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We propose a domain embedding method to solve second order elliptic problems in ar-
bitrary two-dimensional domains. This method can be easily extended to three-dimensional
problems. The method is based on formulating the problem as an optimal distributed control
problem inside a rectangle in which the arbitrary domain is embedded. A periodic solution of
the equation under consideration is constructed easily by making use of Fourier series. Nu-
merical results obtained for Dirichlet problems are presented. The numerical tests show a high
accuracy of the proposed algorithm and the computed solutions are in very good agreement
with the exact solutions.
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1. Introduction

In embedding or fictitious domain methods, complicated domains �, where so-
lutions of problems may be sought, are embedded into larger domains D with simple
enough boundaries (circles, rectangles, for instance) so that the solutions in these do-
mains can be constructed by efficient methods. For instance, there are many problems
for which either exact solutions on discs or rectangles are known or accurate numerical
solutions on regular domains can be constructed using fast solvers. Also, for rectangular
domains we can use a regular mesh associated with a spectral method or a finite element
method. The solution of the problem in � is then approximated by a solution of the
equation in fictitious domain D satisfying the boundary conditions of the given problem
in � approximately, if not exactly. The proposed embedding method below is of real in-
terest since it works well for complex geometries unlike some other methods, especially
the finite difference method.
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These methods were developed in the seventies [1,6,12,22,24,25] and have been a
very active area of research in the following decades. The use of these embedding meth-
ods is commonplace these days for solving complicated problems arising in science
and engineering. To this end, it is worth mentioning the domain embedding methods
for Stokes equations [4], fluid dynamics and electro-magnetics [9], transonic flow cal-
culation [26], and equilibrium of the plasma in a Tokamak [3]. Also, there has been
an enormous progress in shape optimization using the fictitious domain approaches.
We can cite here, for instance, the works of Daňková, Haslinger, Klarbring, Makinen,
Neittaanmäki and Tiba (see [7,18–20,23]) among many others. In recent years, progress
in this field has been substantial, especially in the use of the Lagrange multiplier tech-
niques. In this connection, the works of Girault, Glowinski, Hesla, Joseph, Kuznetsov,
Lopez, Pan, Périaux [13–17] should be cited.

In [2], an embedding method is associated with an optimal distributed control prob-
lem (see [21]). There, the problem is solved in an auxiliary domain D using a finite
element method on a fairly structured mesh which allows the use of fast solvers. The
solution in D is found as a solution of an optimal distributed control problem such that it
satisfies the prescribed boundary conditions of the problem in the domain �. The same
idea is also used in [8] where a least squares method is used. An embedding method
is proposed in [10,11], where a combination of Fourier approximations and boundary
integral equations is used. Essentially, a Fourier approximation for a solution of the non-
homogeneous equation in D is found, and then the solution in � for the homogeneous
equation subject to modified conditions on the boundary of � is sought using bound-
ary element methods. The embedding method proposed in this paper uses the Fourier
spectral method proposed in [10] to find a periodic solution of the equation associated
with the problem in D and, as in [2], the approximate solution of the problem in � is
found as the solution of an optimal distributed control problem. To this end, it is worth
mentioning the works of Briscolini and Santangelo [5] and Elghaoui and Pasquetti [11].

The paper is organized as follows. In section 2 we describe the proposed method
and apply it to solve some elliptic problems in complicated domains. In section 3 we
present some numerical results which show the validity and high accuracy of the method.
Finally, we provide some concluding remarks in section 4.

2. Description of the method

In numerically time-advancing solutions of unsteady advection–diffusion problems
(see [10]), one often requires to solve at each time step one or more linear elliptic prob-
lems of the type

�u − σu = f in �,
u = g on 	,

(2.1)

where σ is a positive constant and 	 is the boundary of the domain � ⊂ R
2. In [10], the

domain � is embedded in a rectangle D = (0, a)× (0, b) on which a regular rectangular
mesh is considered. The proposed algorithm in [10] has four steps. In the first one, the
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function f is extended from the domain � to a function f̃ defined on D, f̃|� = f . Using
the mesh on D, a discrete Fourier expansion of a periodic solution ũ of the equation

�ũ − σ ũ = f̃ in D (2.2)

is written in the second step. In the third step, the problem

�v − σv = 0 in �,

u = g − ũ|	 on 	.
(2.3)

is solved using the boundary element method. Finally, the desired solution u = ũ + v is
calculated on � in the fourth step.

It is worth making some remarks on this algorithm before we propose a new algo-
rithm in which the same spectral method for the solution of problem (2.2) is used, but
now the solution of problem (2.1) is found by an optimal distributed control.

In the method proposed above, the periodic solution ũ of equation (2.2) is used
to reduce the problem (2.1) for an inhomogeneous equation to a problem (2.3) for a
homogeneous equation, thereby allowing the use of boundary element method to solve
the problem (2.3).

If we know f̃ and write it as a double Fourier series

f̃ (x, y) =
∞∑

m=−∞

∞∑
n=−∞

f̂mnei(mX+nY ), (2.4)

where X = 2πx/a, Y = 2πy/b, then a periodic solution ũ of (2.2) can be found from
its Fourier series,

ũ(x, y) =
∞∑

m=−∞

∞∑
n=−∞

ûmnei(mX+nY ), (2.5)

with ûmn now given by

ûmn = − f̂mn

((4π2/a2)m2 + (4π2/b2)n2 + σ )
. (2.6)

If we consider a rectangular mesh on [0, a] × [0, b] with 2M + 1 and 2N + 1 segments
on [0, a] and [0, b], respectively, then the discrete Fourier transforms approximating f̃

and ũ are given by

f̃ij =
M∑

m=−M

N∑
n=−N

f̂mnei(mXi+nYj ) (2.7)

and

ũij =
M∑

m=−M

N∑
n=−N

ûmnei(mXi+nYj ), (2.8)
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respectively, where f̃ij = f̃ (xi, yj ), ũij = ũ(xi, yj ), Xi = 2πxi/a, and Yj = 2πyj /b.
It is well known that the inverse discrete Fourier transforms of (2.7) and (2.8) are written
as

f̂mn = 1

(2M + 1)(2N + 1)

2M∑
i=0

2N∑
j=0

f̃ije−i(mXi+nYj ) (2.9)

and

ûmn = 1

(2M + 1)(2N + 1)

2M∑
i=0

2N∑
j=0

ũij e−i(mXi+nYj ), (2.10)

respectively. Therefore, for arbitrary values of f̃ at the mesh nodes in D\�, we can
find a Fourier approximation of the periodic solution of equation (2.2) using (2.9), (2.6)
and (2.8). However, in this approach there can be large variations in the values of f̃

at the mesh nodes in D\� which may cause large errors in the boundary conditions of
the problem (2.3) for some f̃ . We point out here that the discretization points of the
boundary 	 do not coincide in general with the nodes of the regular mesh on D. In order
to avoid a stiff gradient of f̃ , this one is calculated in [10] as the solution of the following
optimization problem ∣∣�pf̃

∣∣
L2

per(D)
= min

h̃|�=f

∣∣�ph̃
∣∣
L2

per(D)
, (2.11)

where p is a fixed natural number. This minimization problem leads to solving an alge-
braic linear system for the unknowns f̃ij , the values corresponding to the mesh nodes in
D\�.

We find that if we obtain directly an extension of f̃ such that the trace on 	 of ũ

written in (2.8) is a good approximation for the boundary data g, then ũ is also a good
approximation in � for the solution u of problem (2.1). Construction of such a ũ leads
to an optimization problem too, but this time the values f̃ij at the mesh nodes in D\�
are sought such that g is well approximated at the discretization points on 	. To be more
explicit, we solve for f̃ the following optimal distributed control problem

min
h̃|�=f

J
(
h̃
)
, J

(
h̃
) = 1

2

∣∣ũ(
h̃
) − g

∣∣2
L2(	)

, (2.12)

where ũ(h̃) is the periodic solution of problem (2.2) corresponding to the right-hand
side h̃. In this way, the condition

ũ = g on 	

is satisfied approximately by ũ(f̃ ). Since J depends only on the values of h̃ at the mesh
nodes in D\�, and if we write

h̃ = f + h,
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where f and h are assumed to be extended with zero in D\� and �, respectively, then
problem (2.12) can be written as

min
h

J (h), J (h) = 1

2

∣∣ũ(f + h) − g
∣∣2
L2(	)

. (2.13)

Since the Gâteaux derivative of J (h) is

J ′(h)(e) =
∫
	

[
ũ(h) + ũ(f ) − g

]
ũ(e),

the minimization problem (2.13) is equivalent with the linear algebraic system∫
	

ũ(h)ũ(e) =
∫
	

[
g − ũ(f )

]
ũ(e), (2.14)

for all e vanishing at the mesh nodes in �. The algebraic system (2.14) and that cor-
responding to (2.11) have the same dimension, but this time the spectral approximation
of the solution u of problem (2.1) is the very solution obtained directly by solving alge-
braic system (2.14). Our numerical results show that the method proposed here is very
efficient and has a high accuracy.

In order to write the matrix and the right hand side of the linear system (2.14), we
denote by eij the discrete Fourier transform of the function which takes the value 1 at
the mesh node (xi, yj ) and vanishes at the other nodes. Then, the linear system (2.14)
can be written as

∑
(xk,yl)∈D\�

hkl

∫
	

ũ(ekl)ũ(eij ) =
∫
	

[
g − ũ(f )

]
ũ(eij ), for (xi, yj ) ∈ D\�, (2.15)

where hkl = h(xk, yl). Denoting the Fourier coefficients of eij by êij,mn, −M � m � M,
−N � n � N , we get from (2.9),

êij,mn = e−i(mXi+nYj )

(2M + 1)(2N + 1)
.

Then, from (2.6), the Fourier coefficients ûij,mn of ũ(eij ) are given by

ûij,mn = −e−i(mXi+nYj )

(2M + 1)(2N + 1)

1

((4π2/a2)m2 + (4π2/b2)n2 + σ )
, (2.16)

and the value of ũ(eij ) at the mesh node (xk, yl) can be approximated by

ũ(eij )kl =
M∑

m=−M

N∑
n=−N

ûij,mnei(mXk+nYl). (2.17)

Since the mesh on D has been taken regular in the directions x and y, we can use
a double fast Fourier transform for the calculation of the right-hand side in (2.7)–(2.10).
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Below, we outline the steps of the proposed algorithm in which the embedding
method which uses the Fourier approximations on a rectangle is associated with an op-
timal distributed control.

Numerical algorithm.

1. We extend f with zero at the mesh nodes in D\� and calculate the Fourier coeffi-
cients f̂mn given in (2.9).

2. Using (2.6) we get the Fourier coefficients ûmn, and then using (2.8) we calculate
ũ(f ) at the mesh nodes of D.

3. Using (2.16), we calculate the coefficients ûij,mn for the mesh nodes (xi, yj ) ∈ D\�,
and then using (2.17) we calculate the values of ũ(eij ) at the mesh nodes of D.

4. Using the computed values of ũ(f ) and ũ(eij ) at the mesh nodes of D, we calcu-
late, by interpolation, the values of ũ(f ) and ũ(eij ) at the mesh points of 	, which
are subsequently used in the numerical integration of the integrals appearing in the
algebraic system (2.15). These boundary integrals have been calculated by the trape-
zoidal rule.

5. Using the solution of algebraic system (2.15), which gives the extension f̃ of f in
D\�, and the values of f given in �, we get the values of ũ at the mesh nodes of �
from (2.9), (2.6) and (2.8).

Now, we make some remarks on this algorithm.

• The algebraic linear system (2.15) has a symmetric and full matrix. It can be solved
either by an iterative method such as conjugate gradient method or by a direct method.
We have applied below in the numerical tests the Gauss elimination method.

• Steps 3 and 4 of the algorithm are highly parallelizable on the multi-processor com-
puting machines.

• In step 4, we use a linear interpolation in both directions x and y to obtain the values
at the mesh points on 	 from the computed values at the mesh nodes of D. Assuming
that a mesh point (x, y) on 	 lies in the cell defined by the four mesh nodes (x1, y1),
(x1, y2), (x2, y1) and (x2, y2), we have linearly interpolated in the direction of x first
the values corresponding to (x1, y1) and (x2, y1), and then the values corresponding
to (x1, y2) and (x2, y2). Using these two computed values, we have made a linear
interpolation in the direction of y.

In our numerical examples, the numerical integration in step 4 is carried out under
the assumption that the boundary 	 is a polygon with the vertices at the mesh points and
the two functions under the integral are linear between two consecutive mesh points.
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3. Numerical results

In this section, we present numerical results for the solution of the Dirichlet prob-
lem (2.1) with σ = 1.0. As a fictitious domain we have taken the square D =
(0, a)×(0, a) with a = 1.386. The domain � of the problem (2.1) is a hexagon with the
center at (a/2, a/2), whose sides are tangent to a circle of diameter 1.0. We have tested
the algorithm given in the previous section for the problem which has the exact solution

u(x, y) = 1

4

[
1 + tanh

(
α

(
x − a

2

))][
1 + tanh

(
α

(
y − a

2

))]
, (3.1)

with α = 7.22. The Dirichlet problem (2.1) with this as a solution has the inhomoge-
neous term f given by

f (x, y) = −2

[
α

cosh(α(x − a/2))

]2

tanh

(
α

(
x − a

2

))[
1 + tanh

(
α

(
y − a

2

))]

− 2

[
α

cosh(α(y − a/2))

]2

tanh

(
α

(
y − a

2

))[
1 + tanh

(
α

(
x − a

2

))]

− σ

4

[
1 + tanh

(
α

(
x − a

2

))][
1 + tanh

(
α

(
y − a

2

))]
. (3.2)

This numerical example is taken from [10] except that the problem is now translated
from the square (−a/2, a/2)×(−a/2, a/2) to the square (0, a)×(0, a). The domains �
and D are shown in figure 1. In [10], the authors have suggested that, in order to diminish
the computing time, the extension of the nonhomogeneous term f should be sought not
in the entire domain D\�, but only in a strip in D\� surrounding �. The strip we
have taken in our tests is bounded by the hexagonal boundaries of the domain � and a
larger hexagon (plotted with dashed line in figure 1). This larger hexagon is concentric

Figure 1. Hexagonal domain � is embedded within a rectangular domain D.
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Figure 2. Extended function f̃ by the formula of f .

with � and circumscribed by a circle whose radius is 2δ larger than that of the circle
circumscribing �, δ being the discretization step size in D in both directions, x and y.
The values of f̃ outside of this strip are kept fixed. In order to assess the sensitivity of the
solution on these values, two types of extensions of f̃ have been used in our numerical
tests. In the first type, the values outside of the strip are taken to be zero. In the second
type, the values outside the strip are computed with the same formula (3.2) which has
been used for the domain � as well.

In figure 2 we have plotted f̃ with the extension given by (3.2) outside the strip
and by zero inside the strip. In figure 3, the function u given by (3.1), which is the exact
solution of our problem in �, is plotted over the whole domain D.

In the numerical tests, we have considered a mesh on 	 containing 720 equidistant
points. At these mesh points we have calculated the absolute error between the boundary
data g and the values of the computed solution ũ for both choices of f̃ discussed above.

In tables 1 and 2 we show the maximum, minimum and average of the absolute
errors over all the 720 mesh points, denoted errmax, errmin and errave, respectively, for the
two choices of the extension f̃ . Also, we give in tables 3 and 4 the same errors computed
at the mesh nodes of the domain �.

The number of nodes of the mesh on D in the directions of x and y has been de-
noted in the tables by nx and ny , respectively. The number of unknowns of the linear
algebraic system (2.15), i.e. the number of mesh nodes contained in the strip surround-
ing �, is denoted by ns in table 5.

We make the remark that the maximum error in the domain has been obtained
in all the numerical tests at points near the boundary, and the minimum is reached for
points in the central region of the domain. Comparison of the errors obtained in the two
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Table 1
Errors on the boundary – f̃ extended outside of the strip by 0.

nx × ny errmax errmin errave

10 × 10 0.14778E+00 0.94081E−04 0.50276E−01
20 × 20 0.67147E−02 0.87660E−08 0.78654E−03
40 × 40 0.16700E−02 0.10361E−08 0.13981E−03
50 × 50 0.11432E−02 0.56247E−08 0.98537E−04
80 × 80 0.46858E−03 0.56326E−09 0.37898E−04

100 × 100 0.25132E−03 0.85283E−09 0.21895E−04

Table 2
Errors on the boundary – f̃ extended outside of the strip by the formula of f .

nx × ny errmax errmin errave

10 × 10 0.14778E+00 0.94045E−04 0.50276E−01
20 × 20 0.67147E−02 0.85004E−08 0.78673E−03
40 × 40 0.16696E−02 0.94994E−09 0.13976E−03
50 × 50 0.11432E−02 0.16270E−08 0.98697E−04
80 × 80 0.46858E−03 0.25962E-10 0.37900E−04

100 × 100 0.25132E−03 0.69470E−09 0.21916E−04

Table 3
Errors in the domain – f̃ extended outside of the strip by 0.

nx × ny errmax errmin errave

10 × 10 0.35503E+00 0.22904E−02 0.57183E−01
20 × 20 0.25551E−01 0.26373E−05 0.44161E−02
40 × 40 0.90539E−02 0.15511E−08 0.37815E−03
50 × 50 0.88295E−02 0.44237E−06 0.80264E−03
80 × 80 0.22470E−02 0.15956E−07 0.90335E−04

100 × 100 0.19046E−02 0.32612E−08 0.65072E−04

Table 4
Errors in the domain – f̃ extended outside of the strip by the formula of f .

nx × ny errmax errmin errave

10 × 10 0.35503E+00 0.22903E−02 0.57183E−01
20 × 20 0.25547E−01 0.18012E−05 0.44168E−02
40 × 40 0.90231E−02 0.14685E−06 0.38251E−03
50 × 50 0.89375E−02 0.16076E−06 0.82617E−03
80 × 80 0.22558E−02 0.52912E−07 0.90749E−04

100 × 100 0.19063E−02 0.55113E−08 0.64589E−04
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Figure 3. Exact solution u.

Table 5
Number of unknowns in the algebraic system (2.15).

nx × ny 10 × 10 20 × 20 40 × 40 50 × 50 80 × 80 100 × 100

ns 27 83 156 188 296 372

Figure 4. Computed solution ũ.
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Figure 5. Computed function f̃ .

types of extensions shows that they are almost equal. For both types of extensions we
experimented with, there was very little difference in the results for the solution ũ. This
possibly indicates that the sensitivity of the computed solution on the type of extension
is likely to be negligible. For this reason, plots of ũ and f̃ corresponding to the extension
with zero of f only are shown in figures 4 and 5, respectively. Also, we notice that the
error on the boundary 	 is less than that in the domain � in all of our numerical tests.

In figure 5, we have plotted the optimal nonhomogeneous term f̃ which we have
obtained for problem (2.12) in the case nx = ny = 100. In figure 4, we have plotted
the solution ũ of the problem (2.2) corresponding to the optimal distributed control f̃ .
We see in figure 5 that the nonhomogeneous term f̃ has strong oscillations in the strip.
Because of these large oscillations, the shape of f̃ in � and outside the strip appears
to be flat in this figure. These oscillations have undesirable effects on the solution ũ

outside of the domain � as seen in figure 4. However, as we have seen in tables 1–4, the
solution ũ of the problem (2.2) approximates very well the boundary conditions g and
the solution u of the problem (2.1).

4. Conclusions

In this paper we have proposed an embedding approach based on an optimal dis-
tributed control and Fourier spectral method for solving elliptic problems in arbitrary
two-dimensional domains. Using this method one can solve elliptic problems in com-
plex domains which may be either simply or multiply connected. The method can be
easily applied to solve elliptic problems in three dimensions. In this method, an opti-
mal extension of the nonhomogeneous term f is obtained by solving a linear algebraic
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system (see section 2). In the construction of this linear system, we use the fast Fourier
transforms to find a periodic solution of the equation in the fictitious rectangular do-
main. The obtained algebraic linear system has a full matrix whose dimension can be
made small by making use of a small strip around the domain �. Our numerical tests
show that the numerical solution depends weakly on the extension of f outside of this
strip. However, as we have seen in section 3, the numerical results show a good accuracy
of the proposed method for relatively large mesh sizes.

In our opinion, there exists much room for the improvement of this method and we
present in the following some topics of future research, which fall outside the scope of
this paper. As mentioned at the beginning of section 2, problems of type (2.1) arise from
the time discretization of the unsteady advection–diffusion problems which requires one
to solve at each time step problems of type (2.1). In this case, the advection term is
treated explicitly which appears in the source term f of equation (2.1). Consequently,
the problem of the accurate computation of the derivatives of u should not be ignored
when applying this proposed method to solving unsteady advection–diffusion problems.
Even though, it appears from our numerical results that the extension of f outside the
strip does not influence the results significantly, it is possible that perhaps some other
extensions of f in step 1 of the numerical algorithm described in section 2 give better
ũ(f ) at the step 2, and then the error near the boundary could be reduced.

Our numerical tests have shown that the error of the computed solution strongly
depends on the dimension of the strip. The larger strips diminish the oscillations of the
computed inhomogeneous term f̃ , but because the embedding method leads in some
sense to solving ill posed problems, the linear algebraic system becomes almost singular
for large strips. Our numerical experiments have shown that the small strips give the
best results. In order for this method to work with large strips as well, we will need
to construct appropriate preconditioners for the algebraic systems resulting from this
method.
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