
Numerical Algorithms 36: 95–112, 2004.
 2004 Kluwer Academic Publishers. Printed in the Netherlands.

A domain embedding method using the optimal distributed
control and a fast algorithm

Lori Badea a and Prabir Daripa b,∗

a Institute of Mathematics, Romanian Academy of Sciences, Bucharest, RO-70700, Rumania
b Department of Mathematics, Texas A&M University, College Station, TX-77843, USA

E-mail: prabir.daripa@math.tamu.edu

Received 22 April 2003; accepted 24 February 2004
Communicated by C. Brezinski

We propose a domain embedding method to solve second order elliptic problems in ar-
bitrary two-dimensional domains. The method is based on formulating the problem as an
optimal distributed control problem inside a disc in which the arbitrary domain is embed-
ded. The optimal distributed control problem inside the disc is solved rapidly using a fast
algorithm developed by Daripa et al. [3,7,10–12]. The arbitrary domains can be simply or
multiply connected and the proposed method can be applied, in principle, to a large number
of elliptic problems. Numerical results obtained for Dirichlet problems associated with the
Poisson equation in simply and multiply connected domains are presented. The computed
solutions are found to be in good agreement with the exact solutions with moderate number
of grid points in the domain.
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1. Introduction

The embedding or fictitious domain methods which were developed specially in
the seventies [1,9,18,28,30,31] have been a very active area of research in recent years
because of their appeal and potential for applications in solving problems in complicated
domains very efficiently. In these methods, complicated domains � where solutions
of problems may be sought, are embedded into larger domains D with simple enough
boundaries so that the solutions in these embedded domains can be constructed more
efficiently. The use of these embedding methods are a commonplace these days for
solving complicated problems arising in science and engineering. To this end, it is worth
mentioning the domain embedding methods for Stokes equations [6], for fluid dynamics
and electromagnetics [15], for the transonic flow calculation [33], and for the equilibrium
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of the plasma calculation in a Tokamak [5]. Also, recently there has been an enormous
progress in shape optimization using the fictitious domain approaches. We can cite here,
for instance, the works of Daňková, Haslinger, Klarbring, Makinen, Neittaanmäki and
Tiba (see [13,24–26,29]) among many others.

In [2], an embedding method is associated with a distributed optimal control prob-
lem (see [27]). There the problem is solved in an auxiliary domain D using a finite
element method on a fairly structured mesh which allows the use of fast solvers. The
auxiliary domain D contains the domain � and the solution in D is found as a solution
of a distributed optimal control problem such that it satisfies the prescribed boundary
conditions of the problem in the domain �. The same idea is also used in [14] where
a least squares method is used. In [16,17], an embedding method is proposed in which
a combination of Fourier approximations and boundary integral equations is used. Es-
sentially, a Fourier approximation for a solution of the nonhomogeneous equation in D

is found, and then, the solution in � for the homogeneous equation is sought using the
boundary integral methods.

In recent years, progress in this field has been substantial, especially in the use of
the Lagrange multiplier techniques. In this connection, the works of Girault, Glowinski,
Hesla, Joseph, Kuznetsov, Lopez, Pan, Périaux [19–23] should be cited.

In a series of papers, Daripa et al. (see [7,10–12]) have developed fast algorithms
to evaluate singular integral transforms within a disc and applied to solve a variety of
problems. In [3], the fast algorithms were generalized, using an approach somewhat dif-
ferent from the one in [7], to almost all second order inhomogeneous elliptic problems
in domains such as a disc, an annulus, and the exterior of a closed disc. In addition,
this fast algorithm was applied to solve Poisson and Helmholtz equations with Dirich-
let/Neumann conditions prescribed on the boundary of these three types of domains.
In this paper, we propose a method to solve Dirichlet problems in arbitrary bounded
domains using an embedding domain approach. This method, however, can easily be
modified to solve Neumann problems as well. The embedding domain used is a disk
as choosing a disc rather than a rectangle for the embedding domain as soon as a strip
around the complex domain is used (see below) decreases the size of the optimal control
problem which is solved in this proposed method. This method also makes use of a
recently developed fast algorithm [3] of the authors to rapidly compute solutions, on the
boundary of the irregular domain, of some inhomogeneous problems defined within the
embedding disk. The method used in this paper differs from the one given in [4] where
the embedding domain is a rectangle in which periodic solutions are constructed. The
choice of a disk as an embedding domain brings in some subtleties in the method which
are explained in this paper. Moreover, it will be interesting to compare the results of this
method with the one reported in [4] which will suggest the course of further research
with these methods. To this end, it is worth mentioning the works of Briscolini and
Santangelo [8] and Elghaoui and Pasquetti [17].

The paper is organized as follows. In section 2 we provide a fast algorithm for a
disc [3], and then couple it with the optimal distributed control problem. The result-
ing embedding method is then described in detail for the Dirichlet problem associated
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with the Poisson equation. The problems involving other elliptic equations or different
boundary conditions (Neumann or mixed) may be treated in a similar fashion. It should
be remarked that the proposed algorithm can be applied to rapidly solving nonhomoge-
neous elliptic problems in either simply or multiply connected domains. In section 3, we
present some numerical examples for both types of domains. Our numerical results for
the Dirichlet problem associated with the Poisson equation show the validity and high
accuracy of the method. Finally, we provide some concluding remarks in section 4.

2. Description of the method

We consider, for the sake of simplicity, the following Dirichlet problem associated
with the Poisson equation

�u = f in �,

u = g on ∂�,
(2.1)

where � is a bounded domain, not necessarily simply connected, in R
2. Embedding �

within a disc D and using an optimal distributed control, we look for an extension f̃

of f from � to D, such that f̃ = f in � and the trace on ∂� of the solution ũ of the
Dirichlet problem in D,

�ũ= f̃ in D,

ũ= 0 on ∂D,
(2.2)

optimally approximates the given function g on ∂�. In this way, the restriction of ũ to
� optimally approximates the solution u of problem (2.1). The zero boundary condition
(2.2) is a natural choice for this Dirichlet problem. Below, we first present the fast
algorithm for solving the problem (2.2) in D, and then describe an embedding method
that uses this fast algorithm and the techniques of optimal distributed control.

2.1. Fast algorithm for a disc

We assume that the disc D is centered at the origin of the Cartesian coordinate
system and has the radius R. Now, using the polar coordinates, we assume that for
0 < r < R the function f̃ can be written as a Fourier series

f̃
(
reiθ

) =
∞∑

n=−∞
fn(r)e

inθ . (2.3)
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Then the Fourier coefficients un(reiθ ), −∞ < n < ∞, of the solution ũ(reiθ ) of equa-
tion (2.2) can be written as (see also [10,12])

u0(r) =
∫ r

0
ρ log(r)f0(ρ) dρ +

∫ R

r

ρ log(ρ)f0(ρ) dρ −
∫ R

0
ρ log(R)f0(ρ) dρ,

for n = 0,

(2.4)
un(r) = −

∫ r

0

ρ

2|n|
(

ρ

r

)|n|
fn(ρ) dρ −

∫ R

r

ρ

2|n|
(

r

ρ

)|n|
fn(ρ) dρ

+
(

r

R

)|n| ∫ R

0

ρ

2|n|
(

ρ

R

)|n|
fn(ρ) dρ, for n �= 0.

Therefore, the Fourier coefficients of the solution ũ of problem (2.2) can be directly
calculated by evaluating the integrals in (2.4) if one knows the Fourier coefficients of
the extended function f̃ . In fact, it follows from the equations in (2.4) that we have to
compute expressions of the form

In(r) = I 1
n (r) + I 2

n (r) =
∫ r

0
ρu1n(r)u2n(ρ)fn(ρ) dρ +

∫ R

r

ρu2n(r)u1n(ρ)fn(ρ) dρ,

(2.5)
where

u10(r)= log(r), u20(r) = 1, for n = 0,

u1n(r)= r−|n|, u2n(r) = r |n|, for n �= 0.
(2.6)

Using these notations, we can write

u0(r) = I0(r) − I0(R), for n = 0,

un(r) = − 1

2|n|In(r) + 1

2|n|
(

r

R

)|n|
In(R), for n �= 0.

(2.7)

Choosing a discretization 0 = r1 < r2 < · · · < rM = R, not necessarily regular, in the
interval [0, R], we can calculate the integrals at the points of this discretization according
to the following algorithm.

Algorithm 1.1 (Sequential algorithm for the integrals In).

1. Compute I 1
n (rm), m = 2, . . . ,M, as

I 1
n (r2) =

∫ r2

r1

ρu1n(r2)u2n(ρ)fn(ρ) dρ,

I 1
n (rm) = u1n(rm)

u1n(rm−1)
I 1
n (rm−1) +

∫ rm

rm−1

ρu1n(rm)u2n(ρ)fn(ρ) dρ,

m = 3, . . . ,M.

(2.8)
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2. Compute I 2
n (rm), m = M − 1, . . . , 1, as

I 2
n (rM−1) =

∫ rM

rM−1

ρu2n(rM−1)u1n(ρ)fn(ρ) dρ,

I 2
n (rm) = u2n(rm)

u2n(rm+1)
I 2
n (rm+1) +

∫ rm+1

rm

ρu2n(rm)u1n(ρ)fn(ρ) dρ,

m = M − 2, . . . , 1.

(2.9)

3. Compute In(rm), m = 1, . . . ,M, as

In(r1) = I 2
n (r1), In(rM) = I 1

n (rM),

In(rm) = I 1
n (rm) + I 2

n (rm), m = 2, . . . ,M − 1.
(2.10)

We can still reduce the amount of calculations by observing that f̃ is a real func-
tion, i.e. f−n(r) = fn(r). Therefore we have

I 1
−n(rm) = I 1

n (rm), m = 2, . . . ,M,

I 2
−n(rm) = I 2

n (rm), m = 1, . . . ,M − 1,

I−n(rm) = In(rm), m = 1, . . . ,M.

(2.11)

Consequently, we need to apply algorithm 1.1 only for nonnegative n. In order to cal-
culate the solution ũ of problem (2.2), knowing the extended function f̃ , we apply the
following procedure:

1. We find the Fourier coefficients of f̃ using the inverse fast Fourier transform.

2. We calculate the Fourier coefficients of ũ using algorithm 1.1.

3. Using the fast Fourier transform we calculate ũ.

As we will see in the next section, the values of f̃ at the mesh nodes outside �

are calculated using an optimal distributed control method. In the above steps 1 and 3
we use the fast Fourier transform. We know that if we use N = 2L terms in the Fourier
series then the fast Fourier transform has a net operation count of order O(N log N).
Therefore, except for the operation count arising from the optimal distributed control
part of the overall method outlined at the end of section 2.2, for M nodes in radial
direction and N terms in the Fourier series, the net operation count in steps 1–3 is of the
order O(MN log N) for MN nodes in the domain, or equivalently of the order O(log N)

per point. This estimate includes the operation count involved in step 2 above which is
of lower order. However, this complexity estimate does not include the calculations of
the coefficients fn(r) by the optimal control method of the next section.

2.2. Optimal distributed control

The numerical computation of the integrals in (2.4) using algorithm 1.1 assumes the
approximation of the Fourier coefficients fn(r) by some polynomial functions between
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two consecutive nodes of the discretization 0 = r1 < r2 < · · · < rM = R. In the
description of the embedding method, we assume fn(r) to be some continuous functions
which are linear between two consecutive nodes. Consequently, denoting such a function
by ϕm(r), m = 1, . . . ,M, which takes the value 1 at rm and 0 at the other points of the
discretization according to the following formula

ϕm(r) =




r − rm−1

rm − rm−1
, rm−1 � r � rm,

rm+1 − r

rm+1 − rm

, rm � r � rm+1,

(2.12)

we can write

fn(r) =
M∑

m=1

fn(rm)ϕm(r). (2.13)

With these approximations of the Fourier coefficients and taking N terms in the Fourier
series, the function f̃ is approximated by

f̃
(
reiθ

) =
N/2−1∑

n=−N/2

M∑
m=1

fn(rm)ϕm(r)einθ . (2.14)

We see that f̃ (reiθ ) is also linearly approximated between two consecutive radial nodes,
and in the following we implicitly assume that fn(r) and f̃ (reiθ ) are of the form (2.13)
and (2.14), respectively. For a given ri , i = 1, . . . ,M, from (2.14) we have

f̃
(
rie

iθ) =
N/2−1∑

n=−N/2

fn(ri)e
inθ , (2.15)

and therefore,

fn(ri) = 1

N

N−1∑
j=0

f̃
(
rie

iθj
)
e−inθj , (2.16)

where θj = 2πj/N . Substituting (2.16) into (2.14) we get

f̃
(
reiθ) = 1

N

N/2−1∑
n=−N/2

M∑
i=1

N−1∑
j=0

f̃
(
rie

iθj
)
ϕi(r)e

in(θ−θj ), (2.17)

and writing

f̃
(
rie

iθj
) =

{
f

(
rieiθj

)
if rieiθj ∈ �,

h
(
rieiθj

)
if rieiθj ∈ D\�,

(2.18)

we have from (2.17)

f̃
(
reiθ ) = f

(
reiθ ) + h

(
reiθ ), (2.19)
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where

f
(
reiθ ) = 1

N

N/2−1∑
n=−N/2

∑
rie

iθj ∈�

f
(
rie

iθj
)
ϕi(r)e

in(θ−θj ) (2.20)

and

h
(
reiθ ) = 1

N

N/2−1∑
n=−N/2

∑
rie

iθj ∈D\�
h
(
rie

iθj
)
ϕi(r)e

in(θ−θj ). (2.21)

In the embedding method, using the optimal distributed control and the above approxi-
mation for f̃ , we look for the extension h(reiθ ) of f̃ , in particular for the values h(rieiθj ),
rieiθj ∈ D\�, such that

J (h) = min
χ

J (χ), J (χ) = 1

2

∫
∂�

[
ũ(f + χ) − g

]2
, (2.22)

where the function χ is of the form

χ
(
reiθ

) = 1

N

N/2−1∑
n=−N/2

∑
rie

iθj ∈D\�
χijϕi(r)e

in(θ−θj ), (2.23)

χij being some real values, and ũ(f +χ) is the solution of the problem (2.2) correspond-
ing to f̃ = f + χ . Since J (χ) is a differentiable convex function, its minimum is the
solution of the following equation

J ′(h)(χ) ≡
∫

∂�

[
ũ(f + h) − g

]
ũ(χ) = 0, for any χ, (2.24)

where J ′(h)(χ) is the Gâteaux derivative of J at h in χ direction. Since the solution ũ

of equation (2.2) depends linearly on the nonhomogeneous term f̃ , and noticing that the
functions belong to the finite linear space generated by the functions

φij

(
reiθ

) = 1

N

N/2−1∑
n=−N/2

ϕi(r)e
in(θ−θj ), 1 � i � M, 0 � j � N − 1, (2.25)

the equation (2.24) can be written as∑
rie

iθj ∈D\�
hij

∫
∂�

ũ
(
φij

(
reiθ

))
ũ
(
φkl

(
reiθ

))

=
∫

∂�

gũ
(
φkl

(
reiθ

)) −
∑

rie
iθj ∈�

fij

∫
∂�

ũ
(
φij

(
reiθ

))
ũ
(
φkl

(
reiθ

))
,

for any rkeiθl ∈ D\�, (2.26)
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where we have used

hij = h
(
rie

iθj
)

and fij = f
(
rie

iθj
)
.

Taking into account the particular form of φij (reiθ ) as a nonhomogeneous term of equa-
tion (2.2), we can apply directly (2.4) to find ũ(φij ). First, we see that in equations (2.4)
the Fourier coefficients un(r) of the solution ũ(reiθ ) are some linear functions of the
Fourier coefficients fn(r) of the nonhomogeneous term f̃ (reiθ ). In order to specify
this linear dependence, we write (un(fn))(r) for un(r) which is useful for our purposes
below. The Fourier coefficients of the functions φij (reiθ ) can be written as

φij,n(r) = 1

N
ϕi(r)e

−inθj ,

and therefore, the Fourier coefficients of (ũ(φij ))(reiθ ) are given by

(
un(φij )

)(
reiθ ) = 1

N

(
un(ϕi)

)
(r)e−inθj . (2.27)

Therefore, we can write

(
ũ(φij )

)(
reiθ ) = 1

N

N/2−1∑
n=−N/2

(
un(ϕi)

)
(r)ein(θ−θj ). (2.28)

The expressions for (un(ϕi))(r) can be found using (2.7) and the integrals (In(ϕi))(r);
here we have also indicated the explicit dependence of integral In(r) on ϕi(r). Taking
into account the form (2.12) of the functions ϕi(r) we get in this case

(
In(ϕi)

)
(r) =




∫ ri+1

ri−1

ρu1n(r)u2n(ρ)ϕi(ρ) dρ if ri+1 � r,∫ r

ri−1

ρu1n(r)u2n(ρ)ϕi(ρ) dρ

+
∫ ri+1

r

ρu2n(r)u1n(ρ)ϕi(ρ) dρ if ri−1 � r � ri+1,∫ ri+1

ri−1

ρu2n(r)u1n(ρ)ϕi(ρ) dρ if r � ri−1.

(2.29)

To conclude this section, we summarize the steps involved in the above described
embedding method using the optimal distributed control as follows.

1. In order to numerically evaluate the curvilinear integrals in (2.26), we calculate the
values of the function (ũ(φij ))(reiθ ) (given by (2.28)) at some points reiθ ∈ ∂� for
each mesh point rieiθj .

2. Using the above calculated values, we evaluate the matrix and the right-hand side of
the algebraic linear system (2.26) by numerical integration. By solving this linear
system, we find the values hij = h(rieiθj ) = f̃ (rieiθj ) at the points rieiθj ∈ D\�.
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3. Using the inverse fast Fourier transform we calculate the Fourier coefficients fn(ri)

of f̃ (rieiθ ), for all ri , i = 1, . . . ,M.

4. Using algorithm 1.1, we find the Fourier coefficients un(ri) of ũ(rieiθ ), for all ri ,
i = 1, . . . ,M.

5. Finally, we determine the values ũ(rieiθj ) of the solution ũ at the mesh points rieiθj ,
using the fast Fourier transform to calculate the values of ũ(rieiθ ), i = 1, . . . ,M, at
θ1, . . . , θN .

3. Numerical examples

Our numerical experiments refer to the solution of the Dirichlet problem (2.1). We
have tested the embedding method given in the previous section for the problem which
has the exact solution

u(x, y) = 1

4

[
1 + tanh(αx)

][
1 + tanh(αy)

]
(3.1)

with α = 7.22. In the numerical examples in [4,16], this same function was the solution
of a problem associated with the equation �u − σu = f , and is a very good example of
a function with large variation in its gradient. The Dirichlet problem (2.1) with this as a
solution has the inhomogeneous term f given by

f (x, y) = −
[

2α

exp(αx) + exp(−αx)

]2

tanh(αx)
[
1 + tanh(αy)

]

−
[

2α

exp(αy) + exp(−αy)

]2

tanh(αy)
[
1 + tanh(αx)

]
. (3.2)

The disc D, the domain of the problem (2.2), has its center at the origin of the coordinate
system. Its radius has been chosen as 0.98, and it is the radius of the circumscribed circle
to the square, with its sides equal to 1.386, which has been used as an embedding domain
in [4,16]. We have considered two types of domains for problem (2.1): a hexagonal
domain as a simply connected domain, and a hexagonal domain with a circular hole as
a doubly connected domain (see figure 1). In both cases, the hexagon has its center at
the origin and the radius of its circumscribed circle is 0.577. The circular hole, for the
second type of domain, has its radius equal to 0.075 and its center at (0.0,−0.25).

The functions f (x, y) and u(x, y), plotted over the entire disc D, are shown in
figure 2. In [16], the authors have suggested that, in order to reduce the computing time,
the extension of the nonhomogeneous term f should be sought not in the whole D\�,
but only in a strip in D\� surrounding �. The values of f̃ outside this strip are kept
fixed. In our numerical experiments, we have taken two extensions of f outside the strip:
with zero values and with values calculated by formula (3.2). In our numerical tests, the
errors in the computed solutions were very similar for the two cases of extension of f .
Also, our numerical tests have shown that the error in the computed solution decreases
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(a) (b)

Figure 1. Domains: (a) hexagonal, (b) hexagonal with a circular hole.

(a) (b)

Figure 2. Functions: (a) f (x, y), (b) u(x, y).

with increase in the size of the strip initially, but after a certain large enough strip size
this error does not decrease any more and in some instances starts increasing with further
increase in the strip size. This comes from the fact that the number of basis functions φij

given in (2.25) must be less than the number of points on ∂� at which we evaluate the
functions ũ(φij ) in (2.27); otherwise the algebraic system (2.26) will be singular, the
functions ũ(φij ) being approximated on ∂� by piecewise linear functions. On the other
hand, a small number of functions φij in comparison with the mesh nodes in � will give
a poor approximation of the solution ũ. Consequently, the error in the computed solution
is sensitive to the width of the strip and a proper choice of this is important in obtaining
good results.
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(a) (b)

Figure 3. Initial function f (x, y): (a) hexagonal domain, (b) hexagonal with a circular hole domain.

(a) (b)

Figure 4. Exact solution u(x, y): (a) hexagonal domain, (b) hexagonal with a circular hole domain.

The strip we have taken in our tests is bounded by the boundaries of the hexagonal
domain � and another hexagon with its center also at the origin of the Cartesian coordi-
nate system (plotted with dashed line in figure 1). As we will see in the following, the
width of this strip will be chosen depending on the total number of mesh nodes in D,
i.e. the finer is the mesh on D the more nodes the strip contains. The initial function f̃

obtained by the extension of f with formula (3.2) outside the strip (i.e. in the domain
bounded by the dashed boundary of the strip and the circle, in figure 1) is shown for each
of the two domains in figure 3. This function has zero values in the strip in the case of
the simply connected domain (figure 1(a)), and it has zero values in the strip and in the
hole in the case of the doubly connected domain (figure 1(b)). Also, the solution u(x, y)

given in equation (3.1) is shown for each of the two domains � in figure 4.
In figure 5 we have plotted the optimal nonhomogeneous term f̃ which we have

obtained for problem (2.2) starting from the above initial extension of f outside the
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(a) (b)

Figure 5. Optimal f̃ (x, y): (a) hexagonal domain, (b) hexagonal with a circular hole domain.

(a) (b)

Figure 6. Computed ũ(x, y): (a) hexagonal domain, (b) hexagonal with a circular hole domain.

strip. The values of the extended function f̃ in the disc with a circular hole, in the case
of the doubly connected domain, have been computed in such a way that they satisfy
the optimality condition (2.22), like those in the strip. In figure 6 we have plotted the
solution ũ of problem (2.2) corresponding to the optimal distributed control f̃ . We
see in figure 5 that the nonhomogeneous term f̃ has large oscillations within the strip.
Naturally, these oscillations affect the solution ũ outside the domain �, but this influence
is very small, as seen in figure 6, in these computations where we have used 32 segments
in radial direction, 64 terms in the Fourier expansions, and a strip size of one δr where
δr is the discretization step size on the radius. As we shall see in the tables below the
following: the solution ũ of the problem (2.2) approximates very well the boundary
condition g and the solution u of problem (2.1), even if these oscillations are not small.
As we have already mentioned, the errors between the exact solution and the computed
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Table 1
Errors inside the hexagonal domain.

δr\N 8 16 32 64

0.98/8 0.224E+00 0.911E−01 0.122E−01 0.105E−01
0.98/16 0.126E+00 0.383E−01 0.532E−02 0.316E−02
0.98/32 0.103E+00 0.246E−01 0.439E−02 0.814E−03
0.98/64 0.105E+00 0.283E−01 0.129E−02 0.205E−03

Table 2
Errors on the boundary of the hexagonal domain.

δr\N 8 16 32 64

0.98/8 0.125E+00 0.284E−01 0.134E−02 0.390E−04
0.98/16 0.125E+00 0.283E−01 0.130E−02 0.124E−05
0.98/32 0.112E+00 0.288E−01 0.644E−02 0.144E−05
0.98/64 0.109E+00 0.261E−01 0.108E−02 0.115E−05

Table 3
Errors inside the hexagonal domain with a circular hole.

δr\N 8 16 32 64

0.98/8 0.224E+00 0.910E−01 0.122E−01 0.105E−01
0.98/16 0.126E+00 0.383E−01 0.533E−02 0.316E−02
0.98/32 0.103E+00 0.246E−01 0.439E−02 0.821E−03
0.98/64 0.105E+00 0.283E−01 0.295E−02 0.213E−03

one are very similar for the two extensions of f outside the strip. For this reason, we
give here only the tables corresponding to the extension of f with zero.

Tables 1 and 2 show absolute errors between the exact solution given in (3.1) and
that obtained as an optimal solution of problem (2.22) in the hexagonal domain for sev-
eral choices of the mesh sizes. The maximum value of this error calculated over all the
mesh nodes of the domain � is tabulated in table 1 for each set of mesh sizes. The
number of terms in the Fourier series expansion we have used to calculate the solution
is denoted by N . In radial direction we have considered a regular mesh and we have de-
noted the distance between two consecutive mesh points by δr . The curvilinear integrals
giving the matrix and the right hand side of the algebraic linear system (2.26) have been
calculated by the trapezoidal rule using a regular discretization of the boundary ∂�. The
tests were made with 540 points on ∂�. The strip has width 3δr for the tests carried out
with either N = 64 or δr = 0.98/64, and 1δr for the other ones. The maximum over all
the points on the hexagonal boundary of the absolute errors for several values of N and
δr is tabulated in table 2.

Tables 3 and 4 have been obtained for the case of the hexagonal domain with a
circular hole. The tests were made with 540 and 72 nodes on the hexagonal and circular
boundary, respectively.
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Table 4
Errors on the boundary of the hexagonal domain with a circular hole.

δr\N 8 16 32 64

0.98/8 0.125E+00 0.284E−01 0.226E−02 0.223E−02
0.98/16 0.125E+00 0.283E−01 0.130E−02 0.497E−04
0.98/32 0.112E+00 0.288E−01 0.644E−02 0.144E−05
0.98/64 0.109E+00 0.261E−01 0.108E−02 0.127E−05

The tabulated data shows that the errors decrease monotonically as the number of
nodes, N , in the circumferential direction increases for each radial mesh size δr fixed. It
also shows that with N fixed, the errors also decrease monotonically as the mesh size δr

decreases for most values of N , but for some values of fixed N , the errors decrease but
not monotonically as the mesh size δr decreases. There are few instances of increase in
the errors as the mesh size δr decreases with N fixed, but such increase is local in the
sense that with further increase, as noticed in some of the tables, the errors start eventu-
ally decreasing. Thus, the method converges with respect to both N and δr , even if the
error is not strictly decreasing as δr goes to zero for fixed N . A reasonable explanation
for this local aberration in convergence is that the error is very sensitive to the width of
the strip whose size which depends on δr also decreases with decreasing values of δr .

An appropriate data to study for the purpose of comparing convergence of this
method with that in [4] is the main diagonal entries of each of the tables which show that
the errors decrease as both mesh sizes goes to zero with their ratio fixed. The similar
convergence study was done in [4] where the embedding domain was rectangular and
the numerical tests were made for mesh 10 × 10, 20 × 20, . . . , 100 × 100 in order to
retain the computational efficiency of the method. Thus, we see that both the methods
converge: one in this paper and the one in [4].

Furthermore, the tabulated data shows that the error inside the domain, in most
instances, is relatively more sensitive to the radial grid size δr than the error on the
boundary. The bottom few entries in the last column of tables 2 and 4 show that the
boundary data can be approximately satisfied for relatively modest number of grids (see,
for example, the error corresponding to 64 × 64 mesh size, i.e. the last entry of the
last column in these tables), and the corresponding numerical solution is a reasonably
accurate one up to few decimal places. In fact, the tabulated data shows that the solution
in the domain is accurate up to three decimal digits when the boundary condition is
satisfied accurately up to five decimal digits.

The tabulated data also shows the extent of sensitivity of the errors to the simply
and doubly connected domains. In fact, comparison of the errors obtained in the two
types of domains shows that these are approximately of the same order for the same grid
size. This observation perhaps can be taken as numerical evidence of the fact that the
convergence of the method perhaps does not depend on whether the domain is simply or
doubly connected.

Finally, these tables show that the error is small for relatively few nodes of the
mesh. Comparison of these errors with the errors obtained for the similar numerical ex-
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ample given in [4], where the method uses a square as an embedding domain, shows that
the numerical solutions obtained here in the interior of the domains are more accurate
by at least one significant digit. For example, tabulated data in tables 1 and 3 shows
that the errors in the interior of the domains obtained on a 64 × 64 grid are about one
tenth of the one in [4, table 3] obtained on a 80 × 80 grid. The errors on the boundary
in tables 2 and 4 obtained on a 64 × 64 grid are better than two-tenths of the one in [4,
table 1] obtained on a 80 × 80 grid. Thus the method is more accurate on this specific
test case. As another test case consider, for example, the tabulated data in tables 1 and 3
which shows that the errors in the interior of the domains obtained on a 32 × 32 grid are
about half of the one in [4, table 3] obtained on a 50 × 50 grid. However, the errors on
the boundary in tables 2 and 4 obtained on a 32 × 32 grid are about six times larger than
the one in [4, table 1] on a 50 × 50 grid. This is more of an exception than the rule. The
errors obtained on 8 × 8 and 16 × 16 grids are of the same order as those in [4, table 1].
We can conclude from our test cases that this method is more accurate for solutions in
the interior of domains and also for the solutions on the boundary except for grids with
a relatively small number of points. A possible explanation would be that we have taken
720 interpolation points on the boundary of the hexagonal domain for the example in
[4], and only 540 for the example in this paper.

It is also worth noting that the error in the numerical solution for the interior of
the domains decreases with increase in grid size at a faster rate with this method than
the one proposed in [4]. This is pretty easy to recognize by inspecting the data along
the diagonal entries of tables 1 and 3, and similar data (second column under errmax) in
[4, table 3]. Therefore, in general, we can conclude that the method presented in this
paper is more accurate. An explanation, among others perhaps, of this observation is as
follows. In the method presented in [4], the values of the basis functions ũ(eij ) at the
nodes on ∂� are calculated by interpolation using their numerically computed values at
the nodes of two-dimensional mesh. In the method present here, these values are exactly
calculated as discussed in the text which perhaps contributes to the improved accuracy
of the present method.

A theoretical convergence rate of these methods would be of interest but this study
falls outside the scope of this paper.

4. Conclusions

In this paper we have proposed an embedding method based on an optimal distrib-
uted control and a fast algorithm for solving elliptic problems in a disc. The method
proposed here differs from the one proposed in [4] in the choice of the embedding do-
mains: this method here uses discs as embedding domains where as the method in [4]
uses rectangles as embedding domains. In both methods, however, the solution of the
inhomogeneous problem defined in the embedding domain is required on the boundary
of the interior arbitrary domain so that the boundary integrals involving these solutions
(the integrals in (2.26), for the method described in this paper) can be evaluated. This
calls for use of some fast method that can evaluate the solution on the boundary of the
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arbitrary domain efficiently and accurately. These values of the solution on the bound-
ary nodes of the interior domain are obtained by interpolating the mesh nodal values of
the solution on the rectangular domain in [4], but by using exact formula (2.28) in the
method proposed here. This can be one of the reasons why the errors obtained in the
present method using an embedding disc are better than those obtained in [4] with rec-
tangular embedding domains. Moreover, the fast algorithm described in [3] (see also [7])
is ideally suited for the calculation of the Fourier coefficients in (2.4) (see section 2.1)
and hence has been used here.

Using this method one can solve elliptic problems having complicated shaped do-
mains which may be either simply or multiply connected. Since our fast algorithm
(see [3,7]) can be applied for almost all types of second order elliptic nonhomogeneous
equations in a disc [3], this embedding method may be used to solve a wider class of
problems in arbitrary domains. We have found the optimal extension of the nonhomo-
geneous term f by solving a linear algebraic system, as may be seen in section 2. The
construction of this linear system needs the evaluation of some algebraic expressions
at the points of a one-dimensional mesh along the boundary of the complicated shaped
domain. These algebraic expressions, being completely independent, can be simulta-
neously solved on parallel machines. Once the optimal extension of f is obtained, we
apply over the entire disc the fast algorithm described in section 2 to calculate the solu-
tion u of the problem (2.1). As we have seen in section 3, our numerical results for both,
simply and doubly connected, domains show a high accuracy of the proposed method.
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