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Singular integral transforms and fast numerical algorithms
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Fast algorithms for the accurate evaluation of some singular integral operators that arise
in the context of solving certain partial differential equations within the unit circle in the
complex plane are presented. These algorithms are generalizations and extensions of a fast
algorithm of Daripa [11]. They are based on some recursive relations in Fourier space and
the FFT (Fast Fourier Transform), and have theoretical computational complexity of the
order O(logN) per point, where N2 is the total number of grid points. An application of
these algorithms to quasiconformal mappings of doubly connected domains onto annuli is
presented in a follow-up paper.
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1. Introduction

Many problems in applied mathematics require the evaluation of the singular
integral transforms

Tmh(σ) = − 1
π

∫ ∫
B(0;1)

h(ζ)
(ζ − σ)m

dξ dη, ζ = ξ + iη, (1.1)

of a complex valued function h defined on B(0; 1) = {z: |z| < 1}, for a suitable
finite positive integer m so that the transform exists (see appendix B). For example,
the general solution of the compressible fluid flow equations

uσ̄ = λuσ ≡ h(σ) (1.2)

in the hodograph plane is given by

u(σ) = T1h(σ) + g(σ) (1.3)

in the subcritical regime (see Daripa [9]). In (1.2) λ is a Mach number dependent
function (see [9]) and g(σ) in (1.3) is a suitable analytic function determined by the
boundary conditions. Unless otherwise specified, here and below h(σ) depends on the
solution u and its generalized derivatives, σ̄, etc. This should be clear from the context
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even though such dependency will almost always be suppressed from the notation as
in (1.2).

The function h(σ) in (1.2) depends on the generalized derivative uσ(σ) given by

uσ(σ) = T2h(σ) + gσ(σ), (1.4)

which follows from (1.3) (see [1,2]). Therefore, the numerical solution of equation (1.2)
using the representation (1.3) requires evaluation of Tmh(σ) for m = 1, 2. Evaluation
of the operator Tmh(σ) for m > 2 may be necessary if one requires to evaluate higher
order derivatives of the function u, which is often the case in certain problems. In
such cases (m > 2), existence of Tmh(σ) can be guaranteed if h(σ) is an analytic
function (see appendix B), otherwise it is a hypersingular integral. The existence of
such a hypersingular integral has to be understood in some appropriate finite part sense,
which we do not address in this paper.

The equation (1.2) is known as the Beltrami equation and occurs in the context of
other applied problems, most of which can be viewed as problems in quasiconformal
mappings satisfying nonlinear partial differential equations of the following type [1,3–
7,10,12,15,16]

uσ̄ = h(σ,u,uσ). (1.5)

The Beltrami equation (1.2) is a special case of this equation. Other examples where
integral operators (1.1) arise include problems in partial differential equations [5,6,8,
11,18–20], fluid mechanics [3,9] and electrostatics [17], to name just a few.

The integral equation approach of numerically solving equation (1.5) using the
representation (1.3) requires computing the values of the integrals T1h(σ) and T2h(σ)
at the discretization points. There are two main difficulties in the straightforward com-
putation of these integrals using quadrature rules. Firstly, straightforward computation
of each of these integrals requires an operation count of the order O(N2) per point.
This gives a net operation count of O(N4) for N2 grid points which is computationally
very intensive for large N . Secondly, this method also gives poor accuracy due to
the presence of the singularities in the integrand. The conventional desingularization
technique [9] for evaluating these integrals is not effective in improving the accuracy
because the function h(σ) in (1.1) need not be an analytic function.

In Daripa [11], an efficient and accurate algorithm for rapid evaluation of the
singular integral T1h(σ) has been presented. Our goal in this paper is to generalize
that algorithm providing all details of the theory to rapidly and accurately evaluate
Tmh(σ) for the following cases where the operator is known to exist (see appendix B).

(i) The complex valued function h(σ) in (1.1) is Hölder continuous with exponent
γ, 0 < γ < 1. In this case, T1h(σ) and T2h(σ) are defined in the unit disk as a
Cauchy principal value (see appendix B). The fast algorithms derived in this paper
include the fast algorithm of Daripa presented for T1h(σ) in [11] as a special case.
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(ii) The complex valued function h(σ) is analytic in the unit disk. In this case, Tmh(σ)
is defined in the unit disk for any finite positive integer m as a Cauchy principal
value, and can be evaluated by the fast algorithm derived in this paper.

The method presented takes into account the convolution nature of these integrals
and some of the properties of such convolution integrals in Fourier space. This process
leads to a recursive algorithm in Fourier space that divides the entire domain into a
collection of annular regions and expands the integral in Fourier series with radius
dependent Fourier coefficients. A set of exact recursive relations are obtained which are
then used to produce the Fourier coefficients of the integral. These recursive relations
involve appropriate scaling of one-dimensional integrals in annular regions, which
significantly improves the computational complexity. The desired integrals at all N2

grid points are then easily obtained from the Fourier coefficients by the FFT (fast
Fourier transform). The process of evaluation of these integrals has thus been optimized
in this paper giving a net operation count of the order O(lnN ) per point. For N = 128,
this means a reduction of over two thousand times. It is worth emphasizing that the
asymptotic computational complexity is independent of the number of integrals Tmh(σ)
whose values need to computed at each of the grid points. In fact, computing both
integrals T1h(σ) and T2h(σ) costs little more than computing just T1h(σ). Moreover,
this algorithm has the added advantage of working in place, meaning that no additional
memory storage is required beyond that of the initial data.

The effective use of representations (1.3) and (1.4) in solving (1.2) for generating
quasiconformal mappings and for the design of subcritical airfoils has been demon-
strated by Daripa (see [9,11,12,14]). The computational complexity of the various
numerical algorithms used there can be further improved by the use of the fast algo-
rithms presented here. Such efforts are currently in progress and will be reported in
the future (see [14]). At this point, it is worth noting that this is an improved version
of an unpublished paper of Daripa [13] which treats the case (i) mentioned above.

This paper is laid out as follows. In section 2 we present the mathematical foun-
dation of fast algorithms for rapid evaluation of Tmh(σ) within the unit circle. In
section 3, the formal description of the fast algorithms is presented. In section 4,
the algorithms are exemplified and validated. Finally, we summarize and conclude in
section 5. In appendix A, we provide four propositions used in proving the lemmas of
section 2 and in appendix B we show the existence of the integrals by estimating their
upper bounds.

2. Evaluation of the Tm-operator

2.1. Theory for the evaluation of the Tm-operator

In this section, we present the theory needed to construct an efficient algorithm
for the evaluation of the Tm-operator which is presented in section 3. Existence of
these integrals is discussed in appendix B. For our purposes below, we let r > ε > 0,
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δ > 0 and σ = reiα. We also introduce the following notations used in this section
and in the appendices A and B.

B(σ; δ) =
{
z: |z − σ| < δ

}
, B(σ; δ) =

{
z: |z − σ| 6 δ

}
,

0Ωr =B(0; r), r−εΩr+ε = B(0; r + ε)−B(0; r − ε),

r−εΩ
∗
r+ε = r−εΩr+ε −B(σ; ε),

and

rΩ1 = B(0; 1) −B(0; r).

Below we present the main theorem and its proof. The theorem treats the cases (i)
and (ii) mentioned in section 1.

Theorem 2.1. If Tmh(σ) exists in the unit disk as a Cauchy principal value, and
h(reiα) =

∑∞
n=−∞ hn(r)einα, then the nth Fourier series coefficient Sn,m(r) of

Tmh(reiα) can be written as

Sn,m(r) =


Cn,m(r) +Bn,m(r), r 6= 0,
0, r = 0 and n 6= 0,
S0,m(0), r = 0 and n = 0,

(2.1)

where

Cn,m(r) =



2(−1)m+1

rm−1

(
−n− 1
m− 1

)∫ r

0

(
r

ρ

)m+n−1

hm+n(ρ) dρ, n 6 −m,

0, −m < n < 0,

− 2
rm−1

(
m+ n− 1
m− 1

)∫ 1

r

(
r

ρ

)m+n−1

hm+n(ρ) dρ, n > 0,

(2.2)
and Bn,m(r) and S0,m(0) are defined as follows.

Case 1. If h(σ) is Hölder continuous in the unit disk with exponent γ, 0 < γ < 1,
and m = 1 or 2, then

S0,m(0) =−2lim
ε→0

∫ 1

ε
ρ1−mhm(ρ) dρ, (2.3)

Bn,m(r) =

{
0, m = 1,
hn+2(r), m = 2.

(2.4)

Case 2. If h(σ) is analytic in the unit disk and m is a finite positive integer, then

S0,m(0) =−hm(r = 1), (2.5)

Bn,1(r) = 0, (2.6)
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and for m > 2

Bn,m(r) =


0, n < −1, n 6= −m,
(−1)mr2−mh0(r), n = −m,(
m+ n− 1
m− 2

)
r2−mhm+n(r), n > −1.

(2.7)

The proof of this theorem is based on evaluating the integral Tmh(σ) in a domain
B(0, 1) − B(σ; ε) with ε → 0. Noting that B(0, 1) − B(σ; ε) = 0Ωr−ε ∪ r−εΩ∗r+ε ∪
r+εΩ1, the integral in domain B(0, 1) − B(σ, ε) is obtained by integration in these
three domains. The lemmas below deal with the integration over the domain r−εΩ∗r+ε
except for lemmas 2.5 and 2.7 which deal with the situation when σ = 0 in (1.1).

The lemmas 2.1–2.5 below are used for case 1 and lemmas 2.6 and 2.7 are used
for case 2. In particular, lemmas 2.1–2.4 are used for evaluating the integral

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(σ)
ζ − σ dξ dη

for case 1 and lemma 2.6 is used for evaluating the same integral for case 2. Lemma 2.5
is used for obtaining Sn,m(0) for case 1 (see equations (2.1) and (2.3)) and lemma 2.7
is used for obtaining S0,m(0) for case 2 (equation (2.5)), respectively.

Lemma 2.1. If h(σ) is Hölder continuous with exponent γ, 0 < γ < 1, and constant
K, then

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
ζ − σ dξ dη = 0. (2.8)

Proof. It follows from proposition 1 in appendix A that

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(σ)
ζ − σ dξ dη = 0. (2.9)

Therefore,∣∣∣∣limε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
ζ − σ dξ dη

∣∣∣∣
=

∣∣∣∣ lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)− h(σ)
ζ − σ dξ dη

∣∣∣∣ 6 lim
ε→0

∫ ∫
r−εΩ∗r+ε

|h(ζ)− h(σ)|
|ζ − σ| dξ dη

6 K lim
ε→0

∫ ∫
r−εΩ∗r+ε

|ζ − σ|γ−1 dξ dη 6 K lim
ε→0

εγ−1{π(r + ε)2 − π(r − ε)2 − πε2}
= 0. (2.10)

Lemma 2.1 follows from (2.10). �
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Lemma 2.2. If h(σ) is Hölder continuous with exponent γ, 0 < γ < 1, and constant
K, then

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)2 dξ dη = lim

ε→0

∫ ∫
r−εΩ∗r+ε

h(σ)
(ζ − σ)2 dξ dη. (2.11)

Proof. We have∣∣∣∣ limε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)2 dξ dη − lim

ε→0

∫ ∫
r−εΩ∗r+ε

h(σ)
(ζ − σ)2 dξ dη

∣∣∣∣
6 lim

ε→0

∫ ∫
r−εΩ∗r+ε

|h(ζ)− h(σ)|
|ζ − σ|2 dξ dη

6 K lim
ε→0

∫ ∫
r−εΩ∗r+ε

|ζ − σ|γ−2 dξ dη = 0. (2.12)

We have used proposition 2 from appendix A in arriving at the last inequality
above. Lemma 2.2 follows from (2.12). �

Lemma 2.3. If h(r eiα) =
∑∞

n=−∞ hn(r) einα, then

− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(σ)
(ζ − σ)2 dξ dη =

∞∑
n=−∞

hn+2(r) einα, σ 6= 0. (2.13)

Proof. Using proposition 1 from appendix A, we have

− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(σ)
(ζ − σ)2 dξ dη =

h(σ)r2

σ2 =
∞∑

n=−∞
hn+2(r) einα. (2.14)

�

Lemma 2.4. If h(σ) is Hölder continuous with exponent γ, 0 < γ < 1, and constant
K, and

h
(
r eiα) =

∞∑
n=−∞

hn(r) einα,

then

− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)2 dξ dη =

∞∑
n=−∞

hn+2(r) einα, σ 6= 0. (2.15)

Proof. The lemma follows from lemmas 2.2 and 2.3. �
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Lemma 2.5. If h(r eiα) =
∑∞

n=−∞ hn(r) einα, then

Sn,m(0) = 0, n 6= 0, and S0,m(0) = −2lim
ε→0

∫ 1

ε
ρ1−mhm(ρ) dρ. (2.16)

Proof. Since Tmh(0) is a constant (see equation (1.1)), it follows that all of its Fourier
coefficients are zero except for S0,m(0), which is equal to Tmh(0) and can be evaluated
as follows:

S0,m(0) =− 1
π

lim
ε→0

∫ ∫
B(0;1)−B(0;ε)

h(ζ)
ζm

dξ dη

=− 1
π

lim
ε→0

∫ ∫
B(0;1)−B(0;ε)

h(ρ eiθ)
ρmeimθ ρ dθ dρ

=− 1
π

lim
ε→0

∫ 1

ε
ρ1−m

∞∑
n=−∞

hn(ρ)

(∫ 2π

0
ei(n−m)θ dθ

)
dρ

=−2lim
ε→0

∫ 1

ε
ρ1−mhm(ρ) dρ. (2.17)

�

Lemma 2.6. If h(σ) is an analytic function in the neighborhood of a unit disk, then
for m > 2 and |σ| 6= 0

− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)m

dξ dη =
∞∑

n=−∞
Bn,m(r) einα, (2.18)

where

Bn,m(r) =


0, n < −1,n 6= −m,
(−1)mr2−mh0(r), n = −m,(
m+ n− 1
m− 2

)
r2−mhm+n(r), n > −1.

(2.19)

Proof. Using Green’s theorem, we get∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)m

dξ dη

=
1
2i

∫
r−ε∂Ω∗r+ε

h(ζ)ζ̄
(ζ − σ)m

dζ

=
1
2i

{∫
∂B(0;r+ε)

h(ζ)ζ̄
(ζ − σ)m

dζ −
∫
∂B(0;r−ε)

h(ζ)ζ̄
(ζ − σ)m

dζ
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−
∫
∂B(σ;ε)

h(ζ)ζ̄
(ζ − σ)m

dζ

}
=

1
2i

{
(r + ε)2

∫
∂B(0;r+ε)

h(ζ)
ζ(ζ − σ)m

dζ − (r − ε)2
∫
∂B(0;r−ε)

h(ζ)
ζ(ζ − σ)m

dζ

−
∫ 2π

0

h(σ + ε eiθ)(σ̄ + ε e−iθ)
εmeimθ iεeiθ dθ

}
=

1
2i

{
2πi(r + ε)2

[
h(0)

(−σ)m
+

1
(m− 1)!

dm−1

dζm−1

(
h(ζ)
ζ

)∣∣∣∣
ζ=σ

]

− 2πi(r − ε)2 h(0)
(−σ)m

− i
εm−1

∫ 2π

0

∞∑
s=0

hs(r)
rs

(
σ + ε eiθ)s

×
(
σ̄ e−(m−1)iθ + ε e−imθ) dθ

}
=

1
2i

{
2πi(r + ε)2

[
h(0)

(−σ)m
+

1
(m− 1)!

dm−1

dζm−1

(
h(ζ)
ζ

)∣∣∣∣
ζ=σ

]

− 2πi(r − ε)2 h(0)
(−σ)m

− i
εm−1

∞∑
s=m−1

hs(r)
rs

[
2πσ̄

(
s

m− 1

)
σs−m+1εm−1

]

− i
εm−1

∞∑
s=m

hs(r)
rs

[
2π

(
s

m

)
σs−mεm+1

]}
. (2.20)

Therefore,

− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)m

dξ dη

= − 1
2πi

{
2πir2

[
h(0)

(−σ)m
+

1
(m− 1)!

dm−1

dζm−1

(
h(ζ)
ζ

)∣∣∣∣
ζ=σ

]

− 2πir2 h(0)
(−σ)m

− 2πiσ̄
∞∑

s=m−1

hs(r)
rs

(
s

m− 1

)
σs−m+1

}

= −
{

r2

(m− 1)!
dm−1

dζm−1

(
h(ζ)
ζ

)∣∣∣∣
ζ=σ

− σ̄
∞∑

s=m−1

hs(r)
rs

(
s

m− 1

)
σs−m+1

}
. (2.21)



P. Daripa, D. Mashat / Fast algorithms 141

Using proposition 3 from appendix A in (2.21), the Fourier coefficients Bn,m(r) of the
integral operator on the left-hand side of (2.21), as defined in (2.18), are then given by

Bn,m(r) =− 1
2π

∫ 2π

0
e−inα

{
r2

(m− 1)!

∞∑
s=0

hs(r)
rm

(s− 1)(s− 2) · · ·

×
(
s− (m− 1)

)
ei(s−m)α −

∞∑
s=m−1

hs(r)
rm−2

(
s

m− 1

)
ei(s−m)α

}
dα

=− 1
2π

{
r2

(m− 1)!

∞∑
s=0

hs(r)
rm

(s− 1)(s− 2) · · ·

×
(
s− (m− 1)

) ∫ 2π

0
e−inα ei(s−m)α dα

−
∞∑

s=m−1

hs(r)
rm−2

(
s

m− 1

)∫ 2π

0
e−inα ei(s−m)α dα

}

=



− 1
2π

[
2πr2

(m− 1)!
hm+n(r)
rm

(m+ n− 1)(m+ n− 2) · · ·

×
(
(m+ n)− (m− 1)

)
− 2πhm+n(r)

rm−2

(
m+ n

m− 1

)]
, n > −1,

0, n < −1 and
n 6= −m,

(−1)mr2−mh0(r), n = −m,

=


(
m+ n− 1
m− 2

)
r2−mhn+m(r), n > −1,

0, n < −1 and n 6= m,
(−1)mr2−mh0(r), n = −m.

(2.22)

�

Lemma 2.7. If h(σ) is an analytic function in the neighborhood of the unit disk, then
the Fourier coefficient S0,m(0) = Tmh(0) is given by

S0,m(0) = −hm(1). (2.23)

Proof. Using Green’s theorem, the Cauchy principal value of Tmh(σ = 0) (see equa-
tion (1.1)) can be evaluated as follows:

Tmh(0) =− 1
π

lim
ε→0

∫ ∫
B(0;1)−B(0;ε)

h(ζ)
ζm

dξ dη

=− 1
2πi

lim
ε→0

{∫
∂B(0;1)

h(ζ)ζ̄
ζm

dζ −
∫
∂B(0;ε)

h(ζ)ζ̄
ζm

dζ

}
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=− 1
2πi

lim
ε→0

{∫
∂B(0;1)

h(ζ)
ζm+1 dζ −

∫ 2π

0

h(ε eiθ)ε e−iθ iεeiθ

εm eimθ dθ

}
=− 1

2πi
lim
ε→0

{
2πi
m!

dm

dζm
h(ζ)

∣∣∣∣
ζ=0
− i
εm−2

∫ 2π

0
h
(
ε eiθ) e−imθ dθ

}

=− 1
2πi

lim
ε→0

{
2πihm(1)− i

εm−2

∞∑
n=0

∫ 2π

0
hn(1)εnei(n−m)θ dθ

}

=− 1
2πi

lim
ε→0

{
2πihm(1)− 2πi

εm−2hm(1)εm
}

=−hm(1). (2.24)

�

Now we have all the lemmas necessary to prove theorem 2.1 which follows.

Proof of theorem 2.1. We rewrite Tmh(σ) as a Cauchy principal value and divide the
domain of integration into three subdomains for the purpose of integration:

Tmh(σ) =− 1
π

lim
ε→0

∫ ∫
B(0;1)−B(σ;ε)

h(ζ)
(ζ − σ)m

dξ dη

=− 1
π

lim
ε→0

{∫ ∫
0Ωr−ε

h(ζ)
(ζ − σ)m

dξ dη +

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)m

dξ dη

+

∫ ∫
r+εΩ1

h(ζ)
(ζ − σ)m

dξ dη

}
. (2.25)

The Fourier series coefficient Sn,m(r) of Tmh(r eiα) is given by

Sn,m(r) =− 1
2π2

∫ 2π

0
e−inα lim

ε→0

{∫ ∫
0Ωr−ε

h(ζ)
(ζ − σ)m

dξ dη

+

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)m

dξ dη +

∫ ∫
r+εΩ1

h(ζ)
(ζ − σ)m

dξ dη

}
dα

=− 1
2π2

{∫ ∫
0Ωr

h(ζ)
∫ 2π

0

e−inα

(ζ − σ)m
dα dξ dη

+

∫ ∫
rΩ1

h(ζ)
∫ 2π

0

e−inα

(ζ − σ)m
dα dξ dη

}
+

1
2π

∫ 2π

0

{
− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)m

dξ dη

}
e−inα dα
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=− 1
2π2

{∫ ∫
0Ωr

h(ζ)Qn,m(r, ζ) dξ dη

+

∫ ∫
rΩ1

h(ζ)Qn,m(r, ζ) dξ dη

}
+Bn,m(r), (2.26)

where

Qn,m(r, ζ) =

∫ 2π

0

e−inα

(ζ − σ)m
dα, (2.27)

and Bn,m(r) is the nth Fourier coefficient of

− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

h(ζ)
(ζ − σ)m

dξ dη

as defined earlier in the text. From proposition 4 in appendix A we have

Qn,m(r, ζ) =



2(−1)mπrn
(
−n− 1
m− 1

)
ζ−(m+n), n 6 −m, |ζ| < r,

0, n > −m, |ζ| < r,
0, n < 0, |ζ| > r,

2πrn
(
m+ n− 1
m− 1

)
ζ−(m+n), n > 0, |ζ| > r.

(2.28)

It is convenient to rewrite (2.26) as

Sn,m(r) = Cn,m(r) +Bn,m(r) (2.29)

with Cn,m(r) given by

Cn,m(r) =− 1
2π2

{∫ ∫
0Ωr

h(ζ)Qn,m(r, ζ) dξ dη +

∫ ∫
rΩ1

h(ζ)Qn,m(r, ζ) dξ dη

}

=



(−1)m+1

π
rn
(
−n− 1
m− 1

)∫ ∫
0Ωr

h(ζ)ζ−(m+n) dξ dη, n 6 m,

0, −m < n < 0,

−r
n

π

(
m+ n− 1
m− 1

)∫ ∫
rΩ1

h(ζ)ζ−(m+n) dξ dη, n > 0,

=



2(−1)m+1

rm−1

(
−n− 1
m− 1

)∫ r

0

(
r

ρ

)m+n−1

hm+n(ρ) dρ, n 6 −m,

0, −m < n < 0,

− 2
rm−1

(
m+ n− 1
m− 1

)∫ 1

r

(
r

ρ

)m+n−1

hm+n(ρ) dρ, n > 0.

(2.30)

Theorem (2.1) follows from (2.29), (2.30) and lemmas (2.1)–(2.7).
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Use of theorem 2.1 in constructing a fast algorithm to evaluate the integral Tmh(σ)
requires the following recursive relations which follow from the theorem itself.

2.2. Recursive relations

Corollary 2.1. It follows from (2.2) that Cn,m(1) = 0 for n > 0, and Cn,m(0) = 0 for
n 6 −m. We repeat from (2.2) that Cn,m(r) = 0 for −m < n < 0 for all values of r
in the domain.

Corollary 2.2. If rj > ri and

Ci,jn,m =


2(−1)m+1

rm−1
j

(
−n− 1
m− 1

)∫ rj

ri

(
rj
ρ

)m+n−1

hm+n(ρ) dρ, n 6 −m,

2

rm−1
i

(
m+ n− 1
m− 1

)∫ rj

ri

(
ri
ρ

)m+n−1

hm+n(ρ) dρ, n > 0,

(2.31)

then

Cn,m(rj) =

(
rj
ri

)n
Cn,m(ri) + Ci,jn,m, n 6 −m, (2.32)

Cn,m(ri) =

(
ri
rj

)n
Cn,m(rj)− Ci,jn,m, n > 0. (2.33)

Proof. The proof is straightforward. The corollary 2.2 follows directly from simple
manipulation of (2.2) and using (2.31). �

Corollary 2.3. Let 0 = r1 < r2 < · · · < rM = 1, then

Cn,m(rl) =


∑l

i=2

(
rl
ri

)n
Ci−1,i
n,m for n 6 −m and l = 2, . . . ,M ,

−
∑M−1

i=l

(
rl
ri

)n
Ci,i+1
n,m for n > 0 and l = 1, . . . ,M − 1.

(2.34)

Proof. The proof is straightforward. Repeated application of (2.32) and Cn,m(0) = 0
for n 6 −m (see corollary 2.1) gives the first part of the corollary. Similarly, repeated
application of (2.33) and Cn,m(1) = 0 for n > 0 (see corollary 2.1) gives the second
part of the corollary. �

3. Formal description of the fast algorithm

Recall that the unit disk B(0; 1) is discretized using N ×M lattice points with
N equidistant points in the circular direction and M equidistant points in the radial
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direction. The following is a formal description of the fast algorithm useful for pro-
gramming purposes.

Algorithm 3.1.
Input: m > 1, M , N and h(rle2πik/N ), l ∈ [1,M ], k ∈ [1,N ].
Output: Tmh(rle2πik/N ), l ∈ [1,M ], k ∈ [1,N ].
Step 1. Set K = N/8, r1 = 0, and rM = 1.
Step 2. Compute the Fourier coefficients hn(rl), ∀ l ∈ [1,M ] and n ∈ [−K +m,K],

from known values of h(rle2πik/N ), k = 1, 2, . . . ,N , using the FFT.
Step 3. Compute Ci,i+1

n,m , ∀i ∈ [1,M − 1] and n ∈ {[−K,−m] ∪ [0,K −m]}, using
equation (2.31).

Step 4.
Note: Compute Cn,m(rl), ∀l ∈ [1,M ] and n ∈ [−K,K−m], using corollaries 2.1–2.3.

set Cn,m(r1) = 0 ∀n ∈ [−K,−m]
do n = −K, . . . ,−m

do l = 2, . . . ,M

Cn,m(rl) =

(
rl
rl−1

)n
Cn,m(rl−1) + C l−1,l

n,m

enddo
enddo
set Cn,m(rM ) = 0 ∀n ∈ [0,K −m]
do n = 0, 1, . . . ,K −m

do l = M − 1, . . . , 1

Cn,m(rl) =

(
rl
rl+1

)n
Cn,m(rl+1)− C l,l+1

n,m

enddo
enddo
If m > 1, then
do n = −m+ 1, . . . ,−1

do l = 1, . . . ,M

Cn,m(rl) = 0

enddo
enddo
end if

Step 5.
Note: Compute Bn,m(rl), ∀l ∈ [2,M ] and n ∈ [−K,K −m], using equations (2.4),
(2.6) and (2.7).

If m = 1, then
set Bn,m(rl) = 0 ∀l ∈ [2,M ] and n ∈ [−K,K −m]

else
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Compute Bn,m(rl), ∀l ∈ [2,M ] and n ∈ [−K,K −m], using (2.4) for case 1
and (2.6) for case 2 (see theorem 2.1).

end if
Step 6.
Note: Compute the Fourier coefficients Sn,m(rl), ∀l ∈ [2,M ] and n ∈ [−K,K −m],
using equation (2.1).

do n = −K, . . . ,K −m
do l = 2, . . . ,M

Sn,m(rl) = Bn,m(rl) + Cn,m(rl)

enddo
enddo
Compute Sn,m(0), n ∈ [−K,K −m] from (2.1) using (2.3) for case 1 and (2.5)
for case 2.

Step 7. Compute

Tmh
(
rle

2πik/N) =
K−m∑
n=−K

Sn,m(rl) e2πikn/N , ∀l ∈ [1,M ] and k ∈ [1,N ].

Remark 3.1. N must be a power of 2 for effective use of FFT.

Remark 3.2. m is either 1 or 2 for case 1 (see theorem 2.1).

Remark 3.3. K must be greater than m.

3.1. Adaptation of the fast algorithm for annular domains

The above algorithm can be easily modified to compute the singular integral
operators within an annular region ΩR = {σ: R < |σ| < 1} provided the annulus ΩR

is similarly discretized, i.e., with N×M lattice points with N equidistant points in the
circular direction and M equidistant points in the radial direction. Since the origin is
not part of the domain, the inner radius r1 = R 6= 0. This requires minor modifications
of the above algorithm which are rather straightforward because theorem 2.1 still
applies on which the algorithm is based. Nonetheless, these are mentioned below to
facilitate the implementation of the algorithm.

Algorithm 3.2. Algorithm 3.1 with the following minor modifications for the case
when h(σ) is a Hölder continuous function is referred to as algorithm 3.2 for our
later purposes. In a follow-up paper [14], we apply this algorithm to quasiconformal
mappings of doubly connected domains.

1. In Input, restrict m = 1, 2 and also specify R.

2. In step 1, change r1 = 0 to r1 = R.
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Table 1
Computational complexity.

Step number Operation count Explanation

2 O(MN lnN) Each FFT with N data points contributes N lnN operations.
There are M such FFTs to be performed.

3 O(MN) Computation of Ci,i+1
n,m , i ∈ [1,M−1], contributes 2M operations

for each fixed n. There are 2(K −m) such computations.
4 O(MN) Computation of each Cn,m(rl) takes one operation. There are

2M (K −m) such computations.
5 O(MN) Computation of each Bn,m(rl) takes 3 operations. There are

2M (K −m) such computations.
6 O(MN) Computation of each Sn,m(rl) takes one operation. There are

2M (K −m) such computations.
7 O(MN lnN) Computation of Tmh(σ = rle2iαk ), k ∈ [1,N], for each fixed l

by FFT contributes N lnN operations. There are M such FFTs
to be performed.

3. In step 5, change l ∈ [2,M ] to l ∈ [1,M ].

4. In step 6, change l ∈ [2,M ] to l ∈ [1,M ]. Since the origin is not part of the
domain, we do not need to compute Sn,m(0) in step 6.

3.2. The algorithmic complexity

We consider the computational complexity of the above algorithms. We discuss
the asymptotic operation count, time complexity and storage requirement.

From table 1 we see that the asymptotic time complexity is O(MN lnN ).
The algorithm requires storage of the 2MK Fourier coefficients hn(rl) in step 2,
the 2M (K − m) Fourier coefficients Sn,m(rl) in step 6 and the MN values of
Tmh at MN grid points in step 7. Therefore, the asymptotic storage requirement
is O(MN ).

The algorithm is also inherently parallelizable and thus these estimates can be
improved upon if the algorithm is implemented on a parallel machine which is a topic
of further research.

4. Validation of the algorithm

In this section we validate the algorithm of section 3 as well as illustrate the
algorithmic steps with two examples. Examples 4.1 and 4.2 validate the cases (i) and
(ii) of theorem 2.1, respectively.

Example 4.1. Let h(ζ) = ζ̄ and m = 2. Then
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T2h(σ) =− 1
π

lim
ε→0

∫ ∫
B(0;1)−B(σ;ε)

ζ̄

(ζ − σ)2 dξ dη

=− 1
4πi

∫
∂B(0;1)

ζ̄2

(ζ − σ)2 dζ +
1

4πi
lim
ε→0

∫
∂B(σ;ε)

ζ̄2

(ζ − σ)2 dζ

=− 1
4πi

∫
∂B(0;1)

ζ̄2

(ζ − σ)2 dζ +
1

4πi
lim
ε→0

1
ε

∫ 2π

0

(
σ̄ + ε e−iθ)2

e−iθ dθ

=− 1
4πi

∫
∂B(0;1)

dζ
ζ2(ζ − σ)2 = 0. (4.1)

Below we apply the fast algorithm to evaluate the above integral T2h at some
grid points determined by the initialization.

Initialization: we take M = 4, N = 32 and m = 2.
Step 1. Set K = N/8 = 4.
Step 2. Compute the Fourier coefficients hn(rl), ∀l ∈ [1, 4] and n ∈ [−2, 4]:

hn(rl) =

{
0 if n 6= −1,
rl if n = −1.

Step 3. Compute Ci,i+1
n,2 , ∀i ∈ [1, 3] and n ∈ {[−4,−2]∪ [0, 2]}, using equation (2.31):

Ci,i+1
n,2 =


0 if n 6= −3,
r4
i − r4

i+1

r3
i+1

if n = −3.

Step 4. Compute Cn,2(rl), ∀l ∈ [1, 4] and n ∈ [−4, 2], using corollaries 2.1–2.3:

Cn,2(rl) =

{
0 if n 6= −3,
−rl if n = −3.

Step 5. Compute Bn,2(rl), ∀l ∈ [2, 4] and n ∈ [−4, 2], using equation (2.4):

Bn,2(rl) =

{
0 if n 6= −3,
rl if n = −3.

Step 6. Compute Sn,2(rl), ∀l ∈ [1, 4] and n ∈ [−4, 2], using equation (2.1):

Sn,2(rl) = 0.

Step 7. Compute T2h(rle2πik/N ), ∀l ∈ [1,M ] and k ∈ [1,N ], from its Fourier coeffi-
cients Sn,2(rl):

T2h
(
rle

2πik/N) =
K−m∑
n=−K

Sn,2(rl) e2πikn/N = 0.

These values are in accordance with (4.1).
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Example 4.2. Let h(ζ) = ζ4 and m = 3, then

T3h(σ) =− 1
π

lim
ε→0

∫ ∫
B(0;1)−B(σ;ε)

ζ4

(ζ − σ)3 dξ dη

=− 1
2πi

∫
∂B(0;1)

ζ4ζ̄

(ζ − σ)3 dζ +
1

2πi
lim
ε→0

∫
∂B(σ;ε)

ζ4ζ̄

(ζ − σ)3 dζ

=− 1
2πi

∫ 2π

0

ie4iθ

(eiθ − σ)3 dθ

+
1

2π
lim
ε→0

1
ε2

∫ 2π

0

(
σ + ε eiθ)4(

σ̄ e−2iθ + ε e−3iθ)dθ
=− 1

2πi

∫
∂B(0;1)

ζ3 dζ
(ζ − σ)3 + 6σ̄σ2

=−3σ + 6σ2σ̄ =
(
−3r + 6r3)eiα. (4.2)

In order to compare (4.2) with the result of the fast algorithm, we apply the fast algo-
rithm to evaluate the same integral at some grid points determined by the initialization.

Initialization: we take M = 3, N = 32 and m = 3.
Step 1. Set K = N/8 = 4.
Step 2. Compute the Fourier coefficients hn(rl), ∀l ∈ [1, 3] and n ∈ [−1, 4]:

hn(rl) =

{
0 if n 6= 4,
r4
l if n = 4.

Step 3. Compute Ci,i+1
n,3 , i = 1, 2 and n ∈ {[−4,−3] ∪ [0, 1]}, using equation (2.31):

Ci,i+1
n,3 =

{
0, (n, i) 6= (1, 2),
3
(
r2 − r3

2

)
, (n, i) = (1, 2).

Step 4. Compute Cn,3(rl), ∀l ∈ [1, 3] and n ∈ [−4, 1], using corollaries 2.1–2.3:

Cn,3(rl) =

{
0, (n, l) 6= (1, 2),
3
(
−r2 + r3

2

)
(n, l) = (1, 2).

Step 5. Compute Bn,3(rl), l = 2, 3 and n ∈ [−4, 1], using equation (2.4):

Bn,3(rl) =

{
0, n 6= 1,
3r3
l , n = 1.

Step 6. Compute Sn,3(rl), ∀l ∈ [1, 3] and n ∈ [−4, 1], using equation (2.1):

Sn,3(rl) = 0, n 6= 1,

and

S1,3(r1) = 0, S1,3(r2) = −3r2 + 6r3
2, and S1,3(r3) = 3r3

3.



150 P. Daripa, D. Mashat / Fast algorithms

Step 7. Compute T3h(rle2πik/N ), ∀l ∈ [1, 3] and k ∈ [1,N ], from its Fourier coeffi-
cients Sn,3(rl):

T3h
(
r1e2πik/N)= 0, ∀k ∈ [1,N ],

T3h
(
r2e2πik/N)=

(
−3r2 + 6r3

2

)
e2πik/N , ∀k ∈ [1,N ], (4.3)

T3h
(
r3e2πik/N)= 3r3

3 e2πik/N , ∀k ∈ [1,N ].

These values are in accordance with (4.2).

5. Conclusion

In this paper we have generalized a fast algorithm of Daripa [11] for rapid
evaluation of some singular operators that may arise in many problems of pure and
applied mathematics. In particular we have developed fast algorithms for evaluation
of Tmh(σ) for the following cases:

(i) The complex valued function h(σ) is Hölder continuous with exponent γ, 0 <
γ < 1. In this case, T1h(σ) and T2h(σ) are defined as a Cauchy principal value
and are evaluated by the fast algorithm described in section 3.

(ii) The complex valued function h(σ) is analytic in the unit disk. In this case,
Tmh(σ) is defined for any finite positive integer m as a Cauchy principal value
and is evaluated by the fast algorithm described in section 3.

A similar analysis can be carried out to develop fast and accurate algorithms
for evaluating other singular and hypersingular integrals that arise in integral equation
methods for solving partial differential equations. These ideas can also be extended
to three dimensions and are currently in progress. A real challenge is to extend
these algorithms to arbitrary geometries without losing accuracy. Applications of some
of these algorithms to quasiconformal mappings can be found in [12,14]. Another
application of these algorithms to efficient and accurate design of airfoils is in progress
by the first author (PD) and will be reported in the future.
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Appendix A

Proposition 1. For σ 6= 0,

− 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

dξ dη
(ζ − σ)

= 0 and − 1
π

lim
ε→0

∫ ∫
r−εΩ∗r+ε

dξ dη
(ζ − σ)2 =

σ̄

σ
. (A.1)

The result obtained here is used in proving lemmas 2.1 and 2.3.

Proof. We have∫ ∫
r−εΩ∗r+ε

dξ dη
(ζ − σ)2

=
1
2i

∫
r−ε∂Ω∗r+ε

ζ̄

(ζ − σ)2 dζ

=
1
2i

{∫
∂B(0;r+ε)

ζ̄

(ζ − σ)2 dζ −
∫
∂B(0;r−ε)

ζ̄

(ζ − σ)2 dζ −
∫
∂B(σ;ε)

ζ̄

(ζ − σ)2 dζ

}
=

1
2i

{∫
∂B(0;r+ε)

(r + ε)2

ζ(ζ − σ)2 dζ −
∫
∂B(0;r−ε)

(r − ε)2

ζ(ζ − σ)2 dζ

−
∫ 2π

0

(σ̄ + εe−iθ)
ε2 e2iθ iεeiθ dθ

}
=

1
2i

{
2πi(r + ε)2

{
1
σ2 −

1
σ2

}
− 2πi(r − ε)2

σ2

}
= −π(r − ε)2

σ2 . (A.2)

Similarly it can be shown that∫ ∫
r−εΩ∗r+ε

dξ dη
(ζ − σ)

=
1
2i

∫
r−ε∂Ω∗r+ε

ζ̄

(ζ − σ)
dζ

=
1
2i

{∫
∂B(0;r+ε)

ζ̄

(ζ − σ)
dζ −

∫
∂B(0;r−ε)

ζ̄

(ζ − σ)
dζ

−
∫
∂B(σ;ε)

ζ̄

(ζ − σ)
dζ

}
=
π(r − ε)2

σ
− πσ̄. (A.3)

Proposition 1 follows from (A.2) and (A.3). �

Proposition 2.

lim
ε→0

∫ ∫
r−εΩ∗r+ε

|ζ − σ|γ−2 dξ dη = 0. (A.4)

The result obtained here is used in proving lemma 2.2.



152 P. Daripa, D. Mashat / Fast algorithms

Proof. Let δ > ε and Ωδ = r−εΩ∗r+ε ∩B(σ; δ). Then

lim
ε→0

∫ ∫
r−εΩ∗r+ε

|ζ − σ|γ−2 dξ dη

= lim
ε→0

∫ ∫
r−εΩ∗r+ε\Ωδ

|ζ − σ|γ−2 dξ dη + lim
ε→0

∫ ∫
Ωδ
|ζ − σ|γ−2 dξ dη

6 δγ−2 lim
ε→0

∫ ∫
r−εΩ∗r+ε\Ωδ

dξ dη + lim
ε→0

∫ ∫
Ωδ
|ζ − σ|γ−2 dξ dη

= 0 + lim
ε→0

∫ ∫
Ωδ
|ζ − σ|γ−2 dξ dη

6 lim
ε→0

∫ ∫
B(σ;δ)−B(σ;ε)

|ζ − σ|γ−2 dξ dη

= lim
ε→0

∫ δ

ε

∫ 2π

0
ργ−1 dθ dρ = lim

ε→0

2π
γ

(
δγ − εγ

)
=

2π
γ
δγ . (A.5)

Thus, for every fixed δ > ε we have

lim
ε→0

∫ ∫
r−εΩ∗r+ε

|ζ − σ|γ−2 dξ dη 6 2π
γ
δγ . (A.6)

Therefore,

lim
ε→0

∫ ∫
r−εΩ∗r+ε

|ζ − σ|γ−2 dξ dη 6 2π
γ

lim
δ→0

δγ , (A.7)

and since the integrand is positive, proposition 2 follows. �

Proposition 3. If h(ζ) is analytic in a neighborhood of the unit disk, then

dm−1

dζm−1

(
h(ζ)
ζ

)∣∣∣∣
ζ=r eiα

=
∞∑
s=0

hs(r)
rm

(s− 1)(s− 2) · · · (s−m+ 1) e(s−m)iα. (A.8)

The result obtained here is used in proving lemma 2.6.

Proof. If h(ζ) is analytic in a neighborhood of the unit disk, then

h(ζ) =
∞∑
s=0

hs(r)
rs

ζs, (A.9)
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where hs(r) is the sth Fourier series coefficient of h(ζ = r eiθ). Notice that hs(r)/rs

for all s > 0 do not depend on r. Therefore

dm−1

dζm−1

(
h(ζ)
ζ

)
=
∞∑
s=0

dm−1

dζm−1

(
hs(r)
rs

ζs−1
)

=
∞∑
s=0

hs(r)
rs

(s− 1)(s− 2) · · · (s−m+ 1)ζs−m. (A.10)

Proposition 3 follows on substituting ζ = r eiα in (A.10). �

Proposition 4. If

Qn,m(r, ζ) =

∫ 2π

0

e−inα

(ζ − σ)m
dα, σ = r eiα,

then

Qn,m(r, ζ) =



2(−1)mπrn
(
−n− 1
m− 1

)
ζ−(m+n), n 6 −m, |ζ| < r,

0, n > −m, |ζ| < r,
0, n < 0, |ζ| > r,

2πrn
(
m+ n− 1
m− 1

)
ζ−(m+n), n > 0, |ζ| > r.

(A.11)

The result obtained here is used in proving theorem 2.1.

Proof.

Qn,m(r, ζ) =

∫ 2π

0

e−inα

(ζ − σ)m
dα = i(−1)m+1rn

∫
∂B(0;r)

σ−n

σ(σ − ζ)m
dσ. (A.12)

Case 1: n < 0, |ζ| < r.

Qn,m(r, ζ) = (−1)mrn(−i)
2πi

(m− 1)!

{
dm−1

dσm−1

(
σ−n−1)∣∣∣

σ=ζ

}
=

(
(−1)mrn2π

(m− 1)!
(−1)m−1(n+ 1)(n + 2) · · · (n+m− 1)σ−(n+m)

)∣∣∣∣
σ=ζ

=
(−1)mrn2π

(m− 1)!
(−n− 1)(−n− 2) · · · (−n−m+ 1)ζ−(n+m)

=

{
2πrn(−1)m

(
−n− 1
m− 1

)
ζ−(m+n), n 6 −m,

0, −m− 1 6 n < 0.
(A.13)
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Case 2: n < 0, |ζ| > r.

Qn,m(r, ζ) = (−1)mrn
∫
∂B(0;r)

σ−(n+1)

(σ − ζ)m
dσ = 0. (A.14)

Case 3: n > 0, |ζ| < r.

Qn,m(r, ζ) = (−1)mrn2π

{
1

(m− 1)!
· dm−1

dσm−1

(
σ−(n+1))∣∣∣∣

σ=ζ

+
1
n!
· dn

dσn

(
1

(σ − ζ)m

)∣∣∣∣
σ=0

}
= 2πrn(−1)m

{
(−1)m−1(n+ 1)(n+ 2) · · · (n+m− 1)

(m− 1)!
ζ−(n+m)

+ (−1)nm(m+ 1) · · · (m+ n− 1)
n!

1
(−ζ)m+n

}
= 2πrn(−1)m

{
(−1)m−1 (n+m− 1)!

n!(m− 1)!
ζ−(n+m)

+
(−1)m(m+ n− 1)!

(m− 1)!n!
ζ−(n+m)

}
= 0. (A.15)

Case 4: n > 0, |ζ| > r.

Qn,m(r, ζ) = 2πrn(−1)m
{

1
n!
· dn

dσn

(
1

(σ − ζ)m

)∣∣∣∣
σ=0

}
=

2πrn(−1)2m

n!
· (m+ n− 1)!

(m− 1)!
ζ−(m+n)

=
2πrn

n!(m− 1)!
(m+ n− 1)!ζ−(m+n)

= 2πrn
(
m+ n− 1

n

)
ζ−(m+n). (A.16)

Proposition 4 follows from (A.13)–(A.16). �

Appendix B. Existence of the Tm-operator

Theorem B.1. If h(σ) satisfies a Hölder condition with exponent γ, 0 < γ < 1, and
constant K in a neighborhood of 0Ω1, then T1 and T2 exists in the unit disk as a
Cauchy principal value.
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Proof. We define Tmh(σ) as a Cauchy principal value, i.e.,

Tmh(σ) = − 1
π

lim
ε→0

∫ ∫
0 Ω∗1

h(ζ)
(ζ − σ)m

dξ dη, (B.1)

where

0Ω∗1 = B(0; 1)−B(σ; ε).

With this definition, it follows that

∣∣Tmh(σ)
∣∣6 1

π
lim
ε→0

(∣∣∣∣∫ ∫
0 Ω∗1

h(ζ)− h(σ)
(ζ − σ)m

dξ dη

∣∣∣∣ +

∣∣∣∣∫ ∫
0 Ω∗1

h(σ)
(ζ − σ)m

dξ dη

∣∣∣∣)

6 1
π

lim
ε→0

(∫ ∫
0 Ω∗1

|h(ζ)− h(σ)|
|ζ − σ|m dξ dη +

∣∣∣∣∫ ∫
0 Ω∗1

h(σ)
(ζ − σ)m

dξ dη

∣∣∣∣)

6 1
π

lim
ε→0

(∫ ∫
0 Ω∗1

K|ζ − σ|γ−m dξ dη +

∣∣∣∣h(σ)
∫ ∫

0 Ω∗1

1
(ζ − σ)m

dξ dη

∣∣∣∣)

6 1
π

lim
ε→0

(∫ ∫
ε6|ζ−σ|6R>2

K|ζ − σ|γ−m dξ dη

+
|h(σ)|

2

∣∣∣∣∫
∂(B(0;1)−B(σ;ε))

ζ̄

(ζ − σ)m
dζ

∣∣∣∣)
6 1
π

lim
ε→0

(
K

∫ R

ε

∫ 2π

0
rγ−m+1 dθ dr

+
|h(σ)|

2

∣∣∣∣∫
∂B(0;1)

dζ
ζ(ζ − σ)m

− iε1−m
∫ 2π

0

(
σ̄ + ε e−iθ) ei(1−m)θ dθ

∣∣∣∣)
=

2KRγ−m+2

γ −m+ 2
+
|h(σ)|

2π

∣∣∣∣0− { 0 if m = 2
2πσ̄ if m = 1

∣∣∣∣
6 2KRγ−m+2

γ −m+ 2
+
∣∣h(σ)

∣∣ |σ|. (B.2)

Since h is continuous in B(0; 1), it follows from (B.2) that∣∣Tmh(σ)
∣∣ 6 2KRγ−m+2

γ −m+ 2
+ max
σ∈B(0;1)

(∣∣h(σ)
∣∣|σ|), m = 1 or 2 and R > 2.

This completes the proof of theorem B.1. �

Theorem B.2. If h(σ) is analytic in B(0; 1), then Tmh(σ) exists in B(0; 1) for all
finite positive integer m as a Cauchy principal value.
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Proof. We define here as before

Tmh(σ) = − 1
π

lim
ε→0

∫ ∫
0 Ω∗1

h(ζ)
(ζ − σ)m

dξ dη. (B.3)

Then it follows from using Green’s theorem that

Tmh(σ) =− 1
2πi

lim
ε→0

∫
∂(B(0;1)−B(σ;ε))

h(ζ)ζ̄
(ζ − σ)m

dζ

=− 1
2πi

lim
ε→0

{∫
∂B(0;1)

h(ζ)ζ̄
(ζ − σ)m

dζ −
∫
∂B(σ;ε)

h(ζ)ζ̄
(ζ − σ)m

dζ

}
=− 1

2πi
lim
ε→0

{∫
∂B(0;1)

h(ζ)
ζ(ζ − σ)m

dζ

− i
εm−1

∫ 2π

0
h
(
σ + ε eiθ)(σ̄ ei(1−m)θ + ε e−imθ) dθ

}
. (B.4)

Because of analyticity of function h, we can write

h
(
σ + ε eiθ) =

∞∑
n=0

anε
n einθ , (B.5)

where an’s will depend on σ. Substituting (B.5) into (B.4), we have

Tmh(σ) = −(b1 + b2)− lim
ε→0

i
εm−1

∫ 2π

0

∞∑
n=0

anε
n einθ(σ̄ ei(1−m)θ + ε e−imθ) dθ, (B.6)

where b1 and b2 are the residues of h(ζ)/(ζ(ζ − σ)m) at 0 and σ of order 1 and m,
respectively. Therefore,

Tmh(σ) =−(b1 + b2)− lim
ε→0

i
εm−1

∞∑
n=0

σ̄anε
n

∫ 2π

0
ei(n+1−m)θ dθ

− lim
ε→0

i
εm−1

∞∑
n=0

anε
n+1

∫ 2π

0
ei(n−m)θ dθ

=−(b1 + b2)− lim
ε→0

{
2πi
εm−1 σ̄am−1ε

m−1 − 2πi
εm−1 amε

m+1
}

=−(b1 + b2)− 2πi lim
ε→0

{
σ̄am−1 − amε2}

=−(b1 + b2)− 2πiσ̄am−1. (B.7)

This completes the proof of theorem B.2. �
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