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In this paper, we extend the work of Daripa et al. [14–16,7] to a larger class of ellip-
tic problems in a variety of domains. In particular, analysis-based fast algorithms to solve
inhomogeneous elliptic equations of three different types in three different two-dimensional
domains are derived. Dirichlet, Neumann and mixed boundary value problems are treated in
all these cases. Three different domains considered are: (i) interior of a circle, (ii) exterior of
a circle, and (iii) circular annulus. Three different types of elliptic problems considered are:
(i) Poisson equation, (ii) Helmholtz equation (oscillatory case), and (iii) Helmholtz equation
(monotone case). These algorithms are derived from an exact formula for the solution of a
large class of elliptic equations (where the coefficients of the equation do not depend on the
polar angle when written in polar coordinates) based on Fourier series expansion and a one-
dimensional ordinary differential equation. The performance of these algorithms is illustrated
for several of these problems. Numerical results are presented.
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1. Introduction

Modeling of many practical problems in mechanics and other areas of mathemati-
cal physics requires solutions of inhomogeneous elliptic equations. Some of the elliptic
equations that often arise are the Poisson and the Helmholtz-type equations. Helmholtz-
type equations usually appear in scattering theory, acoustics, electromagnetics and time
discretization of Navier–Stokes equations, to name just a few. Therefore, availability of
fast and accurate algorithms to solve these elliptic equations will allow rapid solution of
many practical problems.

There are many numerical approaches to solve elliptic equations such as finite dif-
ference, finite element, spectral, wavelet, and integral equation methods. The literature
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on this aspect is too large to survey here. Based on these various approaches, many fast
and accurate methods have been constructed in recent years. For example see [1,4,8–
11,19,20,23–25,29,30] among many others. The algorithm in the present work is some-
what related to the idea used by Daripa and collaborators in developing fast algorithms
for various purposes (see [13–15]).

One of the methods to solve inhomogeneous second order elliptic problems subject
to either Dirichlet or Neumann boundary conditions requires the following steps. First,
a particular solution is constructed. The difference of the boundary values of this partic-
ular solution and given boundary conditions forms the boundary data for an appropriate
homogeneous equation. The solution of this homogeneous equation is then calculated
using one of the many available fast methods.

The efficiency of an accurate method also depends crucially on the way the par-
ticular solution is computed. In Green’s function approach, the particular solution can
be represented as a multi-dimensional integral whose integrand contains the free space
Green’s function of the elliptic operator and the inhomogeneous term of the elliptic equa-
tion. Analysis based fast and very accurate algorithms to evaluate such integrals arising
in solving the nonhomogeneous Cauchy–Riemann equations, the Beltrami equations,
and the Poisson equations have been proposed and applied to solve various problems
by Daripa and collaborators [5–7,12–16]. The fast algorithm for evaluation of these
integrals in a disk is based on the fast Fourier transform (FFT) and recursive relations
that make use of only one-dimensional integrals in radial directions. (The use of this
algorithm in arbitrary domains has been addressed recently by the authors [3]). This
algorithm takes into account the exact contribution of the singularity to the integral and,
hence, is also very accurate. Moreover, this algorithm has the asymptotic complexity
O(N logN), where N is the number of unknowns. In actual implementations, these
algorithms give solutions in almost O(N) time due to a very low value of the constant
(number of operations required per unknown) associated with these algorithms. This is
nearly optimal which is very encouraging considering the fact that it is based on classical
analysis and various other features some of which are discussed below.

The algorithms presented in this paper are derived through a different formula-
tion for a wider class of elliptic problems. The analysis leading up to these algorithms
involves the following steps.

1. Using the FFT, the second order inhomogeneous elliptic equations are reduced to
one-dimensional linear ordinary differential equations (ODE) with non-constant co-
efficients.

2. Appropriate particular solutions of these ODEs are constructed in terms of one-
dimensional integrals.

3. Using the particular and the complementary solutions of these ODEs, exact solutions
of these ODEs subject to appropriate boundary conditions are formally constructed.

4. Some properties of these one-dimensional integrals are noted including some recur-
sive relations which can reduce computational load significantly.

5. Fast algorithms based on these properties and the FFT are then constructed.
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Thus, these algorithms are based on the formal representation of the exact se-
ries solutions of elliptic equations, and the numerical error arises mainly due to one-
dimensional numerical integration. Since this error can be made, in principle, as small
as we please, the method is high-order accurate. The number of operations to achieve
a certain accuracy is very low and the complexity (asymptotic operation count) of these
algorithms is O(N logN). The constant hidden behind this order estimate is also very
low. Moreover, these algorithms are very simple conceptually, easy to understand, easy
to implement, and parallelizable by construction (see [5–7] for parallelization issues of
similar algorithms).

Similarity of our approach with other well known approaches such Fourier Analy-
sis Cyclic Reduction (FACR) and other classical methods [21,31,33] is in the use of
Fourier series which separates the variables reducing two-dimensional problems to solv-
ing independent one-dimensional problems, or equivalently independent algebraic sys-
tems. However the similarity stops here. Our approach then differs from others in the
way these reduced problems are solved. For example, FACR based methods for the so-
lutions of Poisson’s equations for two-dimensional problems on regular grids [21,31,33]
use one-dimensional FFTs which decouple the equations giving rise to independent tri-
angular systems. Cyclic reduction and Gaussian elimination (or another set of one-
dimensional FFTs and inverse FFTs) are then used to solve the linear systems. In con-
trast, in our approach the reduced problems are solved by making use of exact analy-
ses and some recursive relations. Since our approach and the simplest version of these
FACR methods have the same computational complexity, O(N logN), it is likely that our
method is at least as competitive, but likely to be more accurate for the same computa-
tional effort. Our algorithms are also easier to implement, parallelizable by construction,
and applicable to a wider class of elliptic problems.

FACR based methods are suitable for Poisson equations, where as our approach
here is a unified approach and applies to a host of problems inclding Poisson and two
types of Helmholtz equations addressed in this paper. Moreover, the algorithms for
all the problems presented are parallelizable by construction and virtually architecture-
independent implementions of these algorithms can be done following some of the ideas
that we have recently discussed in [6]. At this point, it is worth mentioning that there
now exists a host of fast elliptic solvers, in particular Poisson solvers, based on various
other principles including the use of FFT, fast multipole method, etc.

The paper is organized as follows. Section 2 is concerned with the formulation
of a general class of inhomogeneous elliptic equations in two dimensions in terms of
one-dimensional problems by making use of Fourier transforms. The bulk of section 3
describes the method for the Poisson and Helmholtz equations (monotone and oscilla-
tory) and for all three types of domains. All the nine combinations are discussed in
detail, even though these do not differ conceptually. However, the detailed discussion
is necessary for proper exposition of some subtle points, for proper description of the
algorithms, and for ease of implementation of the algorithms discussed in section 4.
Section 4 describes the fast algorithm. Numerical results are presented in section 5.
Finally, in section 6, we draw conclusions.
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2. Inhomogeneous elliptic equations in R
2

We consider elliptic equations in a domain � ⊂ R
2 which can be an open disc,

or an open annulus or the complement of a closed disc, all centered at the origin. The
boundary of the domain is denoted by ∂� and the two radii limiting � are denoted by
R1 < R2, where R1 can be zero and R2 can be infinity.

Let L be an elliptic operator, and let its coefficients have sufficient regularity so
that the coefficients of its adjoint L∗ are continuous. For a Dirichlet problem associated
with the equation

Lu = f in � (2.1)

and the boundary condition

u = g on ∂�, (2.2)

we assume that f is continuous in � and g is continuous on ∂�. Therefore the problem
has a solution in the classical sense, i.e. u ∈ C2(�) ∩ C0(�), satisfies equation (2.1)
pointwise and by continuity the boundary conditions on ∂�. For exterior problems, the
conditions at infinity are also fulfilled.

The data f and h of a Neumann problem with equation (2.1) and boundary condi-
tion

∂nu = h on ∂�, (2.3)

are assumed to be also continuous on � and ∂�, respectively, and to satisfy appropriate
conditions for the existence of classical solutions. Evidently, for the Laplace operator
the uniqueness is up to an additive constant and we must have∫

�

f dx dy =
∫
∂�

h dt. (2.4)

Also, for both exterior problems, Dirichlet and Neumann, we assume that f has a com-
pact support.

We consider now the equation

Lu(r, θ) = f (r, θ), R1 < r < R2, 0 � θ � 2π, (2.5)

where L is written in polar coordinates. We assume in the following that the coefficients
of the operator L in terms of polar coordinates are independent of θ , and we write ex-
plicitly in the formula the polar coordinates (r, θ) or reiθ when we use the polar form
of L. With the above assumption, for each integer n, there is an ordinary differential
operator of second order Ln whose coefficients do not depend on θ satisfying

Lnun(r) = e−inθL
(
un(r)e

inθ ) (2.6)
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for any un(r) ∈ C2(R1, R2). Writing L = Lr + a(r)∂θ + b(r)∂r∂θ + c(r)∂2
θ , where

the operator Lr depends only on r, and using integration by parts we can verify that Ln

satisfies the equation

Ln

∫ 2π

0
u(r, θ)e−inθ dθ =

∫ 2π

0
Lu(r, θ)e−inθ dθ (2.7)

for any u(r, θ) ∈ C2(�) and for any integer n and R1 < r < R2.
Now, for each r ∈ (R1, R2), we write f (r, θ) and u(r, θ) as Fourier series on

[0, 2π ],

f (r, θ) =
∞∑

n=−∞
fn(r)e

inθ (2.8)

and

u(r, θ) =
∞∑

n=−∞
un(r)e

inθ , (2.9)

respectively. Applying equation (2.7) to the solution u(r, θ) of equation (2.5) and using
the above Fourier series expansions we get

Lnun(r) = fn(r) (2.10)

for any integer number n. Thus, the Fourier coefficients of u satisfy equation (2.10). We
state this well-known result as a theorem.

Theorem 2.1. Assume that the coefficients of the operator L in its polar form do not
depend on the angle θ . If a solution u of equation (2.5) is written as the Fourier expan-
sion (2.9), then its coefficients un(r) are solutions of the equations

Lnun(r) = fn(r), R1 < r < R2, (2.11)

where the operator Ln is given by (2.6) and fn are the Fourier coefficients of the func-
tion f given by (2.8).

Now, let us assume that the boundary data g and h are written as Fourier series

g(r, θ) =
∞∑

n=−∞
gn(r)e

inθ , (r, θ) ∈ ∂�, (2.12)

and

h(r, θ) =
∞∑

n=−∞
hn(r)e

inθ , (r, θ) ∈ ∂�, (2.13)
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respectively. Since the boundaries of the domains are given by either one or two circles,
we see that the conditions (2.14) and (2.15) below follow, respectively, from boundary
conditions (2.2) and (2.3) for any integer number n.

un(R1) = gn(R1) ≡ g(1)n , un(R2) = gn(R2) ≡ g(2)n , (2.14)

and

drun(R1) = −hn(R1) ≡ −h(1)n , drun(R2) = hn(R2) ≡ h(2)n . (2.15)

We have formally included in (2.14) and (2.15) the conditions at the origin and infinity,
which the solution must satisfy when written in polar coordinates. Therefore, when �

is a disc, un(R1) = gn(R1) or drun(R1) = hn(R1) means “un(r) has a finite limit when
r → 0 for each n”. Also, when � is the complement of a closed disc, un(R2) = gn(R2)

or drun(R2) = hn(R2) means “un(r) and/or drun(r) satisfy appropriate conditions at
infinity which arise from the conditions at infinity of the problem in �”. Thus, the
Dirichlet problem defined by (2.1) and (2.2) is reduced to one-dimensional problems
given by (2.11) and (2.14), while the Neumann problem given by (2.1) and (2.3) is
reduced to one-dimensional problems given by (2.11) and (2.15).

For a point reiθ , which can also be infinity, and the two functions f (ρeiτ ) and
g(ρeiτ ), we use the following notation:

f
(
ρeiτ

) = O
(
g
(
ρeiτ

))
as ρeiτ → reiθ if

f (ρeiτ )

g(ρeiτ )
is bounded as ρeiτ → reiθ ,

f
(
ρeiτ

) = o
(
g
(
ρeiτ

))
as ρeiτ → reiθ if

f (ρeiτ )

g(ρeiτ )
→ 0 as ρeiτ → reiθ ,

f
(
ρeiτ

) ∼ g
(
ρeiτ

)
as ρeiτ → reiθ if

f (ρeiτ )

g(ρeiτ )
→ 1 as ρeiτ → reiθ .

3. Solution of one-dimensional problems

We look for the solution of one-dimensional problems associated with (2.11),
(2.14) and (2.15) in two steps. First, we look for a solution vn(r) satisfying only equa-
tion (2.11),

Lnvn(r) = fn(r), R1 < r < R2, (3.1)

of the form

vn(r) =
∫ R2

R1

fn(ρ)Vn(ρ, r) dρ, (3.2)

where Vn(ρ, r) satisfies in the sense of distributions the equation

L∗
nVn(ρ, r) = δ(ρ − r), R1 < ρ < R2, (3.3)
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where δ(ρ − r) is the Dirac delta function. Writing

Lnvn(r) ≡ αn(r)d
2
r vn(r) + βn(r)drvn(r) + γn(r)vn(r), R1 < r < R2, (3.4)

let us assume that the homogeneous equation

L∗
nv

∗
n(r) ≡ d2

r

(
αn(r)v

∗
n(r)

)−dr
(
βn(r)v

∗
n(r)

)+γn(r)v
∗
n(r) = 0, R1 < r < R2, (3.5)

has two linearly independent solutions, v∗
n,1(r) and v∗

n,2(r). In the above, L∗
n is the adjoint

of the operator Ln. We seek solutions of equation (3.3) in the form

Vn(ρ, r) =
{
an(r)v

∗
n,1(ρ), for R1 < ρ < r,

bn(r)v
∗
n,2(ρ), for r < ρ < R2.

(3.6)

Now the functions an(r) and bn(r) are to be found from the conditions that Vn(ρ, r) is
continuous at ρ = r,

an(r)v
∗
n,1(r) = bn(r)v

∗
n,2(r), (3.7)

and the jump of its first derivative ∂ρVn(ρ, r) at ρ = r satisfies

αn(r)
[
bn(r)drv

∗
n,2(r) − an(r)drv

∗
n,1(r)

] = 1, (3.8)

where it is assumed that αn(r) �= 0 for any R1 < r < R2. From (3.7) and (3.8), we get

an(r) = v∗
n,2(r)

αn(r)D
∗
n(r)

and bn(r) = v∗
n,1(r)

αn(r)D
∗
n(r)

, (3.9)

where

D∗
n(r) = v∗

n,1(r)drv
∗
n,2(r) − drv

∗
n,1(r)v

∗
n,2(r). (3.10)

Now, using (3.6) in (3.2) we obtain

vn(r) = an(r)

∫ r

R1

fn(ρ)v
∗
n,1(ρ) dρ + bn(r)

∫ R2

r

fn(ρ)v
∗
n,2(ρ) dρ, (3.11)

where an(r) and bn(r) are given by (3.9). We have not yet proven that (3.11) is indeed a
solution of (3.1). We do this next.

We notice that pair of equations (3.7)–(3.8) is equivalent to the pair of equations
composed of (3.7) and

αn(r)
[
drbn(r)v

∗
n,2(r) − dran(r)v

∗
n,1(r)

] = −1. (3.12)

A simple manipulation of equations (3.7), (3.8) and (3.12) shows that vn(r) given
by (3.11) is a solution of equation (3.1) if an(r) and bn(r) in (3.9) are solutions of the ho-
mogeneous form of equation (3.1), evidently under the condition that αn(r)drD∗

n(r) �= 0
for any R1 < r < R2. To this end, recalling that v∗

n,1(r) and v∗
n,2(r) are solutions of

equation (3.5), we obtain that D∗
n(r) is a solution of the equation

αn(r)drD
∗
n(r) − [

βn(r) − 2drαn(r)
]
D∗

n(r) = 0, R1 < r < R2. (3.13)
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A simple manipulation of this equation shows that an(r) and bn(r) are two linearly in-
dependent solutions of the homogeneous form of equation (3.1) if αn(r)D∗

n(r) �= 0 for
any R1 < r < R2, and v∗

n,1(r) and v∗
n,2(r) are solutions of equation (3.5). Consequently,

we have proved that vn(r) found in (3.11), i.e.

vn(r) = v∗
n,2(r)

αn(r)D∗
n(r)

∫ r

R1

fn(ρ)v
∗
n,1(ρ) dρ + v∗

n,1(r)

αn(r)D∗
n(r)

∫ R2

r

fn(ρ)v
∗
n,2(ρ) dρ, (3.14)

is a solution of equation (3.1).
In the above arguments and analyses, we can interchange v∗

n,1(r) and v∗
n,2(r) and

still arrive at the same proof. Consequently, we can do this interchange in the two inte-
grals in (3.14), but if we want to keep the same formula in (3.10) for D∗

n(r), we have to
change the signs in front of these integrals. In this way, we obtain

vn(r) = − v∗
n,1(r)

αn(r)D∗
n(r)

∫ r

R1

fn(ρ)v
∗
n,2(ρ) dρ − v∗

n,2(r)

αn(r)D∗
n(r)

∫ R2

r

fn(ρ)v
∗
n,1(ρ) dρ,

(3.15)
which is also a solution of equation (3.1).

In the light of what we want to prove next, it is worth recalling from above the
following: “an(r) and bn(r) given by (3.9) are two linearly independent solutions of the
homogeneous form of equation (3.1), if αn(r)D∗

n(r) �= 0 for any R1 < r < R2, and
v∗
n,1(r) and v∗

n,2(r) are two linearly independent solutions of equation (3.5).” Next, we
prove the reciprocal statement of it.

Let vn,1(r) and vn,2(r) be two linearly independent solutions of the homogeneous
form of equation (3.1) such that αn(r)Dn(r) �= 0 for any R1 < r < R2, where

Dn(r) = vn,1(r)drvn,2(r) − drvn,1(r)vn,2(r). (3.16)

Replacing an and bn in equations (3.9) by vn,1 and vn,2 respectively, equations (3.9)
become

vn,1(r) = v∗
n,2(r)

αn(r)D∗
n(r)

and vn,2(r) = v∗
n,1(r)

αn(r)D∗
n(r)

. (3.17)

From equations (3.16) and (3.17) we first obtain

D∗
n(r) = − 1

αn(r)2Dn(r)
, (3.18)

and then

v∗
n,1(r) = − vn,2(r)

αn(r)Dn(r)
and v∗

n,2(r) = − vn,1(r)

αn(r)Dn(r)
. (3.19)

Now, using the fact that vn,1(r) and vn,2(r) are two linearly independent solutions of the
homogeneous form of equation (2.11), we find that Dn(r) is a solution of the equation

αn(r)drDn(r) + βn(r)Dn(r) = 0, R1 < r < R2. (3.20)
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Using this equation, it is easy to prove that v∗
n,1(r) and v∗

n,2(r) given by (3.19) are solu-
tions of equation (3.5). Concluding, we state these results in the following proposition.

Proposition 3.1. If the coefficients of the operator Ln given by (3.4) satisfy αn(r) �= 0,
r ∈ (R1, R2), αn(r) ∈ C2(R1, R2), βn(r) ∈ C1(R1, R2) and γn(r) ∈ C0(R1, R2),
then equations (3.17) and (3.19) are reciprocal transformations and establish bijective
correspondences between pairs of linearly independent solutions of the homogeneous
form of equations (3.1) and (3.5).

Revisiting particular solutions vn(r) of equation (3.1) given in (3.14) and (3.15),
and making use of (3.17) and (3.19), we obtain

vn(r) = −vn,1(r)
∫ r

R1

vn,2(ρ)

αn(ρ)Dn(ρ)
fn(ρ) dρ − vn,2(r)

∫ R2

r

vn,1(ρ)

αn(ρ)Dn(ρ)
fn(ρ) dρ

(3.21)
and

vn(r) = vn,2(r)

∫ r

R1

vn,1(ρ)

αn(ρ)Dn(ρ)
fn(ρ) dρ + vn,1(r)

∫ R2

r

vn,2(ρ)

αn(ρ)Dn(ρ)
fn(ρ) dρ. (3.22)

Consequently, we can write:

Theorem 3.1. If the coefficients of the operator Ln given by (3.4) satisfy αn(r) �= 0,
r ∈ (R1, R2), αn(r) ∈ C2(R1, R2), βn(r) ∈ C1(R1, R2) and γn(r) ∈ C0(R1, R2),
and if vn,1(r) and vn,2(r) are two linearly independent solutions of the homogeneous
form of (3.1), then vn(r) given by (3.21) and (3.22) are solutions of (3.1) subject to the
conditions that the integrals in (3.21) and (3.22) are convergent.

Remark 3.1. The above particular solutions can also be derived using the well-known
method of variation of parameters, but the formulation leading up to the derivation of
the above particular solutions is more general and applicable to more general linear
differential operators.

In solving equation (3.1), an appropriate choice of vn(r) from (3.21) and (3.22)
should be made so that the integrals are convergent when the domain � is a disc. When�
is the complement of a closed disc, the Fourier coefficients fn(r) have compact support
because f has compact support by assumption. Therefore, in this case, the integrals
in (3.21) and (3.22) are always convergent and hence, either of these equations can be
chosen as vn. When � is an annulus, either (3.21) or (3.22) can be chosen as a particular
solution of (3.1).

In this paper, we illustrate the proposed method for three types of operators: the
Laplace and the two Helmholtz operators (monotonic and oscillatory) all of which satisfy
the constraints of theorem 2.1.
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Poisson equation. In this case, we have in rectangular coordinates the Laplace operator
Lu ≡ $u, and Lu(r, θ) ≡ (1/r)∂r(r∂ru)+ (1/r2)∂2

θ u in polar coordinates. Using (2.6),
equation (3.1) is written as

Lnvn(r) ≡ 1

r
dr

(
rdrvn(r)

) − n2

r2
vn(r) = fn(r), R1 < r < R2. (3.23)

We have αn(r) = 1, and we can choose

v0,1(r)= 1, v0,2(r) = log(r),

vn,1(r)= r |n|, vn,2(r) = r−|n| for n �= 0.
(3.24)

From (3.16) we get

D0(r) = 1

r
, and Dn(r) = −2|n|

r
for n �= 0.

Applying (3.21) we obtain

vn(r) = 1

2|n|
∫ r

R1

ρ

(
r

ρ

)|n|
fn(ρ) dρ + 1

2|n|
∫ R2

r

ρ

(
ρ

r

)|n|
fn(ρ) dρ for n �= 0, (3.25)

and

v0(r) = −
∫ r

R1

ρ log(ρ)f0(ρ) dρ −
∫ R2

r

ρ log(r)f0(ρ) dρ. (3.26)

Also, from (3.22) we get

vn(r) = − 1

2|n|
∫ r

R1

ρ

(
ρ

r

)|n|
fn(ρ) dρ − 1

2|n|
∫ R2

r

ρ

(
r

ρ

)|n|
fn(ρ) dρ for n �= 0,

(3.27)
and

v0(r) =
∫ r

R1

ρ log(r)f0(ρ) dρ +
∫ R2

r

ρ log(ρ)f0(ρ) dρ, (3.28)

under the condition that the integrals are convergent. Now, we make the following re-
marks concerning the convergence of the integrals.

Remark 3.2. Except for the case R1 = 0 and |n| > 1, where the first integral in (3.25)
can be divergent (depending on fn), the integrals in (3.25)–(3.28) are convergent.

We remind that the function f has compact support and is bounded on �. There-
fore, its Fourier coefficients fn have compact support and are bounded on [R1, R2] for
any integer n.
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Helmholtz equation (oscillatory case). The operator for this equation is Lu ≡ $u +
k2u. Using the polar coordinates we have Lu(r, θ) ≡ (1/r)∂r(r∂ru)+ (1/r2)∂2

θ u+ k2u,
and from (2.6) we get equation (3.1) as

Lnvn(r) ≡ 1

r
dr

(
rdrvn(r)

) + k2r2 − n2

r2
vn(r) = fn(r), R1 < r < R2, (3.29)

which is a Bessel’s differential equation. Here we have again αn(r) = 1 (see (3.4)). The
two linearly independent solutions of homogeneous form of equation (3.29) are chosen
as

vn,1(r) = Jn(kr) and vn,2(r) = Yn(kr) for any n, (3.30)

where Jn(r) and Yn(r) are Bessel functions of the first and the second kind of order n,
respectively. Since

J−n(r) = (−1)nJn(r), and Y−n(r) = (−1)nYn(r), n = 0, 1, 2, . . . , (3.31)

they satisfy

J−n(kr) = (−1)nJn(kr), and Y−n(kr) = (−1)nYn(kr). (3.32)

Also, we have

r
[
Jn(r)drYn(r) − Yn(r)drJn(r)

] = 2

π
for any n, (3.33)

and consequently, from (3.16),

Dn(r) = 2

πr
for any n and k.

Now, from (3.21) and (3.22), we get

vn(r) = −π

2

∫ r

R1

ρJn(kr)Yn(kρ)fn(ρ) dρ − π

2

∫ R2

r

ρYn(kr)Jn(kρ)fn(ρ) dρ, (3.34)

and

vn(r) = π

2

∫ r

R1

ρYn(kr)Jn(kρ)fn(ρ) dρ + π

2

∫ R2

r

ρJn(kr)Yn(kρ)fn(ρ) dρ. (3.35)

For the purposes below, we also need the following asymptotic behavior as r → 0:

Jn(r) ∼ rn

2nn! and J−n(r) ∼ (−r)n
2nn! , n � 0,

Y0(r) ∼ 2

π
log

(
r

2

)
, Yn(r) ∼ −(n− 1)!

π

(
2

r

)n

, and

Yn(r) ∼ −(n− 1)!
π

(−2

r

)n

, n > 0.

(3.36)

Therefore, we have:
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Remark 3.3. Except for the case R1 = 0 and |n| > 1, when the first integral in (3.34)
can be divergent (depending on fn), the integrals in (3.34)–(3.35) are convergent.

In section 3.2.2 we will also need the following linearly independent solutions
for this operator, which can be obtained using the Bessel functions of the third kind of
order n, also known as Hankel functions of order n.

H(1)
n (r) = Jn(r)+ iYn(r) and H(2)

n (r) = Jn(r) − iYn(r). (3.37)

Since

H(1)
n (kr) = Jn(kr)+ iYn(kr) and H(2)

n (kr) = Jn(kr)− iYn(kr) (3.38)

are also linearly independent solutions of the homogeneous form of the Bessel differen-
tial equation (3.29), we can take

vn,1(r) = H(1)
n (kr) and vn,2(r) = H(2)

n (kr) for any n. (3.39)

Now, it follows from (3.16), (3.33) and the above definition of the Hankel functions that

Dn(r) = −4i

πr
for any n and k.

Again, from (3.21) and (3.22), we get

vn(r) = − iπ

4

∫ r

R1

ρH(1)
n (kr)H (2)

n (kρ)fn(ρ) dρ − iπ

4

∫ R2

r

ρH (2)
n (kr)H (1)

n (kρ)fn(ρ) dρ

(3.40)
and

vn(r) = iπ

4

∫ r

R1

ρH(2)
n (kr)H (1)

n (kρ)fn(ρ) dρ + iπ

4

∫ R2

r

ρH (1)
n (kr)H (2)

n (kρ)fn(ρ) dρ.

(3.41)
From (3.31) and (3.37) we have

H
(1)
−n (r) = (−1)nH (1)

n (r) and H
(2)
−n (r) = (−1)nH (2)

n (r), (3.42)

and then,

H
(1)
−n (kr) = (−1)nH (1)

n (kr) and H
(2)
−n (kr) = (−1)nH (2)

n (kr). (3.43)

Using again (3.36) we have:

Remark 3.4. Except for the case R1 = 0 and |n| > 1, when the first integrals in (3.40)
and (3.41) can be divergent (depending on fn), the integrals in (3.40)–(3.41) are conver-
gent.



L. Badea, P. Daripa / A fast algorithm elliptic problems 211

Helmholtz equation (monotonic case). The operator for this equation is Lu ≡ $u −
k2u. As above this operator is written in polar coordinates asLu(r, θ) ≡ (1/r)∂r(r∂ru)+
(1/r2)∂2

θ u − k2u, and from (2.6) we get equation (3.1) as

Lnvn(r) ≡ 1

r
dr

(
rdrvn(r)

) − k2r2 + n2

r2
vn(r) = fn(r), R1 < r < R2, (3.44)

which is a modified Bessel’s differential equation. Also, αn(r) = 1, and we take

vn,1(r) = In(kr) and vn,2(r) = Kn(kr) for any n, (3.45)

where In(r) and Kn(r) are modified Bessel functions of the first and the second kind of
order n respectively. Since for all n,

In(r) = i−nJn(ir) and Kn(r) = −π
2

in
[
Yn(ir) − iJn(ir)

]
, (3.46)

we have

In(kr) = i−nJn(ikr) and Kn(kr) = −π
2

in
[
Yn(ikr) − iJn(ikr)

]
. (3.47)

Using (3.45) for vn,1(r) and vn,2(r) in (3.16), and making use of (3.33) and (3.47), we
obtain after some manipulation

Dn(r) = −1

r
.

Therefore, from (3.21) and (3.22) we have

vn(r) =
∫ r

R1

ρIn(kr)Kn(kρ)fn(ρ) dρ +
∫ R2

r

ρKn(kr)In(kρ)fn(ρ) dρ (3.48)

and

vn(r) = −
∫ r

R1

ρKn(kr)In(kρ)fn(ρ) dρ −
∫ R2

r

ρIn(kr)Kn(kρ)fn(ρ) dρ. (3.49)

It is well known (also follows from (3.31) and (3.46)) that

I−n(r) = In(r) and K−n(r) = Kn(r), n = 0, 1, 2, . . . , (3.50)

and therefore,

I−n(kr) = In(kr) and K−n(kr) = Kn(kr). (3.51)

For the purposes below, we also need the following asymptotic behaviors (which also
follows from (3.36) and (3.46)) of these functions as r → 0.

In(r)∼ r |n|

2|n||n|! , for any n,

K0(r)∼ − log

(
r

2

)
, and Kn(r) ∼ (|n| − 1)!

2

(
2

r

)|n|
, for n �= 0.

(3.52)
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Therefore, regarding the convergence of the integrals in (3.48) and (3.49) we can con-
clude that.

Remark 3.5. Except for the case R1 = 0 and |n| > 1, when the first integral in (3.48)
can be divergent (depending on fn), the integrals in (3.48)–(3.49) are convergent.

The second step in finding the solution un(r) of the problems associated with equa-
tion (2.11) is to write it as a linear combination of vn,1(r), vn,2(r) and one of the two
forms of vn(r) given by (3.21) and (3.22), with convergent integrals such that appropri-
ate boundary conditions ((2.14) or (2.15) or mixed) are satisfied. We do that separately
for each of the three types of domains.

3.1. Interior circular domains

In this case R1 = 0, and R2 = R, where R is the radius of the disc. Since one of
the linearly independent solutions diverges, we look for a solution of equation (3.1) of
the form

un(r) = vn(r) + cn(R)wn(r), 0 < r < R. (3.53)

Here vn(r) is given by either (3.21) or (3.22) as discussed previously, and wn(r) is one
of the two linearly independent solutions of the homogeneous form of equation (3.1),
vn,1 or vn,2, that is bounded at the origin. Therefore, to have (2.14), we can calculate
cn(R) from the equation

cn(R)wn(R) = gn − vn(R) (3.54)

for a Dirichlet problem. Also, to have (2.15) we get cn(R) from the equation

cn(R)drwn(R) = hn − drvn(R) (3.55)

for a Neumann problem. Then we have:

Proposition 3.2. Under the conditions of theorem 2.1, the Fourier coefficients un(r) of
the solution u(r, θ) of (2.1) inside a disc of radius R with its center at the origin are given
by

un(r) = vn(r) + gn − vn(R)

wn(R)
wn(r), 0 < r < R, if wn(R) �= 0, (3.56)

for the Dirichlet problem (2.1), (2.2), and by

un(r) = vn(r)+ hn − drvn(R)

drwn(R)
wn(r), 0 < r < R, if drwn(R) �= 0, (3.57)

for the Neumann problem (2.1), (2.3), wherewn(r) is one of the two linearly independent
solutions of the homogeneous form of equation (3.1) satisfying the conditions at zero,
and vn(r) is one of (3.21) and (3.22) also satisfying the same conditions at zero.
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Below, we provide explicit expression for the solution un(r) associated with each
of the three types of equations mentioned in the previous section all of which satisfy the
constraints of theorem 2.1.

3.1.1. Poisson equation
As r → 0, the second integrals in (3.25) and (3.26) tend to infinity as r → 0, while

vn(r) and v0(r) given, respectively, in (3.27) and (3.28), namely

v0(r)=
∫ r

0
ρ log(r)f0(ρ) dρ +

∫ R

r

ρ log(ρ)f0(ρ) dρ,

vn(r)= − 1

2|n|
∫ r

0
ρ

(
ρ

r

)|n|
fn(ρ) dρ − 1

2|n|
∫ R

r

ρ

(
r

ρ

)|n|
fn(ρ) dρ for n �= 0,

(3.58)
are bounded. Also, v0,2(r) and vn,2(r) given by (3.24) tend to infinity as r → 0, while

w0(r) = 1 and wn(r) = r |n|

are bounded. Consequently, the above functions satisfy the conditions at zero as required
by proposition 3.2. We see that w0(r), wn(r) and drwn(r), n �= 0, are different from
zero for any r > 0, and therefore we can calculate the corresponding cn(R) in (3.54)
and (3.55). For the Neumann problem with n = 0, (3.55) gives

c0(R) · 0 = h0 − 1

R

∫ R

0
ρf0(ρ) dρ.

But (2.4) can be written as Rh0 = ∫ R

0 ρf0(ρ) dρ, i.e. the right-hand side in the above
equation is also zero. Therefore, as we have already known, c0 is an arbitrary constant.
Consequently, we get the following from proposition 3.2.

Corollary 3.1. The Fourier coefficients un(r) of the solution u(r, θ) of the Poisson
equation inside a disc of radius R with its center at the origin are given by

u0(r)= v0(r) + g0 −
∫ R

0
ρ log(R)f0(ρ) dρ,

un(r)= vn(r)+
(
r

R

)|n|[
gn + 1

2|n|
∫ R

0
ρ

(
ρ

R

)|n|
fn(ρ) dρ

]
for n �= 0

(3.59)

for the Dirichlet problem (2.1), (2.2), and as

u0(r)= v0(r) + c0,

un(r)= vn(r) +
(
r

R

)|n|[
R

|n|hn − 1

2|n|
∫ R

0
ρ

(
ρ

R

)|n|
fn(ρ) dρ

]
for n �= 0

(3.60)

for the Neumann problem (2.1), (2.3), where c0 is an arbitrary real constant, and v0(r)

and vn(r) are given by (3.58).
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3.1.2. Helmholtz equation (oscillatory case)
The operator for this equation is Lu ≡ $u + k2u. Taking into account (3.36),

the second integral in (3.34) tends to infinity when r approaches zero, while vn(r) given
by (3.35),

vn(r) = π

2

∫ r

0
ρYn(kr)Jn(kρ)fn(ρ) dρ + π

2

∫ R

r

ρJn(kr)Yn(kρ)fn(ρ) dρ, (3.61)

has a finite limit. Also, vn,2(r) in (3.30) tends to infinity as r → 0, and

wn(r) = Jn(kr)

has a finite limit. Consequently, we use the above mentioned vn(r) and wn(r) in the
proposition 3.2. Concerning the derivatives in (3.57) for the Neumann problem, we use

drJn(r) = 1

2

[
Jn−1(r) − Jn+1(r)

]
and drYn(r) = 1

2

[
Yn−1(r) − Yn+1(r)

]
, (3.62)

obtaining

drJn(kr) = k

2

[
Jn−1(kr)− Jn+1(kr)

]
and drYn(kr) = k

2

[
Yn−1(kr)− Yn+1(kr)

]
.

(3.63)
Now, from proposition 3.2 we get:

Corollary 3.2. The Fourier coefficients un(r) of the solution u(r, θ) of the Helmholtz
equation Lu ≡ $u + k2u = f inside a disc of radius R with its center at the origin are
given by

un(r) = vn(r)+ Jn(kr)

Jn(kR)

[
gn − π

2

∫ R

0
ρYn(kR)Jn(kρ)fn(ρ) dρ

]
, (3.64)

if Jn(kR) �= 0 for any n, for the Dirichlet problem (2.1), (2.2), and as

un(r)= vn(r) + Jn(kr)

Jn−1(kR)− Jn+1(kR)

×
{

2

k
hn − π

2

∫ R

0
ρ
[
Yn−1(kR)− Yn+1(kR)

]
Jn(kρ)fn(ρ) dρ

}
, (3.65)

if Jn−1(kR) �= Jn+1(kR) for any n, for the Neumann problem (2.1), (2.3), where vn(r)
is given by (3.61).

3.1.3. Helmholtz equation (monotone case)
The operator for this equation is Lu ≡ $u − k2u. Similar to the other Helmholtz

equation, taking into account (3.36) and (3.46) we find that we have to choose vn(r)

in (3.49)

vn(r) = −
∫ r

0
ρKn(kr)In(kρ)fn(ρ) dρ −

∫ R

r

ρIn(kr)Kn(kρ)fn(ρ) dρ, (3.66)
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and vn,1(r) in (3.45)

wn(r) = In(kr)

(because they satisfy the conditions at zero) in the proposition 3.2. From (3.46) and
(3.62) we get

drIn(r) = 1

2

[
In−1(r) + In+1(r)

]
and drKn(r) = −1

2

[
Kn−1(r)+ Kn+1(r)

]
, (3.67)

and therefore,

drIn(kr) = k

2

[
In−1(kr)+ In+1(kr)

]
and drKn(kr) = −k

2

[
Kn−1(kr) +Kn+1(kr)

]
.

(3.68)
In this case, the following corollary follows from proposition 3.2.

Corollary 3.3. The Fourier coefficients un(r) of the solution u(r, θ) of the Helmholtz
equation Lu ≡ $u − k2u = f inside a disc of radius R with its center at the origin are
given by

un(r) = vn(r) + In(kr)

In(kR)

[
gn +

∫ R

0
ρKn(kR)In(kρ)fn(ρ) dρ

]
, (3.69)

if In(kR) �= 0 for any n, for the Dirichlet problem (2.1), (2.2), and as

un(r)= vn(r) + In(kr)

In−1(kR)+ In+1(kR)

×
{

2

k
hn −

∫ R

0
ρ
[
Kn−1(kR)+Kn+1(kR)

]
In(kρ)fn(ρ) dρ

}
, (3.70)

if In−1(kR) + In+1(kR) �= 0 for any n, for the Neumann problem (2.1), (2.3), where
vn(r) is given by (3.66).

3.2. Exterior circular domains

The domain now is the exterior of a closed disc of radius R = R1 �= 0 and, using
our notation, we have R2 = ∞. Consequently, we look for a solution of equation (3.1)
of the form

un(r) = vn(r) + cn(R)wn(r), R < r < ∞, (3.71)

and we assume that vn(r) (one of those written in (3.21) or (3.22)) as well as wn(r) (one
of the two linearly independent solutions of the homogeneous form of equation (3.1))
satisfy the conditions at infinity arising from the conditions at infinity of the problem
in �. Now, un(r) in (3.71) will satisfy the boundary conditions (2.14) or (2.15) if we
can find cn(R) such that

cn(R)wn(R) = gn − vn(R), (3.72)
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for a Dirichlet problem, or

cn(R)drwn(R) = −hn − drvn(R), (3.73)

for a Neumann problem, respectively. Similar to proposition 3.2, we have:

Proposition 3.3. Under the conditions of theorem 2.1, the Fourier coefficients un(r) of
the solution u(r, θ) of (2.1) in the exterior of a closed disc of radius R with its center at
the origin are given by

un(r) = vn(r)+ gn − vn(R)

wn(R)
wn(r), R < r < ∞, if wn(R) �= 0, (3.74)

for the Dirichlet problem (2.1), (2.2), and by

un(r) = vn(r)− hn + drvn(R)

drwn(R)
wn(r), R < r < ∞, if drwn(R) �= 0, (3.75)

for the Neumann problem (2.1), (2.3), wherewn(r) is one of the two linearly independent
solutions of the homogeneous form of equation (3.1) satisfying the conditions to infinity,
and vn(r) is one of (3.21) and (3.22) also satisfying the same conditions at infinity.

Below, we provide explicit expression for the solution un(r) associated with each
of the three types of equations in the exterion domain.

3.2.1. Poisson equation
By definition, the solution of the exterior problem in the domain � satisfies the

conditions at infinity if it is bounded at infinity. Consequently, the particular and the
complementary (i.e. vn(r) from (3.25)–(3.28) and wn(r) from (3.24), respectively) so-
lutions of equation (3.23) bounded at infinity are chosen. We see that the first integral
in (3.28) and (3.25) tends to infinity as r approaches infinity, while v0(r) and vn(r) given
respectively in (3.26) and (3.27),

v0(r)= −
∫ r

R

ρ log(ρ)f0(ρ) dρ −
∫ ∞

r

ρ log(r)f0(ρ) dρ,

vn(r)= − 1

2|n|
∫ r

R

ρ

(
ρ

r

)|n|
fn(ρ) dρ − 1

2|n|
∫ ∞

r

ρ

(
r

ρ

)|n|
fn(ρ) dρ for n �= 0,

(3.76)
have a finite limit. In (3.24), v0,2(r) and vn,1(r) tend to infinity as r → ∞, but the other
two, written in the notation used in proposition 3.3 as

w0(r) = 1 and wn(r) = r−|n|

have a finite limit at infinity. Therefore the above written functions satisfy the conditions
at infinity as required by proposition 3.3. As in the case of the interior circular domains,
the solution for the Neumann problem is found up to an additive constant c0. Therefore,
from proposition 3.3 we get the following:
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Corollary 3.4. The Fourier coefficients un(r) of the solution u(r, θ) of the Poisson
equation in the exterior of a closed disc of radius R with its center at the origin are
given by

u0(r)= v0(r) + g0 +
∫ ∞

R

ρ log(R)f0(ρ) dρ,

un(r)= vn(r) +
(
R

r

)|n|[
gn + 1

2|n|
∫ ∞

R

ρ

(
R

ρ

)|n|
fn(ρ) dρ

]
for n �= 0

(3.77)

for the Dirichlet problem (2.1), (2.2), and as

u0(r)= v0(r)+ c0,

un(r)= vn(r) +
(
R

r

)|n|[
R

|n|hn − 1

2|n|
∫ ∞

R

ρ

(
R

ρ

)|n|
fn(ρ) dρ

]
for n �= 0

(3.78)

for the Neumann problem (2.1), (2.3), where c0 is an arbitrary real constant, and v0(r)

and vn(r) are given by (3.76).

3.2.2. Helmholtz equation (oscillatory case)
The operator for this equation is Lu ≡ $u+ k2u. For this operator, the conditions

at infinity of the problems (2.1), (2.2), and (2.1), (2.3) are given by the Sommerfeld
radiation condition (see, e.g., [17])

u
(
reiθ

) = O
(
1/

√
r
)

and ∂ru
(
reiθ

) − iku
(
reiθ

) = o
(
1/

√
r
)

as r → ∞, (3.79)

and consequently, we look for the un(r) satisfying

un(r) = O
(
1/

√
r
)

and drun(r)− ikun(r) = o
(
1/

√
r
)

as r → ∞. (3.80)

We know (see, e.g., p. 789 in [26]) that

Jn(r)∼ cos(r − π/4 − nπ/2)√
πr/2

, Yn(r) ∼ sin(r − π/4 − nπ/2)√
πr/2

, as r → ∞,

drJn(r)∼ −sin(r − π/4 − nπ/2)√
πr/2

, drYn(r) ∼ cos(r − π/4 − nπ/2)√
πr/2

, as r → ∞,

(3.81)
and therefore, vn,1(r), vn,2(r) in (3.30), and also vn(r) in (3.34) and (3.35), satisfy only
the first condition in (3.80). On the other hand, from (3.37) and (3.81) we get

H(1)
n (r)∼ ei(r−π/4−nπ/2)

√
πr/2

, H (2)
n (r) ∼ e−i(r−π/4−nπ/2)

√
πr/2

, as r → ∞,

drH
(1)
n (r)∼ i ei(r−π/4−nπ/2)

√
πr/2

, drH
(2)
n (r) ∼ −i e−i(r−π/4−nπ/2)

√
πr/2

, as r → ∞,

(3.82)
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and then

drH
(1)
n (r) − iH(1)

n (r)= o

(
ei(r−π/4−nπ/2)

√
πr/2

)
, as r → ∞,

drH
(2)
n (r) − iH(2)

n (r)∼ −2i
e−i(r−π/4−nπ/2)

√
πr/2

, as r → ∞.

(3.83)

Therefore, both

wn(r) = H(1)
n (kr)

and vn(r) given by (3.40), namely

vn(r) = − iπ

4

∫ r

R

ρH (1)
n (kr)H (2)

n (kρ)fn(ρ) dρ − iπ

4

∫ ∞

r

ρH (2)
n (kr)H (1)

n (kρ)fn(ρ) dρ,

(3.84)
satisfy the conditions at infinity (3.80). From (3.37) and (3.62) we get

drH
(1)
n (r) = 1

2

[
H

(1)
n−1(r)− H

(1)
n+1(r)

]
and drH

(2)
n (r) = 1

2

[
H

(2)
n−1(r) −H

(2)
n+1(r)

]
,

(3.85)
and then,

drH
(1)
n (kr) = k

2

[
H

(1)
n−1(kr)−H

(1)
n+1(kr)

]
and drH

(2)
n (r) = k

2

[
H

(2)
n−1(kr)−H

(2)
n+1(kr)

]
,

(3.86)
which are used in the calculation of the derivatives in proposition 3.3. In this way we
get:

Corollary 3.5. The Fourier coefficients un(r) of the solution u(r, θ) of the Helmholtz
equation Lu ≡ $u+ k2u = f in the exterior of a closed disc of radius R with its center
at the origin are given by

un(r) = vn(r)+ H(1)
n (kr)

H
(1)
n (kR)

[
gn + iπ

4

∫ ∞

R

ρH (2)
n (kR)H (1)

n (kρ)fn(ρ) dρ

]
, (3.87)

if H(1)
n (kR) �= 0 for any n, for the Dirichlet problem (2.1), (2.2), and as

un(r)= vn(r) − H(1)
n (kr)

H
(1)
n−1(kR)−H

(1)
n+1(kR)

×
{

2

k
hn − iπ

4

∫ ∞

R

ρ
[
H

(2)
n−1(kR)−H

(2)
n+1(kR)

]
H(1)
n (kρ)fn(ρ) dρ

}
, (3.88)

if H(1)
n−1(kR) �= H

(1)
n+1(kR) for any n, for the Neumann problem (2.1), (2.3), where vn(r)

is given by (3.84).
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3.2.3. Helmholtz equation (monotone case)
The operator for this equation is Lu ≡ $u−k2u. For this operator associated with

the Dirichlet problem (2.1), (2.2) and the Neumann problem (2.1), (2.3),

u
(
reiθ

) = o(1) as r → ∞,

and therefore, we look for the un(r) satisfying

un(r) = o(1) as r → ∞. (3.89)

From (3.46) and (3.81) we obtain the following asymptotic behavior as r → ∞.

In(r) ∼ er√
2πr

, Kn(r) ∼ e−r
√

2πr
, drIn(r) ∼ er√

2πr
, drKn(r) ∼ e−r

√
2πr

,

(3.90)

and therefore, we take

wn(r) = Kn(kr)

and vn(r) from (3.49)

vn(r) = −
∫ r

R

ρKn(kr)In(kρ)fn(ρ) dρ −
∫ ∞

r

ρIn(kr)Kn(kρ)fn(ρ) dρ, (3.91)

which satisfy the conditions at infinity. Using again (3.68) to calculate the derivatives
used in proposition 3.3 for the Neumann conditions, we have:

Corollary 3.6. The Fourier coefficients un(r) of the solution u(r, θ) of the Helmholtz
equation Lu ≡ $u− k2u = f in the exterior of a closed disc of radius R with its center
at the origin are given by

un(r) = vn(r)+ Kn(kr)

Kn(kR)

[
gn +

∫ ∞

R

ρIn(kR)Kn(kρ)fn(ρ) dρ

]
, (3.92)

if Kn(kR) �= 0 for any n, for the Dirichlet problem (2.1), (2.2), and as

un(r)= vn(r) + Kn(kr)

Kn−1(kR)+Kn+1(kR)

×
{

2

k
hn −

∫ ∞

R

ρ
[
In−1(kR)+ In+1(kR)

]
Kn(kρ)fn(ρ) dρ

}
, (3.93)

if Kn−1(kR) + Kn+1(kR) �= 0 for any n, for the Neumann problem (2.1), (2.3), where
vn(r) is given by (3.91).

3.3. Annular domains

For the annulus with the radii 0 < R1 < R2 < ∞, we look for a solution of
equation (3.1) of the form

un(r) = vn(r) + cn(R1, R2)vn,1(r) + dn(R1, R2)vn,2(r), R1 < r < R2, (3.94)
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where vn(r) is one of the two particular solutions of equation (3.1) given by (3.21)
or (3.22), and vn,1(r) and vn,2(r) are the two linearly independent solutions of the ho-
mogeneous form of the same equation. Since, in this case, we do not have conditions at
zero or at infinity, vn(r) can be any of the solutions in (3.21) or (3.22). Consequently, to
have (2.14), we can calculate cn(R1, R2) and dn(R1, R2) from the system

cn(R1, R2)vn,1(R1)+ dn(R1, R2)vn,2(R1) = g(1)n − vn(R1),

cn(R1, R2)vn,1(R2)+ dn(R1, R2)vn,2(R2) = g(2)n − vn(R2)
(3.95)

for a Dirichlet problem, and to have (2.15), we get cn(R1, R2) and dn(R1, R2) from

cn(R1, R2)drvn,1(R1)+ dn(R1, R2)drvn,2(R1) = −h(1)n − drvn(R1),

cn(R1, R2)drvn,1(R2)+ dn(R1, R2)drvn,2(R2) = h(2)n − drvn(R2)
(3.96)

for a Neumann problem. Also, we can look for a solution which satisfies Dirichlet
conditions on the circle of radius R1 and Neumann conditions on the circle of radius R2

(or inversely),

cn(R1, R2)vn,1(R1)+ dn(R1, R2)vn,2(R1) = gn − vn(R1),

cn(R1, R2)drvn,1(R2)+ dn(R1, R2)drvn,2(R2) = hn − drvn(R2).
(3.97)

As in the previous cases of domains we can state:

Proposition 3.4. Under the conditions of theorem 2.1, the Fourier coefficients un(r) of
the solution u(r, θ) of (2.1) in an annulus centered at the origin and bounded by the radii
R1 and R2 (0 < R1 < R2 < ∞) are given by

un(r)= vn(r) + vn,1(R2)vn,2(r)− vn,2(R2)vn,1(r)

D
(1)
n (R1, R2)

[
vn(R1)− g(1)n

]
+ vn,2(R1)vn,1(r) − vn,1(R1)vn,2(r)

D
(1)
n (R1, R2)

[
vn(R2)− g(2)n

]
, R1 < r < R2,

(3.98)

if D(1)
n (R1, R2) = vn,1(R1)vn,2(R2) − vn,1(R2)vn,2(R1) �= 0, for the Dirichlet prob-

lem (2.1), (2.2), and by

un(r)= vn(r) + drvn,1(R2)vn,2(r) − drvn,2(R2)vn,1(r)

D
(2)
n (R1, R2)

[
drvn(R1) + h(1)n

]
+ drvn,2(R1)vn,1(r) − drvn,1(R1)vn,2(r)

D
(2)
n (R1, R2)

[
drvn(R2)− h(2)n

]
, R1 < r < R2,

(3.99)

if D(2)
n (R1, R2) = drvn,1(R1)drvn,2(R2) − drvn,1(R2)drvn,2(R1) �= 0, for the Neumann

problem (2.1), (2.3). Also, for the problem associated with equation (2.1) and Dirich-
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let condition (2.2) on the circle of radius R1 and Neumann condition (2.3) on that of
radius R2, we have

un(r)= vn(r)+ drvn,1(R2)vn,2(r) − drvn,2(R2)vn,1(r)

D
(0)
n (R1, R2)

[
vn(R1)− gn

]
+ vn,2(R1)vn,1(r) − vn,1(R1)vn,2(r)

D
(0)
n (R1, R2)

[
drvn(R2)− hn

]
, R1 < r < R2,

(3.100)

if D(0)
n (R1, R2) = vn,1(R1)drvn,2(R2) − drvn,1(R2)vn,2(R1) �= 0. Here, vn,1(r) and

vn,1(r) are two linearly independent solutions of the homogeneous form of equa-
tion (3.1), and vn(r) is given by either (3.21) or (3.22).

Remark 3.6. Interchanging R1 and R2 and replacing hn by −hn in (3.100), we find that
the Fourier coefficients un(r) of the solution u(r, θ) for the problem associated with
equation (2.1) and conditions (2.2) on the circle of radius R2 and (2.3) on that of ra-
dius R1 are given by

un(r)= vn(r)+ drvn,1(R1)vn,2(r) − drvn,2(R1)vn,1(r)

D
(0)
n (R2, R1)

[
vn(R2)− gn

]
+ vn,2(R2)vn,1(r) − vn,1(R2)vn,2(r)

D
(0)
n (R2, R1)

[
drvn(R1)+ hn

]
, R2 < r < R1,

(3.101)

if D(0)
n (R2, R1) �= 0.

Below we apply the above proposition to construct solutions of the three problems
in an annulus.

3.3.1. Poisson equation
Either (3.25)–(3.26) or (3.27)–(3.28) can be used for vn(r) in proposition 3.4. The

results obtained for un by applying proposition 3.4 will be the same in both cases. Using
vn,1(r) and vn,2(r) from (3.24), we first get

D
(1)
0 (R1, R2) = log(R2/R1), D(1)

n (R1, R2) = (R1/R2)
|n| − (R2/R1)

|n| for n �= 0,
(3.102)

D
(2)
0 (R1, R2) = 0, D(2)

n (R1, R2) = n2

R1R2

[(
R2

R1

)|n|
−

(
R1

R2

)|n|]
for n �= 0,

(3.103)
and

D
(0)
0 (R1, R2) = 1

R2
, D(0)

n (R1, R2) = −|n|
R2

[(
R1

R2

)|n|
+

(
R2/R1

)|n|]
for n �= 0.

(3.104)
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As before, the solution of the Neumann problem associated with the Laplace operator is
unique up to an additive constant for n = 0. Since drv0,1(r) = 0 and h(2)0 R2 + h

(1)
0 R1 =∫ R2

R1
ρf0(ρ) dρ, which follows from (2.4), we obtain from (3.96) that c0(R1, R2) is an

arbitrary constant and the constant d0(R1, R2) is uniquely determined. Therefore, from
proposition (3.4) we get the following corollary.

Corollary 3.7. The Fourier coefficients un(r) of the solution u(r, θ) of the Poisson
equation in an annulus centered at the origin and bounded by the radii R1 and R2

(0 < R1 < R2 < ∞) are given by

u0(r)= v0(r)− log(R2/r)

log(R2/R1)

[
v0(R1)− g

(1)
0

] − log(R1/r)

log(R1/R2)

[
v0(R2)− g

(2)
0

]
,

un(r)= vn(r) − (R2/r)
|n| − (r/R2)

|n|

(R2/R1)|n| − (R1/R2)|n|
[
vn(R1)− g(1)n

]

− (R1/r)
|n| − (r/R1)

|n|

(R1/R2)
|n| − (R2/R1)

|n|
[
vn(R2)− g(2)n

]
, for n �= 0,

(3.105)

for the Dirichlet problem (2.1), (2.2), and as

u0(r)= v0(r) − R1 log(r)
[
h
(1)
0 + drv0(R1)

] + c0

= v0(r) + R2 log(r)
[
h
(2)
0 − drv0(R2)

] + c0,

un(r)= vn(r)+ (R2/r)
|n| + (r/R2)

|n|

(R2/R1)|n| − (R1/R2)|n|
R1

|n|
[
drvn(R1) + h(1)n

]

+ (R1/r)
|n| + (r/R1)

|n|

(R1/R2)|n| − (R2/R1)|n|
R2

|n|
[
drvn(R2)− h(2)n

]
, for n �= 0,

(3.106)

for the Neumann problem (2.1), (2.3). In the above equation, c0 is an arbitrary real
constant. For the solution of the Poisson equation subject to Dirichlet data (2.2) on
r = R1 and Neumann data (2.3) on r = R2, we have

u0(r)= v0(r)− [
v0(R1) − g0

] + R2 log(R1/r)
[
drv0(R2) − h0

]
,

un(r)= vn(r) − (R2/r)
|n| + (r/R2)

|n|

(R2/R1)|n| + (R1/R2)|n|
[
vn(R1) − gn

]

+ (R1/r)
|n| − (r/R1)

|n|

(R1/R2)|n| + (R2/R1)|n|
R2

|n|
[
drvn(R2)− hn

]
, for n �= 0.

(3.107)

In (3.105)–(3.107), v0(r) and vn(r) can be taken from either (3.25)–(3.26) or (3.27)–
(3.28). If we use (3.25)–(3.26), we have

drv0(R1)= 1

R1 log(R1)
v0(R1), drv0(R2) = 0,

drvn(R1)= −|n|
R1

vn(R1), drvn(R2) = |n|
R2

vn(R2), for n �= 0,

(3.108)
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and if we use (3.27)–(3.28), we have

drv0(R1) = 0, drv0(R2) = 1

R2 log(R2)
v0(R2),

drvn(R1) = |n|
R1

vn(R1), drvn(R2) = −|n|
R2

vn(R2), for n �= 0.

(3.109)

Remark 3.7. For the solution of the Poisson equation subject to Dirichlet data (2.2) on
r = R2 and Neumann data (2.3) on r = R1, instead of (3.107), we have

u0(r)= v0(r)− [
v0(R2) − g0

] + R1 log(R2/r)
[
drv0(R1) + h0

]
,

un(r)= vn(r) − (R1/r)
|n| + (r/R1)

|n|

(R1/R2)
|n| + (R2/R1)

|n|
[
vn(R2) − gn

]

+ (R2/r)
|n| − (r/R2)

|n|

(R2/R1)|n| + (R1/R2)|n|
R1

|n|
[
drvn(R1)+ hn

]
, for n �= 0.

(3.110)

3.3.2. Helmholtz equation (oscillatory case)
The operator for this equation is Lu ≡ $u + k2u. Here either (3.34) or (3.35) can

be used for vn(r) in the proposition 3.4. Using vn,1(r) and vn,2(r) given by (3.30) we
first get

D(1)
n (R1, R2)= Jn(kR1)Yn(kR2)− Jn(kR2)Yn(kR1), (3.111)

D(2)
n (R1, R2)= drJn(kR1)drYn(kR2)− drJn(kR2)drYn(kR1), (3.112)

and

D(0)
n (R1, R2) = Jn(kR1)drYn(kR2) − drJn(kR2)Yn(kR1). (3.113)

Now, we get the following corollary from proposition 3.4.

Corollary 3.8. The Fourier coefficients un(r) of the solution u(r, θ) of the Helmholtz
equation Lu ≡ $u + k2u = f in an annulus centered at the origin and bounded by the
radii R1 and R2 (0 < R1 < R2 < ∞) are given by

un(r)= vn(r)− Jn(kR2)Yn(kr)− Yn(kR2)Jn(kr)

Jn(kR2)Yn(kR1)− Yn(kR2)Jn(kR1)

[
vn(R1) − g(1)n

]

− Yn(kR1)Jn(kr)− Jn(kR1)Yn(kr)

Yn(kR1)Jn(kR2)− Jn(kR1)Yn(kR2)

[
vn(R2)− g(2)n

]
, (3.114)

if D(1)
n (R1, R2) in (3.111) is not zero for any n, for the Dirichlet problem (2.1), (2.2),

and as
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un(r)= vn(r)− drJn(kR2)Yn(kr)− drYn(kR2)Jn(kr)

drJn(kR2)drYn(kR1)− drYn(kR2)drJn(kR1)

[
drvn(R1)+ h(1)n

]
− drYn(kR1)Jn(kr) − drJn(kR1)Yn(kr)

drYn(kR1)drJn(kR2)− drJn(kR1)drYn(kR2)

[
drvn(R2)− h(2)n

]
,

R1 < r < R2, (3.115)

ifD(2)
n (R1, R2) in (3.112) is not zero for any n, for the Neumann problem (2.1), (2.3). For

the solution of Helmholtz equation Lu ≡ $u + k2u = f subject to Dirichlet data (2.2)
on r = R1 and Neumann data (2.3) on r = R2, we have

un(r)= vn(r) − drJn(kR2)Yn(kr) − drYn(kR2)Jn(kr)

drJn(kR2)Yn(kR1)− drYn(kR2)Jn(kR1)

[
vn(R1)− gn

]
− Yn(kR1)Jn(kr) − Jn(kR1)Yn(kr)

Yn(kR1)drJn(kR2)− Jn(kR1)drYn(kR2)

[
drvn(R2)− hn

]
, R1 < r < R2,

(3.116)

if D(0)
n (R1, R2) in (3.113) is not zero for any n. In (3.114)–(3.116), vn(r) can be taken

from either (3.34) or (3.35). Also, we have

drvn(R1) = drYn(kR1)

Yn(kR1)
vn(R1), drvn(R2) = drJn(kR2)

Jn(kR2)
vn(R2) (3.117)

if we use (3.34), and

drvn(R1) = drJn(kR1)

Jn(kR1)
vn(R1), drvn(R2) = drYn(kR2)

Yn(kR2)
vn(R2) (3.118)

if we use (3.35). The derivatives of Jn(kr) and Yn(kr) can be calculated using (3.63).

Remark 3.8. For the solution of Helmholtz equation Lu ≡ $u + k2u = f subject to
Dirichlet data (2.2) on r = R2 and Neumann data (2.3) on r = R1, instead of (3.116),
we have

un(r)= vn(r) − drJn(kR1)Yn(kr)− drYn(kR1)Jn(kr)

drJn(kR1)Yn(kR2)− drYn(kR1)Jn(kR2)

[
vn(R2)− gn

]
− Yn(kR2)Jn(kr) − Jn(kR2)Yn(kr)

Yn(kR2)drJn(kR1)− Jn(kR2)drYn(kR1)

[
drvn(R1)+ hn

]
, R1 < r < R2.

(3.119)

3.3.3. Helmholtz equation (monotone case)
The operator for this equation is Lu ≡ $u − k2u. Similar to the other Helmholtz

equation, using vn,1(r) and vn,2(r) from (3.45) we obtain

D(1)
n (R1, R2)= In(kR1)Kn(kR2)− In(kR2)Kn(kR1), (3.120)

D(2)
n (R1, R2)= drIn(kR1)drKn(kR2)− drIn(kR2)drKn(kR1), (3.121)
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and

D(0)
n (R1, R2) = In(kR1)drKn(kR2) − drIn(kR2)Kn(kR1). (3.122)

Now, from proposition 3.4 we obtain:

Corollary 3.9. The Fourier coefficients un(r) of the solution u(r, θ) of the Helmholtz
equation Lu ≡ $u − k2u = f in an annulus centered at the origin and bounded by the
radii R1 and R2 (0 < R1 < R2 < ∞) are given by

un(r)= vn(r) − In(kR2)Kn(kr)−Kn(kR2)In(kr)

In(kR2)Kn(kR1)−Kn(kR2)In(kR1)

[
vn(R1)− g(1)n

]
− Kn(kR1)In(kr)− In(kR1)Kn(kr)

Kn(kR1)In(kR2)− In(kR1)Kn(kR2)

[
vn(R2)− g(2)n

]
, R1 < r < R2,

(3.123)

if D(1)
n (R1, R2) in (3.120) is not zero for any n, for the Dirichlet problem (2.1), (2.2),

and as

un(r)= vn(r) − drIn(kR2)Kn(kr)− drKn(kR2)In(kr)

drIn(kR2)drKn(kR1)− drKn(kR2)drIn(kR1)

[
drvn(R1)+ h(1)n

]
− drKn(kR1)In(kr) − drIn(kR1)Kn(kr)

drKn(kR1)drIn(kR2)− drIn(kR1)drKn(kR2)

[
drvn(R2)− h(2)n

]
,

R1 < r < R2, (3.124)

if D(2)
n (R1, R2) in (3.121) is not zero for any n, for the Neumann problem (2.1), (2.3).

For the solution of Helmholtz equation Lu ≡ $u − k2u = f subject to Dirichlet data
(2.2) on r = R1 and Neumann data (2.3) on r = R2, we have

un(r)= vn(r) − drIn(kR2)Kn(kr) − drKn(kR2)In(kr)

drIn(kR2)Kn(kR1)− drKn(kR2)In(kR1)

[
vn(R1) − gn

]
− Kn(kR1)In(kr) − In(kR1)Kn(kr)

Kn(kR1)drIn(kR2)− In(kR1)drKn(kR2)

[
drvn(R2)− hn

]
, R1 < r < R2,

(3.125)

if D(0)
n (R1, R2) in (3.122) is not zero for any n. In (3.123)–(3.125), vn(r) can be taken

from either (3.48) or (3.49). Also, we have

drvn(R1) = drKn(kR1)

Kn(kR1)
vn(R1), drvn(R2) = drIn(kR2)

In(kR2)
vn(R2) (3.126)

if we use (3.48), and

drvn(R1) = drIn(kR1)

In(kR1)
vn(R1), drvn(R2) = drKn(kR2)

Kn(kR2)
vn(R2) (3.127)

if we use (3.49). The derivatives of In(kr) and Kn(kr) can be calculated using (3.68).
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Remark 3.9. For the solution of Helmholtz equation Lu ≡ $u − k2u = f subject to
Dirichlet data (2.2) on r = R2 and Neumann data (2.3) on r = R1, instead of (3.125),
we have

un(r)= vn(r)− drIn(kR1)Kn(kr)− drKn(kR1)In(kr)

drIn(kR1)Kn(kR2)− drKn(kR1)In(kR2)

[
vn(R2)− gn

]
− Kn(kR2)In(kr) − In(kR2)Kn(kr)

Kn(kR2)drIn(kR1)− In(kR2)drKn(kR1)

[
drvn(R1)+ hn

]
, R1 < r < R2.

(3.128)

4. Description of the numerical algorithm for the solution of the
two-dimensional problems

The numerical algorithm for the two-dimensional problems presented below is
based on the FFT and an integral representation of exact solutions of various one-
dimensional problems discussed in the previous section. In all the one-dimensional
problems considered in the previous section, we have αn(r) = 1 and Dn(r) is a con-
stant multiple of 1/r. (It may be worth recalling that αn(r) is the coefficient multiplying
the second derivative term (see (3.4)) and Dn(r) is the Wronskian of two linearly inde-
pendent solutions (see (3.16))). Therefore, we consider below only this case. However,
it should be pointed out here that all that follows below can also be applied to other
problems with more complicated expressions of αn(r) and Dn(r) without any loss of
efficiency or accuracy.

The fast stable algorithm 4.2 given below for the two-dimensional problems re-
quires a fast stable algorithm (either algorithm 4.1A or algorithm 4.1B depending on the
case, see below) for the evaluation of one-dimensional integrals, which we discuss first,
followed by the treatment of the algorithm for the two-dimensional problems.

4.1. Algorithm for the one-dimensional integrals

Computation of the solutions of various one-dimensional problems given in the
corollaries of the previous section requires evaluation of integrals of the form (3.21)
or (3.22) at discretization points. With our choices of linearly independent solutions vn,1
and vn,2 given in section 3 for all three operators, it is worth recalling the following:
(a) Choice of (3.22) is the appropriate one for interior and exterior problems for all
three operators except for the case of the exterior problem associated with the oscilla-
tory Helmholtz operator when (3.21), and not (3.22), is the appropriate choice for vn;
(b) For the problems in an annular region, either of the two choices, (3.21) and (3.22), is
appropriate to calculate vn. This is based on purely theoretical consideration. However,
numerical considerations limit these choices even further as we will see below. In par-
ticular, for numerical stability of the fast algorithm (presented below) for computing vn,
(3.22) is preferable over (3.21) as we will see.
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Therefore, except in one case (exterior oscillatory Helmholtz), the form (3.22) is
the one to be used in computations of solutions, which require evaluating expressions of
the form

Qn(r)=Q(1)
n (r) +Q(2)

n (r)

=
∫ r

R1

ρvn,2(r)vn,1(ρ)fn(ρ) dρ +
∫ R2

r

ρvn,1(r)vn,2(ρ)fn(ρ) dρ. (4.1)

In the case of the exterior problem associated with the oscillatory Helmholtz opera-
tor, representation (3.21) for vn is the one to be used and requires evaluating expressions
of the form

Sn(r)= S(1)n (r) + S(2)n (r)

=
∫ r

R1

ρvn,1(r)vn,2(ρ)fn(ρ) dρ +
∫ R2

r

ρvn,2(r)vn,1(ρ)fn(ρ) dρ. (4.2)

When the domain � is the exterior of a closed disc, a large but finite value for R2 is
used in the integrals above. As we have seen in the previous section, two linearly in-
dependent solutions vn,1(r) and vn,2(r) of the homogeneous form of the equation (3.1)
have opposite limit behaviors (i.e. when one goes to zero, the other one goes to in-
finity) at each of the extremes: r → 0, and r → ∞. Consequently, for numerical
stability in computing (4.1) and (4.2), we have included vn,1(r) and vn,2(r) under the
integrals.

In [13], a fast stable algorithm has been proposed for computing the integrals of the
type Qn(r) in (4.1) arising from a problem associated with Cauchy–Riemann equations.
We extend that idea to a more general case here. For a discretization R1 = r1 < r2 <

· · · < rM = R2, not necessarily equidistant, of the interval [R1, R2], it is worthwhile to
give the following algorithms for stable computations of the integrals Sn(r) and Qn(r) at
the points of this discretization for values of n � 0. These computed values can, in prin-
ciple, then be used to evaluate these integrals for n < 0 at the discretization points using
relations (4.6) for Qn and (4.12) for Sn, which are given below after algorithms 4.1A
and 4.1B, respectively.

Algorithm 4.1A – Sequential algorithm for the integrals Qn.
Step 1. Compute Q(1)

n (rm), m = 2, . . . ,M, as

Q(1)
n (r2) =

∫ r2

r1

ρvn,2(r2)vn,1(ρ)fn(ρ) dρ,

Q(1)
n (rm) = vn,2(rm)

vn,2(rm−1)
Q(1)

n (rm−1)+
∫ rm

rm−1

ρvn,2(rm)vn,1(ρ)fn(ρ) dρ, m = 3, . . . ,M.

(4.3)
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Step 2. Compute Q(2)
n (rm), m = M − 1, . . . , 1, as

Q(2)
n (rM−1) =

∫ rM

rM−1

ρvn,1(rM−1)vn,2(ρ)fn(ρ) dρ,

Q(2)
n (rm) = vn,1(rm)

vn,1(rm+1)
Q(2)

n (rm+1)+
∫ rm+1

rm

ρvn,1(rm)vn,2(ρ)fn(ρ) dρ,

m = M − 2, . . . , 1.

(4.4)

Step 3. Compute Qn(rm), m = 1, . . . ,M, as

Qn(r1) = Q(2)
n (r1), Qn(rM) = Q(1)

n (rM),

Qn(rm) = Q(1)
n (rm) +Q(2)

n (rm), m = 2, . . . ,M − 1.
(4.5)

It is easily verified that the coefficients in front of Q(1)
n (rm−1) and Q(2)

n (rm−1) in
the second equation of (4.3) and that of (4.4) are less than one for the Poisson equation
and hence the computational process in the above algorithm is stable. For this stability
reason, the above algorithm should be used for solving the Poisson equation in all three
different types of domains.

For the oscillatory Helmholtz equation, due to the oscillatory nature of the linearly
independent solutions, this coefficient is an oscillatory function of rm and thus takes
values above or below one depending on the value of rm in the above recursion formulae.
Thus, in this case also, the computational process in the above algorithm is stable and,
hence, the above algorithm should be used for both the interior and annular domains. For
solving the oscillatory Helmholtz equation in the exterior domain, the form (4.1) and,
hence, the above algorithm are not appropriate due to the requirement of the Sommerfeld
radiation condition at the far field as discussed in some detail in section 3.2.2. Later we
discuss the algorithm for this case. For the monotonic Helmholtz equation, the above
algorithm is also stable for all three different types of domains.

Depending on the particular problem we have to solve, we can reduce the amount
of calculations by exploiting some relations between the integrals Qn(r) with n > 0
and those with n < 0. Except for the problem associated with the oscillatory Helmholtz
operator in the exterior of a closed disc, vn,1(r) and vn,2(r) associated with all the other
problems considered in the previous section are real functions. When the function f

is real, i.e. f−n(r) = fn(r), using (3.24), (3.32) and (3.51) we obtain that the integrals
in (4.1) satisfy

Q
(1)
−n(rm)=Q

(1)
n (rm), m = 2, . . . ,M,

Q
(2)
−n(rm)=Q

(2)
n (rm), m = 1, . . . ,M − 1,

Q−n(rm)=Qn(rm), m = 1, . . . ,M.

(4.6)

Algorithm 4.1A together with the relations given in (4.6) provides values of Qn for
all the modes for all the problems except for the exterior oscillatory Helmholtz problem
which we discuss below after the following remark.
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Remark 4.1. For exterior problems with the support of f contained in the circle of ra-
dius R0, R1 < R0 < R2, the support of the Fourier coefficients fn will be contained in
the segment [R1, R0], and consequently,

Q(1)
n (rm) = vn,2(rm)

vn,2(R0)
Q(1)

n (R0) and Q(2)
n (rm) = 0, for any R0 < rm � R2. (4.7)

Therefore, it follows that

Qn(rm) = Q(1)
n (rm), for any R0 < rm � R2. (4.8)

Use of this in algorithm 4.1B will reduce the computational effort considerably when
the support of f is small in comparison with the domain we consider for the problem.

For the problem associated with the oscillatory Helmholtz operator in the exterior
of a closed disc, we need to compute the integrals Sn(r) in (4.2). Algorithm 4.1B below
is used to compute the values of the integrals Sn(r) only for n � 0, and then using the
relations (4.12) given below, we find the values of these integrals for n < 0.

Algorithm 4.1B – Sequential algorithm for the integrals Sn.
Step 1. Compute S(1)n (rm), m = 2, . . . ,M, using

S(1)n (r2) =
∫ r2

r1

ρvn,1(r2)vn,2(ρ)fn(ρ) dρ,

S(1)n (rm) = vn,1(rm)

vn,1(rm−1)
S(1)n (rm−1)+

∫ rm

rm−1

ρvn,1(rm)vn,2(ρ)fn(ρ) dρ, m = 3, . . . ,M.

(4.9)
Step 2. Compute S(2)n (rm), m = M − 1, . . . , 1, using

S(2)n (rM−1) =
∫ rM

rM−1

ρvn,2(rM−1)vn,1(ρ)fn(ρ) dρ,

S(2)n (rm) = vn,2(rm)

vn,2(rm+1)
S(2)n (rm+1)+

∫ rm+1

rm

ρvn,2(rm)vn,1(ρ)fn(ρ) dρ,

m = M − 2, . . . , 1.

(4.10)

Step 3. Compute Sn(rm), m = 1, . . . ,M, using

Sn(r1) = S(2)n (r1), Sn(rM) = S(1)n (rM),

Sn(rm) = S(1)n (rm)+ S(2)n (rm), m = 2, . . . ,M − 1.
(4.11)
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We obtain from (3.38) and (3.39) that vn,1(r) = H(1)
n (kr) = H

(2)
n (kr) = vn,2(r).

Therefore, the following relations follow from (3.43) and the fact that f is a real func-
tion.

S
(1)
−n(rm)= vn,2(rm)

vn,2(r1)
S
(2)
n (r1)− S

(2)
n (rm), m = 2, . . . ,M,

S
(2)
−n(rm)= vn,1(rm)

vn,1(rM)
S
(1)
n (rM) − S

(1)
n (rm), m = 2, . . . ,M,

S−n(rm)= vn,2(rm)

vn,2(r1)
Sn(r1)+ vn,1(rm)

vn,1(rM)
Sn(rM)− Sn(rm), m = 1, . . . ,M.

(4.12)

Algorithm 4.1B together with the relations given in (4.12) provide values of Sn
rapidly for all the modes required for solving the exterior oscillatory Helmholtz problem.
Also note the following remark, which can further speed up the computation.

Remark 4.2. If the support of f is contained in the circle of radius R0, R1 < R0 < R2,
then the support of the Fourier coefficients fn will be contained in the segment [R1, R0],
and consequently,

S(1)n (rm) = vn,1(rm)

vn,1(R0)
S(1)n (R0) and S(2)n (rm) = 0 for any R0 < rm � R2. (4.13)

Therefore, it follows that

Sn(rm) = S(1)n (rm) for any R0 < rm � R2. (4.14)

Use of this in algorithm 4.1B will reduce computational effort considerably when the
support of f is small in comparison with the domain we consider for the problem.

For the numerical implementation, we recall the well-known recurrence relations
for the Bessel and Hankel functions

Jn+1(r)= 2n

r
Jn(r) − Jn−1(r), Yn+1(r) = 2n

r
Yn(r)− Yn−1(r),

H
(1)
n+1(r)= 2n

r
H (1)
n (r)−H

(1)
n−1(r), H

(2)
n+1(r) = 2n

r
H (2)
n (r)−H

(2)
n−1(r),

In+1(r)= − 2n
r
In(r)− In−1(r), Kn+1(r) = 2n

r
Kn(r) −Kn−1(r).

(4.15)

Consequently, the computation of the solutions of our problems using the above recur-
rence relations requires us to compute the values of the Bessel and Hankel functions by
means of the series expansions only for n = 0 and n = 1. Then above recurrence rela-
tions can be used to compute the rest of the Bessel and Hankel functions which entails
considerable computational saving provided the computation is carried out carefully. In
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this connection, it is worth making the following remarks. It may appear that this com-
putational process is unstable because, in general, |2n/r| > 1. However, this would be
so if the second term on the right-hand side of each of the recurrence relations in (4.15)
were not present. Because of the presence of the second term in each of these, this in-
stability does not occur unless r → 0. For r → 0, we do not use the above recurrence
relation, rather we use the asymptotic formulae given in section 3, see (3.36), for exam-
ple. We have been satisfied with the accuracy this computational process provides by
comparing with direct calculations using series expansions of these functions.

4.2. Algorithm for the two-dimensional problems

Below we choose N an integer power of 2 for use in the Fourier series to calculate
the solution u(r, θ) using the truncated version of (2.9). Now, we construct the following
fast algorithm for various two-dimensional problems based on algorithms 4.1A and 4.1B
and the analyses of the previous sections.

Algorithm 4.2 – Fast algorithm for the solution u(r, θ).
Initialization. Choose M and N . Define K = N/2.

Step 1. Using the fast Fourier transform, compute the Fourier coefficients fn(rm),
−K � n � K − 1 for 1 � m � M.

Step 2. For the exterior oscillatory Helmholtz problem, compute the integrals Sn(rm),
−K � n � K − 1, 1 � m � M, using algorithm 4.1B for n � 0 and (4.12)
for n < 0. For all other problems discussed in section 3, compute the integrals
Qn(rm), −K � n � K − 1, 1 � m � M, using algorithm 4.1A for n � 0
and (4.6) for n < 0.

Step 3. Compute the values vn(rm), −K � n � K−1 and 1 � m � M, of the solutions
of inhomogeneous problems (3.1) by multiplying Qn(rm) (Sn(rm) for exterior
oscillatory Helmholtz problem) with a problem dependent constant. The value
of the constant is taken from one of the corollaries of propositions 3.2, 3.3 or 3.4
depending on the particular problem being solved.

Step 4. Compute the values of the Fourier coefficients of the solution u(r, θ), i.e. un(rm),
−K � n � K−1 and 2 � m � M−1, using the corollaries of propositions 3.2,
3.3 or 3.4, depending on the particular problem being solved.

Step 5. Finally, compute the values u(rm, θn), −K � n � K − 1 and 2 � m � M − 1,
of the solution u(r, θ) using the fast Fourier transform.

4.3. The algorithmic complexity

In steps 1 and 5 above, there are 2M FFT’s of length N and all other computations
in steps 2, 3, and 4 are of lower order. With each FFT of length N contributing N logN
operations, the asymptotic operation count and hence the asymptotic time complexity is



232 L. Badea, P. Daripa / A fast algorithm elliptic problems

O(MN logN). It is easy to see that the asymptotic storage requirement is of the order
O(MN).

Finally, we remark that by construction the above algorithm 4.2 is parallelizable on
multi-processor as discussed in detail for two similar algorithms in [5–7].

5. Numerical results

In this section, numerical results are presented along with the accuracy of the above
algorithm applied to the problems discussed earlier. In all the examples presented below,
we have considered problems with known solutions and compared the numerical results
with them. For each of the three operators, we have considered both the Dirichlet and
the Neumann problems. In the case of an annular domain, we have also considered a
problem with mixed boundary conditions.

The algorithm is applied with equidistant points along the radius, R1 = r1 < r2 <

· · · < rM = R2. The distance between two consecutive radial points has been denoted
by δr. The two integrals in (4.3) and (4.4) of algorithm 4.1A have been approximated
by the trapezoidal rule on the segments [rm−1, rm] and [rm, rm+1], respectively. The total
number of the Fourier coefficients used has been denoted, as before, by N .

In the examples we consider the total variation in the values of the solution is large
and the minimum value of the solution in the domain is of the order of round-off error.
Therefore, it is more appropriate to calculate the error relative to the maximum value of
the exact solution in the domain. Denoting, as in the previous sections, by u the exact
solution, and by uc the computed solution, we list in the tables below the maximum of
the relative error,

err = max
2�i�M−1, 1�j�N

|u(ri, θj ) − uc(ri, θj )|
C0

where C0 = max
(x,y)∈�

∣∣u(x, y)∣∣, (5.1)

over the N(M − 2) points in the domain.

Interior circular domains. Here we have considered problems with the Helmholtz
equation

$u − k2u = f, (5.2)

where f and the boundary conditions have been chosen such that the problem has the
solution

u(x, y) = xex + yey . (5.3)

The domain of the problems is the disc centered at the origin and of radius R = 1,
and the maximum value of the exact solution u(x, y) on the closed disc is C0 =
u(1/

√
2, 1/

√
2) ≈ 0.287E+01. In the tables below, we show the relative error (5.1)

for regular meshes of the disc with δr varying between 1.0/8 and 1.0/8192, and N be-
tween 4 and 64. Tables 1 and 2 show this error for the Dirichlet and Neumann problems,
respectively, where the constant in (5.2) is k2 = 1.0.
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Table 1
Errors for the Dirichlet problem in a disc when k2 = 1.0.

δr\N 4 8 16 32 64

2−3 0.294E−01 0.338E−02 0.337E−02 0.337E−02 0.337E−02
2−4 0.287E−01 0.116E−02 0.115E−02 0.115E−02 0.115E−02
2−5 0.286E−01 0.368E−03 0.367E−03 0.367E−03 0.367E−03
2−6 0.286E−01 0.242E−03 0.111E−03 0.111E−03 0.111E−03
2−7 0.286E−01 0.238E−03 0.328E−04 0.328E−04 0.328E−04
2−8 0.286E−01 0.237E−03 0.942E−05 0.942E−05 0.942E−05
2−9 0.285E−01 0.237E−03 0.266E−05 0.266E−05 0.266E−05
2−10 0.285E−01 0.237E−03 0.743E−06 0.743E−06 0.743E−06
2−11 0.285E−01 0.237E−03 0.205E−06 0.205E−06 0.205E−06
2−12 0.285E−01 0.237E−03 0.863E−07 0.678E−07 0.656E−07
2−13 0.285E−01 0.237E−03 0.863E−07 0.679E−07 0.657E−07

Table 2
Errors for the Neumann problem in a disc when k2 = 1.0.

δr\N 4 8 16 32 64

2−3 0.191E+00 0.101E−01 0.936E−02 0.936E−02 0.936E−02
2−4 0.199E+00 0.323E−02 0.248E−02 0.248E−02 0.248E−02
2−5 0.202E+00 0.141E−02 0.636E−03 0.636E−03 0.636E−03
2−6 0.202E+00 0.939E−03 0.161E−03 0.161E−03 0.161E−03
2−7 0.202E+00 0.819E−03 0.406E−04 0.406E−04 0.406E−04
2−8 0.202E+00 0.815E−03 0.102E−04 0.102E−04 0.102E−04
2−9 0.202E+00 0.817E−03 0.258E−05 0.256E−05 0.257E−05
2−10 0.202E+00 0.817E−03 0.703E−06 0.667E−06 0.666E−06
2−11 0.202E+00 0.817E−03 0.234E−06 0.198E−06 0.197E−06
2−12 0.202E+00 0.817E−03 0.117E−06 0.834E−07 0.797E−07
2−13 0.202E+00 0.817E−03 0.876E−07 0.549E−07 0.508E−07

We see in these two tables that the errors are approximately of the same order for the
two types of boundary conditions of the problem. This fact has also been noticed with
other values of the parameter k. For this reason, in table 3 only the error for the Dirichlet
problem when k2 = 0.5 is shown. Also, in table 4 the accuracy of the algorithm is
illustrated only for the Neumann problem when k2 = 5.0.

It is worth making three remarks. Firstly, although the trapezoidal rule is used to
approximate the integrals in algorithm 4.1A, which is accurate of the order O(δ2

r ), the
numerical solutions are accurate up to five decimal places when δr = 10−3 and N = 16.
It is expected that the use of a three-point based integration method, such as Simpson’s
rule, which is accurate of the order O(δ4

r ), may provide even more accurate solutions
with the same number of nodes.

Secondly, the above tables show that both the number of nodes along the radius and
the number of Fourier coefficients used are important for the accuracy of the algorithm.
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Table 3
Errors for the Dirichlet problem in a disc when k2 = 0.5.

δr\N 4 8 16 32 64

2−3 0.326E−01 0.438E−02 0.438E−02 0.438E−02 0.438E−02
2−4 0.312E−01 0.141E−02 0.141E−02 0.141E−02 0.141E−02
2−5 0.309E−01 0.431E−03 0.430E−03 0.430E−03 0.430E−03
2−6 0.308E−01 0.251E−03 0.127E−03 0.127E−03 0.127E−03
2−7 0.308E−01 0.243E−03 0.367E−04 0.367E−04 0.367E−04
2−8 0.308E−01 0.241E−03 0.104E−04 0.104E−04 0.104E−04
2−9 0.308E−01 0.241E−03 0.291E−05 0.291E−05 0.291E−05
2−10 0.308E−01 0.241E−03 0.803E−06 0.803E−06 0.803E−06
2−11 0.308E−01 0.241E−03 0.220E−06 0.220E−06 0.220E−06
2−12 0.308E−01 0.241E−03 0.863E−07 0.678E−07 0.656E−07
2−13 0.308E−01 0.241E−03 0.863E−07 0.679E−07 0.657E−07

Table 4
Errors for the Neumann problem in a disc when k2 = 5.0.

δr\N 4 8 16 32 64

2−3 0.482E−01 0.312E−01 0.316E−01 0.316E−01 0.316E−01
2−4 0.282E−01 0.932E−02 0.957E−02 0.957E−02 0.957E−02
2−5 0.218E−01 0.278E−02 0.263E−02 0.263E−02 0.263E−02
2−6 0.200E−01 0.941E−03 0.688E−03 0.688E−03 0.689E−03
2−7 0.195E−01 0.452E−03 0.176E−03 0.176E−03 0.176E−03
2−8 0.194E−01 0.370E−03 0.445E−04 0.445E−04 0.446E−04
2−9 0.194E−01 0.378E−03 0.112E−04 0.112E−04 0.112E−04
2−10 0.194E−01 0.380E−03 0.277E−05 0.280E−05 0.281E−05
2−11 0.194E−01 0.380E−03 0.683E−06 0.700E−06 0.702E−06
2−12 0.194E−01 0.381E−03 0.179E−06 0.176E−06 0.174E−06
2−13 0.194E−01 0.381E−03 0.752E−07 0.496E−07 0.455E−07

Examining the rows of the tables, we observe that for a given number of points along the
radius, increasing the number of Fourier coefficients decreases the error until a certain
value is reached and thereafter, it remains the same. Examining the columns, the same
kind of dependence of the error on the number of nodes along the radius, for a fixed
number of Fourier coefficients, is observed.

Thirdly, one should expect order δ2
r convergence at least in the middle of the

columns of these tables for large N . In tables 2 and 4 this seems to be the case for
N = 64, in tables 1 and 4 it is strictly not, and there is a slight deterioration from this
convergence. We do not know the reason, but perhaps higher values of N are required
to observe this convergence rate.

Annular domains. Here we have considered solving the Poisson equation

$u = f (5.4)



L. Badea, P. Daripa / A fast algorithm elliptic problems 235

Table 5
Errors for the Dirichlet problem in an annulus.

δr\N 4 8 16 32 64

2−2 0.566E−01 0.747E−02 0.182E−02 0.180E−02 0.181E−02
2−3 0.555E−01 0.609E−02 0.470E−03 0.457E−03 0.458E−03
2−4 0.551E−01 0.574E−02 0.129E−03 0.114E−03 0.115E−03
2−5 0.550E−01 0.566E−02 0.446E−04 0.286E−04 0.287E−04
2−6 0.549E−01 0.563E−02 0.248E−04 0.715E−05 0.717E−05
2−7 0.549E−01 0.563E−02 0.202E−04 0.179E−05 0.179E−05
2−8 0.549E−01 0.563E−02 0.202E−04 0.446E−06 0.447E−06
2−9 0.549E−01 0.563E−02 0.202E−04 0.111E−06 0.111E−06
2−10 0.549E−01 0.563E−02 0.202E−04 0.578E−07 0.612E−07
2−11 0.549E−01 0.563E−02 0.202E−04 0.579E−07 0.613E−07
2−12 0.549E−01 0.563E−02 0.202E−04 0.579E−07 0.614E−07

Table 6
Errors for the mixed problem in an annulus.

δr\N 4 8 16 32 64

2−2 0.333E+00 0.202E−01 0.255E−01 0.255E−01 0.255E−01
2−3 0.362E+00 0.243E−01 0.690E−02 0.697E−02 0.697E−02
2−4 0.369E+00 0.297E−01 0.175E−02 0.182E−02 0.182E−02
2−5 0.371E+00 0.312E−01 0.456E−03 0.464E−03 0.464E−03
2−6 0.372E+00 0.315E−01 0.161E−03 0.117E−03 0.117E−03
2−7 0.372E+00 0.316E−01 0.869E−04 0.295E−04 0.295E−04
2−8 0.372E+00 0.316E−01 0.682E−04 0.739E−05 0.739E−05
2−9 0.372E+00 0.317E−01 0.637E−04 0.185E−05 0.188E−05
2−10 0.372E+00 0.317E−01 0.649E−04 0.489E−06 0.503E−06
2−11 0.372E+00 0.317E−01 0.652E−04 0.155E−06 0.158E−06
2−12 0.372E+00 0.317E−01 0.653E−04 0.713E−07 0.716E−07

in an annular domain bounded by the radii R1 = 2.0 and R2 = 4.0 with f and the
boundary conditions appropriately chosen such that the problem has the solution

u(x, y) = xex − ye−y . (5.5)

The maximum value of the exact solution u(x, y) in the closed annulus, depending
on which we have calculated the relative errors for the numerical solution, is C0 =
u(4.0, 0.0) ≈ 0.218E+03. Similar to the previous examples, we show in tables 5–7
the relative error (5.1) for regular meshes of the annulus with δr varying between 1.0/4
and 1.0/4096, and N between 4 and 64. Table 5 gives the error for the problem with
Dirichlet data on both circles of the boundary. For table 6 we have taken Dirichlet data
on r = R1 and Neumann data on r = R2. In the numerical experiments for problems
with Neumann data on r = R1 and Dirichlet data on r = R2, the errors have been found
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Table 7
Errors for the Neumann problem in an annulus.

δr\N 4 8 16 32 64

2−2 0.929E+00 0.432E−01 0.426E−01 0.426E−01 0.426E−01
2−3 0.967E+00 0.681E−01 0.105E−01 0.105E−01 0.105E−01
2−4 0.977E+00 0.738E−01 0.262E−02 0.262E−02 0.262E−02
2−5 0.979E+00 0.752E−01 0.647E−03 0.655E−03 0.655E−03
2−6 0.980E+00 0.754E−01 0.196E−03 0.164E−03 0.164E−03
2−7 0.980E+00 0.755E−01 0.918E−04 0.409E−04 0.409E−04
2−8 0.980E+00 0.755E−01 0.729E−04 0.102E−04 0.102E−04
2−9 0.980E+00 0.755E−01 0.682E−04 0.256E−05 0.256E−05
2−10 0.980E+00 0.755E−01 0.680E−04 0.640E−06 0.640E−06
2−11 0.980E+00 0.755E−01 0.684E−04 0.164E−06 0.161E−06
2−12 0.980E+00 0.755E−01 0.685E−04 0.692E−07 0.686E−07

to be of the same order as that in table 6. Finally, in table 7 the error for the problem
with Neumann data on both circles are shown.

The three tables show that the errors in the case of an annulus are similar to those
obtained within a disc. Similar remarks concerning the accuracy of the method and the
dependence of the error on the number of radial points or the number of the terms in the
Fourier expansion can be made.

Exterior circular domains. Here we have considered solving the Helmholtz equation

$u + k2u = f, (5.6)

in the exterior of a circle of radius R1. In the general theory in section 2, the func-
tion f has compact support in the case of exterior problems. However, the existence and
uniqueness of the solution are guaranteed for inhomogeneous equations with f decay-
ing rapidly to zero as r → ∞. The algorithm is applied to solve the exterior problems
with f and the boundary data such that the problem has the solution

u(x, y) = e−x2−y2+x+y. (5.7)

Using (5.7) for u(x, y) in the Helmholtz equation (5.6), we find that

f (x, y) = [
4
(
x2 + y2 − x − y

) − 2 + k2
]
e−x2−y2+x+y.

For points with r > 7.0, the values of f are less than 0.153E−14 when k2 = 5.0. Also,
we notice that u(x, y) in (5.7) satisfies the conditions (3.79) at infinity and its values
at points r > 7.0 are less than 0.104E−16. Consequently, we have chosen R2 = 7.0.
Also we have taken R1 = 1.0, and we see that the maximum value of the exact solution
u(x, y) is C0 = u(1/

√
2, 1/

√
2) ≈ 0.151E+01. In tables 8 and 9 we give the errors we

have obtained for the Dirichlet and Neumann problems taking k2 = 5.0.
We notice that the results we have obtained for the exterior problems and the

bounded domains are similar.
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Table 8
Errors for the exterior Dirichlet problem when k2 = 5.0.

δr\N 4 8 16 32

3.0/23 0.329E+00 0.523E+00 0.520E+00 0.520E+00
3.0/24 0.613E−01 0.133E+00 0.131E+00 0.131E+00
3.0/25 0.109E−01 0.349E−01 0.324E−01 0.324E−01
3.0/26 0.204E−01 0.107E−01 0.812E−02 0.812E−02
3.0/27 0.245E−01 0.461E−02 0.203E−02 0.203E−02
3.0/28 0.255E−01 0.309E−02 0.509E−03 0.509E−03
3.0/29 0.257E−01 0.271E−02 0.129E−03 0.127E−03
3.0/210 0.258E−01 0.262E−02 0.339E−04 0.317E−04
3.0/211 0.258E−01 0.260E−02 0.102E−04 0.793E−05
3.0/212 0.258E−01 0.259E−02 0.485E−05 0.199E−05

Table 9
Errors for the exterior Neumann problem when k2 = 5.0.

δr\N 4 8 16 32

3.0/23 0.179E+00 0.342E+00 0.341E+00 0.341E+00
3.0/24 0.393E−01 0.942E−01 0.925E−01 0.925E−01
3.0/25 0.915E−02 0.252E−01 0.235E−01 0.235E−01
3.0/26 0.166E−01 0.762E−02 0.587E−02 0.587E−02
3.0/27 0.196E−01 0.323E−02 0.147E−02 0.147E−02
3.0/28 0.204E−01 0.215E−02 0.368E−03 0.367E−03
3.0/29 0.206E−01 0.188E−02 0.923E−04 0.918E−04
3.0/210 0.207E−01 0.181E−02 0.236E−04 0.230E−04
3.0/211 0.207E−01 0.180E−02 0.642E−05 0.579E−05
3.0/212 0.207E−01 0.179E−02 0.459E−05 0.149E−05

6. Conclusions

In this paper, analysis-based high-order accurate fast algorithms for solving el-
liptic problems in three different two-dimensional domains are presented and imple-
mented: (i) interior of a circle, (ii) exterior of a circle, and (iii) circular annulus.
These algorithms are derived from an exact formulae for the solution of a large class
of elliptic equations (where the coefficients of the equation do not depend on the an-
gle when we use the polar coordinates) based on Fourier series expansion and one-
dimensional ordinary differential equation. In order to illustrate the application of these
algorithms, three different types of elliptic problems considered are: (i) Poisson equa-
tion, (ii) Helmholtz equation (oscillatory case), and (iii) Helmholtz equation (monotone
case). Numerical results are presented which exhibit the high accuracy of the proposed
algorithms.
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