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A numerical method for quasiconformal mapping of doubly connected domains onto
annuli is presented. The ratio R of the radii of the annulus is not known a priori and
is determined as part of the solution procedure. The numerical method presented in this
paper requires solving iteratively a sequence of inhomogeneous Beltrami equations, each
for a different R. R is updated using a procedure based on the bisection method. The new
method is an extension of Daripa’s method for the quasiconformal mapping of the exterior
of simply connected domains onto the interior of unit disks [15]. It uses fast and accurate
algorithms for evaluating certain singular integrals and is, thus, very efficient and accurate.
Its performance is demonstrated for several doubly connected domains.
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1. Introduction

The theory of quasiconformal mappings is nearly 70 years old and seems to
have been started by Ahlfors [1], Grötzch [18], Lavrentjev [19] and Morrey [23].
Grötzsch [18] defines quasiconformal mappings, which can be viewed as a generaliza-
tion of conformal mappings, as mappings whose linearizations transform circles into
ellipses for which the quotient of the lengths of the axes is bounded, while Lavren-
tjev [19] constructs such mappings satisfying elliptic systems of partial differential
equations. All the standard definitions of quasiconformal mappings [20] are, in gen-
eral, based on direct generalizations of certain characteristic properties of conformal
mappings, and several fundamental theorems on analytic functions remain valid for
quasiconformal mapping, at least in a modified form (cf. [20]). A systematic introduc-
tion into the theory of quasiconformal mapping can be found, for instance, in Lehto
and Virtanen [20].

Quasiconformal mappings have been studied extensively in complex analysis
(cf. [1,2,19,20]). Interest in them is partly for its own sake and partly due to their
applications to differential equations, complex analysis, topology, Riemann mappings,
complex dynamics and grid generation. A concise description of some of these appli-
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cations can be found in review articles by Bers [6] and Carleson and Gamelin [10]. Ap-
plications to numerical grid generation can be found in Belinskii et al. [3], Daripa [13]
and Mastin and Thompson [21]. Applications to subsonic flow problems, quasilinear
second-order partial differential equations, and systems of first order equations in the
plane can be found in Bers [5,7,8]. Even though significant progress in the theory
of quasiconformal mappings and its application towards proving important results in
applied as well as pure fields has been made, progress on numerical methods has been
very slow. In fact, numerical quasiconformal mapping techniques are of much more
recent origin. This is partly due to difficulties in finding convergent iterations for such
mappings.

There has been some recent work on numerical quasiconformal mapping tech-
niques based on solving elliptic equations in the real plane with finite difference or finite
element methods. For example, Belinskii et al. [3] and Mastin and Thompson [21] use
finite difference methods. Some of these methods are difficult to implement for ar-
bitrary regions. A finite difference scheme for constructing quasiconformal mappings
for arbitrary simply and doubly-connected region of the plane onto a rectangle was
developed by Mastin and Thompson [22]. Vlasynk [30] also considers such a scheme
for mappings of doubly connected and triply connected domains onto a parametric
rectangle. A finite element based method was developed by Weisel [31].

Very little work has been done on the numerical construction of quasiconformal
mappings in the plane using the Beltrami equation (2.3) defined in section 2. A proba-
ble reason for this is the lack of efficient and accurate techniques for evaluating singular
integral operators that arise in solving this equation. Another reason for the lack of
suitable quasiconformal mapping algorithms is that such algorithms are inherently it-
erative and nonlinear in nature and must be convergent for a suitable set of examples.
In [14] Daripa presented a fast algorithm for the accurate evaluation of one of the
singular operators that arise in this context. It was subsequently used by Daripa [15]
for numerical quasiconformal mappings of exterior of simply connected domains onto
the interior of a unit disk using the Beltrami equation. Daripa [15] was the first to
use the Beltrami equation to propose an efficient numerical quasiconformal mapping
technique which is also convergent based on numerical evidence. This method is ex-
tended here to the quasiconformal mapping of an arbitrary doubly connected domain
with smooth boundaries onto an annulus ΩR = {σ: R < |σ| < 1}. One of the added
difficulties here over similar techniques for simply connected domains is that R is not
known a priori.

This paper is laid out as follows. In section 2 we present some mathematical pre-
liminaries required for the construction of quasiconformal mapping algorithms within
an annulus. In section 3, we formulate a boundary value problem for quasiconformal
mappings of doubly connected domains. In section 4, we present the numerical method
for quasiconformal mappings of doubly connected domains onto annuli. In section 5,
we discuss some numerical results.
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2. Mathematical preliminaries

In this section we present the mathematical background on quasiconformal map-
pings of doubly connected domains onto annuli. Quasiconformal mapping which
satisfies a nonlinear partial differential equation of the type

zσ̄ = f (σ, z, zσ) (2.1)

has been investigated by Bojarski and Iwaniec [9]. Here, z(σ) is a complex valued
function of complex variables σ and σ̄, and ∂/∂σ and ∂/∂σ̄ denote respectively the
generalized derivatives

∂

∂σ
=

1
2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂σ̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
, (2.2)

where σ = x+ iy. The Beltrami equation

zσ̄ = λ(σ)zσ (2.3)

is a special case of this equation. The function λ(σ) in (2.3) is called complex di-
lation or Beltrami coefficient. Some discussion on the importance of the Beltrami
equation (2.3) for the theory of quasiconformal mapping can be found in Ahlfors [2].
Ahlfors [1] and Vekua [29] define quasiconformal mapping of a domain Ω with com-
plex dilation λ(σ) as a homeomorphic generalized solution z(σ) of the Beltrami equa-
tion. In order to preserve the orientation of quasiconformal mappings, this function is
chosen to satisfy everywhere in the σ-plane the condition (see [15])∣∣λ(σ)

∣∣ 6 λ0 < 1. (2.4)

The solution to the Beltrami equation (2.3) is usually written in terms of the
following two integral operators:

T1f (σ) = − 1
π

∫ ∫
ΩR

f (ζ)
ζ − σ dξ dη, σ ∈ ΩR, (2.5)

and

T2f (σ) = − 1
π

∫ ∫
ΩR

f (ζ)
(ζ − σ)2 dξ dη, σ ∈ ΩR, (2.6)

where ζ = ξ + iη. The operator T2f is to be understood as a Cauchy principal value
and the function f (σ) is assumed Hölder continuous. These two integral operators are
known to satisfy the following relations (cf. [1]):

(T1f )σ̄ = f (σ), (2.7)

(T1f )σ = T2f (σ). (2.8)

Using the Cauchy–Green formula [4]

z(σ) =
1

2π

∫
∂ΩR

z(ζ)
ζ − σ dζ − 1

π

∫ ∫
ΩR

zζ̄
ζ − σ dξ dη, (2.9)
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the solution of equation (2.3) (see Ahlfors [1] and Vekua [29]) can be written as

z(σ) = T1f (σ) + g(σ), (2.10)

where

f (σ) = λ(σ)zσ , (2.11)

and g(σ) is a suitable analytic function whose precise form depends on the boundary
data. For example, for the problem of constructing the univalent solution of (2.3) as a
mapping of the complex plane C onto itself, one puts g(σ) = aσ+ b or just g(σ) = σ
and takes Ω = C. It then follows from (2.8), (2.10) and (2.11) that

f (σ) = λ(σ)
(
T2f (σ) + gσ(σ)

)
, (2.12)

which is a nonhomogeneous equation in the function f (σ). The singular integral
operator T2f (σ) in (2.12) is a 2-dimensional Hilbert transform and is also known as a
Beürling transform. It is an isometry of L2(C) onto L2(C) (cf. [9,24]), i.e.,∥∥T2f (σ)

∥∥
L2

= ‖f‖L2 , (2.13)

which shows that equation (2.12) subject to the condition (2.4) has a unique square-
integrable solution f (σ). However, this does not rule out the unpleasant fact that the
function f ∈ L2(Ω) may be discontinuous. This causes difficulties for the theory
of quasiconformal mappings where the continuity requirement is essential for any
geometric interpretation. However, these problems do not arise and the solution (2.10)
remains continuous if function f (σ) is in Hölder space [24]. Therefore, the Beltrami
equation (2.3) with f (σ) in Hölder space has played a significant role in the study of
quasiconformal mappings [24].

In the following section we describe a fast algorithm to solve a boundary value
problem associated with a modified form of the homogeneous Beltrami equation (2.3)
within an annulus. This will be the building block for the construction of quasicon-
formal mappings of doubly connected domains onto annuli described in section 4.

3. Dirichlet problem and its solution algorithm

We are interested in finding a function w(σ) in an annulus ΩR such that
wσ̄ = λ(σ)wσ +

λ(σ)
σ
≡ h(σ), σ ∈ ΩR,

Real
(
w
(
σ = eiα

))
= u1(α), 0 < α 6 2π,

Real
(
w
(
σ = Reiα

))
= uR(α), 0 < α 6 2π,

Imag
[
w(σ = 1)

]
= v0,

(P)

where λ(σ)/σ → 0 as σ → 0 and λ(σ) is Hölder continuous with |λ(σ)| < 1. It is
known that this problem has a unique solution in the annulus ΩR provided uR(α)
and u1(α) satisfy appropriate compatibility condition. The partial differential equation
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in (P) is a nonhomogeneous Beltrami equation and is more convenient for our pur-
poses as discussed later in section 4. This is obtained from homogeneous Beltrami
equation (2.3) through the transformation z(σ) = σew(σ) which we discuss in some
detail in section 4.

Since the function h(σ) in (P) depends on the solution w(σ), an iterative algorithm
has to be used to construct a solution of the problem (P) with the inhomogeneous term
h(σ) updated during each iteration level k based on the solution at previous iteration
level k − 1. However, at each iteration level the solution procedure is based on
representation of w(σ) as a T1-transform of h(σ) except for an additive analytic function
g(σ), similar to (2.10). It then follows that at each iteration level, the analytic function
g(σ) is to be updated as a solution of the following problem: find a g(σ) in ΩR such that

gσ̄ = 0, σ ∈ ΩR,
Real

[
g
(
σ = eiα

)]
= u1(α)− Real

(
T1h
(
σ = eiα

))
, 0 6 α 6 2π,

Real
[
g
(
σ = Reiα

)]
= uR(α) − Real

(
T1h
(
σ = Reiα

))
, 0 6 α 6 2π,

Imag
[
g(σ = 1)

]
= v0 − Imag

(
T1h(σ = 1)

)
.

(RP)

This is a standard problem in the theory of complex variables and the solution to this
problem can easily be constructed using Laurent series representation of the analytic
function g(σ) within the annulus. We denote the solution by

g(σ) = Λ
(
T1h(α);uR(α),u1(α)

)
, (3.1)

where Λ denotes the solution operator of the above problem. Once this problem has
been solved, solution of the problem (P) is constructed from

w(σ) = T1h(σ) + g(σ). (3.2)

Algorithm 3.1. We see that equations (3.1), (3.2) and problem (P) suggest the follow-
ing iteration scheme for solving the problem (P):

gk(σ) = Λ
(
T1h

k(α);uR(α),u1(α)
)
, (3.3)

hk+1(σ) = λ(σ)

[
T2h

k(σ) + gkσ(σ) +
1
σ

]
. (3.4)

Here, the subscript k refers to the level of iteration. A suitable initial choice of
h(σ) starts the iteration procedure. Thereafter each kth level of iteration involves the
following four steps:

(1) Find the T1h
k(α) on the boundary curves using the fast algorithm 3.2 described

in [16].

(2) Construct the analytic function gk(σ) by solving the reduced problem (RP), as
implicitly represented by (3.3).

(3) Find T2h
k(σ) at all grid points in the annulus using the fast algorithm 3.2 described

in [16].
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(4) Compute hk+1(σ), updated value of h(σ), using equation (3.4).

Once the converged function h(σ) is found, the analytic function g(σ) is computed
from step 2 using this converged function h(σ) and then w(σ) is found using (3.2).

Remark 3.1. Notice that the above algorithm updates h(σ) at the end of each iteration
and this updated h(σ) becomes the input for the next iteration. As discussed earlier,
isometry of the operator T2-transform implies that the operator τh(σ) defined via

τh(σ) = λ(σ)

{
T2h(σ) +

1
σ

}
is a contraction in the space of Hölder continuous function. Therefore, there exists
a unique h to which the scheme converges. The rate of convergence of the scheme
depends on the initial guess of h(σ). The fact that h(σ) = λ(σ)wσ + λ(σ)/σ suggests
an initial guess of h(σ) = 0 provided λ(σ) = O(ε), ε� 1.

4. A numerical method for quasiconformal mapping

Let G be a doubly connected domain bounded by simple, closed and smooth
curves Γ0 and Γ1 such that the point z = 0 lies inside the region bounded by Γ0. The
boundary curves Γ0 and Γ1 are given in parametric representation as follows:

Γ0: ρ0(φ)eiφ, 0 < φ 6 2π, (4.1)

Γ1: ρ1(φ)eiφ, 0 < φ 6 2π. (4.2)

We seek a quasiconformal mapping of a doubly connected domain G onto an annulus
ΩR = {σ: R < |σ| < 1} such that the inner boundary Γ0 maps onto an as yet unknown
inner circle of radius R < 1 and the outer boundary Γ1 maps onto an outer circle of
unit radius. In other words, we need to construct the solution of the following problem
to find R and a map z(σ), σ ∈ ΩR:

zσ̄ = λ(σ)zσ , σ ∈ ΩR,
z(σ) : Γ1 →

{
σ: |σ| = 1

}
,

z(σ) : Γ0 →
{
σ: |σ| = R

}
.

(QP)

The boundary curves Γ0 and Γ1 are assumed be convex. Therefore, their parameteri-
zations φ0(α) and φ1(α) are monotonic functions of α, 0 6 α < 2π. Since R is not
known a priori, the complex dilation λ(σ) which has Hölder continuous first derivative
is specified a priori in the entire unit disk such that |λ(σ)| < λ0 < 1 and (λ(σ)/σ)→ 0
as σ → 0.

One of the possible ways to facilitate the determination of R is to induce the
transformation

z(σ) = σew(σ) (4.3)
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in the homogeneous Beltrami equation defined in the boundary value problem (QP).
A similar transformation has been used in Daripa [15], although for a different rea-
son. The function w(σ) defined through (4.3) satisfies the following nonhomogeneous
Beltrami equation

wσ̄ = λ(σ)wσ +
λ(σ)
σ
≡ h

(
w,σ, σ̄

)
, σ ∈ ΩR. (4.4)

Below, we occasionally denote the function h(w,σ, σ̄) by h(σ) for convenience. We
have from (4.1)–(4.3),

w̃0(α) = ln

(
ρ̃0(α)
R

)
+ i
(
φ0(α)− α

)
, 0 6 α 6 2π, (4.5)

w̃1(α) = ln ρ̃1(α) + i
(
φ1(α)− α

)
, 0 6 α 6 2π, (4.6)

where we have used

w̃0(α) =w
(
σ = Reiα), ρ̃0(α) = ρ0

(
φ0(α)

)
, (4.7)

w̃1(α) =w
(
σ = eiα), ρ̃1(α) = ρ1

(
φ1(α)

)
. (4.8)

The boundary value problem (QP) is now equivalent to the following problem: find R
and w(σ), R 6 |σ| 6 1, such that

wσ̄ = λ(σ)wσ +
λ(σ)
σ
≡ h(σ), σ ∈ ΩR,

Real
(
w̃1(α)

)
= ln

(
ρ̃1(α)

)
≡ u1(α), 0 < α 6 2π,

Real
(
w̃0(α)

)
= ln

(
ρ̃0(α)
R

)
≡ uR(α), 0 < α 6 2π.

(RQP)

Even though ρ̃0(α), ρ̃1(α) and R are not known a priori, these can be updated during
iterations required to solve this problem using the numerical method described in
section 3. Since ρ0(φ0) and ρ1(φ1) are known from (4.1) and (4.2), ρ̃0(α) and ρ̃1(α)
can be updated from the following equations which follow from (4.5) and (4.6):

φk0 (α) = Imag
(
w̃0(α)

)
+ α, 0 < α 6 2π, (4.9)

φk1 (α) = Imag
(
w̃1(α)

)
+ α, 0 < α 6 2π. (4.10)

Here, the superscripts k and k + 1 refer to the level of iterations in the algorithm 3.1.
To update R, we make use of the following relations which follow from the boundary
conditions in (RQP).

F (R) =

∫ 2π

0

(
ReuR(α) − ρ̃0(α)

)
dα = 0, (4.11)

F (0) =−
∫ 2π

0
ρ̃0(α) dα < 0, (4.12)
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F (1) =

∫ 2π

0

(
eu1(α) − ρ̃0(α)

)
dα

=

∫ 2π

0

(
ρ1
(
φ1(α)

)
− ρ0

(
φ0(α)

))
dα > 0. (4.13)

Note that the second inequality in (4.13) does not strictly follow unless dα is replaced
with dφ. However, since there is only one value of R for which (4.11) must hold,
(4.13) has to be true in light of (4.12). Due to inequalities (4.12) and (4.13), a bisection
method can be applied to equation (4.11) to find R.

A formal description of the algorithm for the quasiconformal mapping method
that has been successful in our numerical experiments is given below. The quasi-
conformal mapping method involves two levels of iterations. It solves a sequence of
problems (RQP), each with different R and boundary values, in an iterative loop which
constitutes what we call “outer” iteration for later reference. Each problem (RQP) for
a fixed choice of R and given boundary values is solved by solving a sequence of
problems (P) defined in section 3, each with a different function h(σ), in an iterative
loop which constitutes what we call “inner” iteration for later reference. The solution
method for solving (P) is discussed in section 3.

Algorithm 4.1.
Comment [Initialize φ0(α) and φ1(α). Also set values to r1 and r2]

Choose φ0
0(α) = φ0

1(α) = α. Set r1 = 0 and r2 = 1.0.
Comment [Solve for R and z(σ)]

do k = 0, . . . ,n
Step 1.

Set Rk = 0.5(r1 + r2), ρ̃k0 = ρ0(φk0 (α)) and ρ̃k1 = ρ1(φk1 (α)).
Step 2.

Solve problem (RQP) to compute wk+1(σ), φk+1
0 (α) and φk+1

1 (α) within the annulus
using the numerical method described in section 3.

Step 3.
Compute the value of the integral F (Rk) using equation (4.11).

Step 4.
Comment [Reset values of r1 and r2]
If F (Rk) < 0, then set r1 = Rk and go to step 5. If F (Rk) > 0, then set r2 = Rk

and go to step 5. If R = Rk, then go to step 6.
Step 5.

If |r2 − r1| 6 ε, then go to step 5. If |r2 − r1| > ε, then go to step 1.
Step 6.

Comment [Find z(σ) using (4.3)]
z = σew(σ).
Stop
end do
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5. Numerical results

We have carried out some numerical experiments with the quasiconformal map-
ping method presented in the previous section. Most numerical results to be presented
below pertain to the following complex dilation (cf. [15]):

λ1(σ) = |σ|2e0.65(iσ5−2.0). (5.1)

We should mention that similar numerical experiments with another complex dilation
(cf. [15]), namely

λ2(σ) = 0.5|σ|2 sin
(
2.5(σ + σ̄)

)
, (5.2)

have been equally successful and the numerical results are not terribly different or
interesting from the viewpoint of what has already been presented below for the case
of complex dilation λ1(σ). Therefore, few results will be presented with λ = λ2. It
is worth emphasizing that dilations λ1(σ) and λ2(σ) have been used previously by
Daripa [15] for quasiconformal mapping of exterior of simply connected domains onto
the interior of a unit disk. There is no physical motivation behind selection of these
choices of dilation. Some discussions on these choices of dilation can be found in
Daripa [15].

We present results for the following six doubly connected domains defined by
their boundary curves Γ0 and Γ1, each defined parametrically as a periodic function
of the parameter φ for 0 6 φ < 2π. The inner and outer boundaries of each of the
following domains are similar for domains 2–4. For the rest three domains, inner and
outer boundaries are dissimilar.

(1) Domain 1: Γ0 := 0.5eiφ, Γ1 := (1 + 0.08 sin 4φ) eiφ.

(2) Domain 2: Γ0 :=
(
cos8 φ+ sin8 φ

)−1/8
eiφ, Γ1 := 2

(
cos8 φ+ sin8 φ

)−1/8
eiφ.

(3) Domain 3: Γ0 := 0.3
√

1− 0.75 cos2 φ eiφ, Γ1 :=
√

1− 0.75 cos2 φ eiφ.

(4) Domain 4: Γ0 := (0.7 + 0.056 sin 4φ) eiφ, Γ1 := (1 + 0.08 sin 4φ) eiφ.

(5) Domain 5: Γ0 := 0.2
(
cos8 φ+ sin8 φ

)−1/8
eiφ, Γ1 := (1 + 0.08 sin 4φ) eiφ.

(6) Domain 6: Γ0 := 0.3324eiφ , Γ1 := (1 + 0.09 sin 8φ) eiφ.

For each of the above domains, calculations were carried out in 7-digit arithmetics
with N = 64, 128, 256 for each of M = 13, 26, 51. The numerical method converged
with respect to iterations for each of these choices of number of grid points and complex
dilation. The method also appears to converge with respect to grid refinement and a
result of a typical case in this regard is presented later. The mappings for the above
six domains, namely, domains 1–6 are presented in figure 1 when N = 256, M = 51
and tolerance ε = 0.00004. The plots in this figure show the images of some of the
circular and radial grid lines onto the doubly connected domains with λ = λ1. In each
of these cases, R is determined numerically as part of the numerical procedure. In
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Figure 1. Quasiconformal mapping of the domains 1–6 with λ = λ1 given by (5.1).
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Table 1
Summary of numerical results for the twelve case studies.

Example Converged Number of inner Number of outer
value of R iterations iterations

Domain-1, λ = λ1 0.506989 10 14
Domain-1, λ = λ2 0.504608 9 15
Domain-2, λ = λ1 0.527130 14 12
Domain-2, λ = λ2 0.520966 16 15
Domain-3, λ = λ1 0.329193 26 15
Domain-3, λ = λ2 0.356781 26 15
Domain-4, λ = λ1 0.709198 10 13
Domain-4, λ = λ2 0.703644 11 15
Domain-5, λ = λ1 0.232330 13 15
Domain-5, λ = λ2 0.233734 15 15
Domain-6, λ = λ1 0.342926 15 15
Domain-6, λ = λ2 0.343170 17 15

table 1, converged values of R, number of inner iterations for converged values of
R and number of outer iterations are presented for each of these doubly connected
domains for both choices of dilation. It also shows the convergence results for the
case λ = λ2.

In figure 2, various convergence results are presented for the case of domain 1.
The number of outer iterations in this case is 14 and the number of inner iterations
with the converged value of R is 10. In figure 2(a) we show the convergence of F (R)
to zero within few iterations (see equation (4.11)). Figure 2(b) shows convergence of
R to a value 0.506989 within a modest number of iterations. Convergence rate of R
during outer iterations is shown in figure 2(c). In figure 2(d) we have plotted L∞ error
in w when R = 0.506989 against the level of iterations. In figure 2(e), convergence
rate of L∞ error in w when R = 0.506989 is shown. These results show the rapid
convergence properties of the quasiconformal mapping method.

Figure 3 depicts numerical results for domain 3. A comparison of this figure with
figure 2 shows that qualitative behaviors of F (R) and R against number of iterations
for domain 3 are different from those for domain 1. Qualitative behaviors of all other
convergence results for domain 3 are almost similar to those for domain 1.

Figures 2 and 3 are representatives of numerical results for all other domains
listed previously and for both choices of dilation. Instead of showing such similar
results, we summarize the following pertinent observations, some of which may not
be clear from the figures or tables presented here.

• The qualitative behaviors of the convergence of F (R) and R with respect to iter-
ations are similar for each of the domains. However, these may be different for
different domains.

• The number of inner iterations with the converged value of R is less than 10 for
each of these domains.
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Figure 2. Convergence results for quasiconformal mapping of domain 1 with λ = λ1 given by (5.1):
(a) convergence of F (R) given by (4.11); (b) convergence of R; (c) convergence rate of R; (d) conver-

gence of w when R = 0.506989; (e) convergence rate of w when R = 0.506989.
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Figure 3. Convergence results for quasiconformal mapping of domain 3 with λ = λ1 given by (5.1):
(a) convergence of F (R) given by (4.11); (b) convergence of R; (c) convergence rate of R; (d) conver-

gence of w when R = 0.329193; (e) convergence rate of w when R = 0.329193.
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Table 2
Convergence of R with respect to M for domain 6 when N = 256, λ = λ2.

M R Error in R Number of inner Number of outer
iterations iterations

51 0.343170 0 17 15
26 0.342743 4.27× 10−4 16 15
13 0.342743 4.27× 10−4 16 15

Table 3
Convergence of R with respect to N for domain 6 when M = 51, λ = λ2.

N R Error in R Number of inner Number of outer
iterations iterations

256 0.343170 0 17 15
128 0.333099 0.010071 10 15

64 0.329620 0.01355 9 15

• The number of outer iterations is about the same for each of these domains.

• The rate of convergence of R is linear.

Since we have not shown any example with λ = λ2, we feel it may be worthwhile
to present few results with this choice of the dilation. Figure 4 shows the quasiconfor-
mal mappings of domain 5 and domain 6 with λ = λ2. In tables 2 and 3, we show the
values of R for the domain 6 when λ = λ2 for various choices of N and M . The L∞
error in R in these tables has been measured with respect to the results obtained with
N = 256 and M = 51. The numbers of inner as well as outer iterations are shown in
these tables. From these tables and from similar experiments, we made the following
observations:

• Convergence of R is slow with respect to N but is faster with respect to M .

• Number of outer iterations depends very mildly on the number of grid points. In
the cases shown in tables 2 and 3, it does not depend on the number of grid points.

• Number of inner iterations depends on the number of grid points, weakly on M
but somewhat strongly on N .

6. Summary and conclusion

We have presented and implemented an efficient numerical method for quasi-
conformal mappings of doubly connected domains onto annuli with a given complex
dilation |λ(σ)| 6 λ0 < 1. The ratio R of the radii of the annulus within which the
nonlinear equation is to be solved is unknown a priori. An iterative procedure is used
to update the R. During each such iteration, a nonhomogeneous Beltrami equation is
solved using an iterative method within a known annulus. Thus, there are two levels
of iterations: the inner iteration that updates the solution of an appropriate boundary
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Figure 4. Quasiconformal mapping of the domains 5–6 with λ = λ2 given by (5.2).

value problem within a known annulus and the outer iteration that updates R. We have
argued using a fixed point theorem that the inner iteration converges. We have also
given numerical evidence of this through numerical examples. The whole iterative
procedure of determining the annulus as well as the solution inside this annulus is
what constitutes the quasiconformal method. We have given no proof of convergence
of the outer iterations, or equivalently of the quasiconformal mapping method. How-
ever, from numerical experiments it appears that the quasiconformal mapping method
converges, at least for the set of examples presented here.

This method is computationally very efficient because the number of iterations are
few and, more importantly, it uses the fast algorithm of Daripa [14,16]) for evaluating
the singular operators that arise in this quasiconformal mapping method.

Finally, we want to mention the following areas of current (some ongoing) and
future research:
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• Numerical experiments with more complicated domains and with realistic dilation
should be carried out.

• Construction of quasiconformal mapping methods with dilation specified in the
doubly connected domain is an area of future work.

• In many practical problems [5,12–16], the Beltrami equation itself is required to be
solved in arbitrary domains whose boundaries may not be circular. Development of
similar efficient and spectrally accurate algorithms for solving the Beltrami equation
in an arbitrary domain is nontrivial because the fast algorithms for the singular
integral operators [14,16] which are used here do not easily extend to more general
domains. This is an area of future work.

• A conformal mapping method based on the transformation (4.3) can be constructed
and may be competitive with other conformal mapping methods of doubly connected
domains onto annuli. This is also an area of future work.

• Extension of our method for domains with corners is another area of future work.

• A theoretical proof of convergence of the quasiconformal mapping method is an
area of future work.

• Lastly, practical applications of quasiconformal mapping methods need to be further
explored. Some are mentioned in section 1.
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