/∂P = 0 so that speedups achieve largest values for the optimal

92 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

Figure 5. Modified speedups S[20] for 20, 30, 40, 50 and 60 processors: (a) for variable number of
radial grid points M = 600, 1200 and 2400, with N = 512 fixed; (b) for variable number of angular

grid points N = 512, 1024 and 2048, with M = 600 fixed.

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 93

Figure 6. Comparison between early and late computations for the coefficients Cn,m of the singular
integral (1): (a) timings for a fixed number of angular points N = 512 with distinct number of radial
points M = 600, 1200 and 2400; (b) timings for a fixed number of radial points M = 600 and with

distinct number of angular points N = 512, 1024 and 2048.

94 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

Table 6
Estimated optimal number of processors Popt

for distinct problem sizes.

M N Popt

600 512 59
1200 512 83
2400 512 118
600 1024 62
600 2048 66

number of processors. Table 6 presents the optimal number of processors obtained via
estimate (38). Computational cost c1 was obtained based on the running time for the
smallest problem configuration N = 512 and M = 600 using 20 processors which is
found in table 1. Corroborating the numerical results, the smallest problem (M = 600
and N = 512) cannot scale up far from 60 processors. For the case of N = 512 fixed,
the largest problem would scale up to more than 100 processors. Conversely, for the
case of M = 600 fixed, even the largest problem has an optimal number of processors
close to P = 60. It means that no substantial savings in running time can be expected
by adding more processors to the system.

Recall that section 3 presents two variants of the parallel algorithm. In the late
computations algorithm, each processor evaluates terms Cn,m after completion of all
accumulated sums. In the early computations algorithm, half of the terms Cn,m are
evaluated right after the first accumulated sum is completed. To compare both ver-
sions of the algorithm, we use the same problem sizes for the early computations
algorithm. Figure 6 contains running times for both versions. Running times for the
late computations algorithm correspond to the timings present in tables 1–5. Overall
one can notice the influence of problem sizes and number of processors on the per-
formance of the early computations version. For a relatively smaller problem size, the
strategy of evaluating terms Cn,m earlier only incurs on delays for communication.
As a consequence, the problem of size N = 512 and M = 600 presents a better
performance for the late computations algorithm. In the case of a large amount of data
per processor, early computations outperform late computations. A tradeoff between
both approaches can be observed for N = 512 and M = 1200 in figure 6(a). For a
higher level of computational granularity on each processor, i.e., larger pieces of input
data per processor, early computations deliver results faster. However, as the number
of processors increases, the late computations algorithm provides the best results. It
shows that the choice between early or late computations depends on the problem size
and the number of processors available.

7. Conclusions

Recently, progress has been made in the accurate and efficient evaluation of the
singular integral operator (1) based on some recursive relations in Fourier space [10,11].

L. Borges, P. Daripa / A fast algorithm for singular integral transforms 95

In this paper, we reviewed the fast numerical algorithm and developed its paralleliza-
tion. By reformulating the inherently sequential recurrences present in the original
algorithm, we were able to obtain a reduced amount of communication, and even mes-
sage lengths depending only on the number of Fourier coefficients being evaluated.
Moreover, we have shown that the new approach can be defined in a way that is nu-
merically stable as in the original formulation of the fast algorithm. Additionally, two
interprocessor coordination strategies were presented based on early and late evaluation
of half of the Fourier coefficients of the singular integral operator. A timing model
for the algorithm was established to compare the scalability of the parallel algorithm
against a matrix inversion-based implementation. Numerical results were presented to
corroborate theoretical estimates.

The implementation is very scalable in a parallel distributed environment and is
virtually independent of the computer architecture. It only utilizes a linear neighbor-
to-neighbor communication path which makes the algorithm very suitable for any
architecture where a topology of the type ring or array of processors can be embedded.

Acknowledgement

This material is based in part upon work supported by the Texas Advanced
Research Program under Grant No. TARP-97010366-030.

References

[1] F. Argüello, M. Amor and E. Zapata, FFTs on mesh connected computers, Parallel Comput. 22
(1996) 19–38.

[2] L. Bers, Mathematical Aspects of Subcritical and Transonic Gas Dynamics (Wiley, New York,
1958).

[3] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous
coefficients and its applications, in: Convegno Internazionale Suelle Equaziono Cremeonese, Roma
(1955) pp. 111–140.

[4] L. Bers and L. Nirenberg, On linear and nonlinear elliptic boundary value problems in the plane,
in: Convegno Internazionale Suelle Equaziono Cremeonese, Roma (1955) pp. 141–167.

[5] W. Briggs, L. Hart, R. Sweet and A. O’Gallagher, Multiprocessor FFT methods, SIAM J. Sci.
Statist. Comput. 8 (1987) 27–42.

[6] C. Calvin, Implementation of parallel FFT algorithms on distributed memory machines with a
minimum overhead of communication, Parallel Comput. 22 (1996) 1255–1279.

[7] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II (Wiley, New York, 1961).
[8] P. Daripa, On applications of a complex variable method in compressible flows, J. Comput. Phys.

88 (1990) 337–361.
[9] P. Daripa, A fast algorithm to solve nonhomogeneous Cauchy–Riemann equations in the complex

plane, SIAM J. Sci. Statist. Comput. 6 (1992) 1418–1432.
[10] P. Daripa, A fast algorithm to solve the Beltrami equation with applications to quasiconformal

mappings, J. Comput. Phys. 106 (1993) 355–365.
[11] P. Daripa and D. Mashat, An efficient and novel numerical method for quasiconformal mappings

of doubly connected domains, Numer. Algorithms 18 (1998) 159–175.

96 L. Borges, P. Daripa / A fast algorithm for singular integral transforms

[12] P. Daripa and D. Mashat, Singular integral transforms and fast numerical algorithms, Numer. Algo-
rithms 18 (1998) 133–157.

[13] R. Hockney and C. Jesshope, Parallel Computers: Architecture, Programming and Algorithms
(Adam Hilger, Bristol, 1981).

[14] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability (McGraw-
Hill, New York, 1993).

[15] V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Computing (Ben-
jamin/Cummings, Redwood City, CA, 1994).

[16] J. Lawrynowicz, Quasiconformal mappings in the plane, in: Lecture Notes in Mathematics, Vol. 978
(Springer, New York, 1983).

[17] C. Morrey, On the solutions of quasi-linear elliptic differential equations, Trans. Amer. Math. Soc.
43 (1938) 126–166.

[18] A. Mshimba and W. Tutschke, Functional Analytic Methods in Complex Analysis and Applications
to Partial Differential Equations (World Scientific, Singapore, 1990).

[19] L. Nirenberg, On nonlinear elliptic differential equations and Holder continuity, Comm. Pure Appl.
Math. 6 (1953) 103–156.

[20] P. Pacheco, Parallel Programming with MPI (Morgan Kaufmann, San Francisco, CA, 1997).
[21] D. Patterson and J. Hennessy, Computer Organization and Design: The Hardware/Software Inter-

face (Morgan Kaufmann, San Francisco, CA, 1994).

