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Abstract We develop analysis-based fast and accurate direct algorithms for several
biharmonic problems in a unit disk derived directly from the Green’s functions of
these problems and compare the numerical results with the “decomposition” algo-
rithms (see Ghosh and Daripa, IMA J. Numer. Anal. 36(2), 824–850 2015) in which
the biharmonic problems are first decomposed into lower order problems, most
often either into two Poisson problems or into two Poisson problems and a homo-
geneous biharmonic problem. One of the steps in the “decomposition algorithm”
as discussed in Ghosh and Daripa (IMA J. Numer. Anal. 36(2), 824–850 2015) for
solving certain biharmonic problems uses the “direct algorithm” without which the
problem can not be solved. Using classical Green’s function approach for these bihar-
monic problems, solutions of these problems are represented in terms of singular
integrals in the complex z−plane (the physical plane) involving explicitly the bound-
ary conditions. Analysis of these singular integrals using FFT and recursive relations
(RR) in Fourier space leads to the development of these fast algorithms which are
called FFTRR based algorithms. These algorithms do not need to do anything spe-
cial to overcome coordinate singularity at the origin as often the case when solving
these problems using finite difference methods in polar coordinates. These algo-
rithms have some other desirable properties such as the ease of implementation and
parallel in nature by construction. Moreover, these algorithms have O(logN) com-
plexity per grid point where N2 is the total number of grid points and have very low
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constant behind this order estimate of the complexity. Performance of these algo-
rithms is shown on several test problems. These algorithms are applied to solving
viscous flow problems at low and moderate Reynolds numbers and numerical results
are presented.

Keywords Complex Biharmonic equation · Green’s function · Fast algorithms ·
Stokes equations · Steady incompressible flows · FFT · Recursive relations ·
Numerical implementation in Matlab

1 Introduction

In this paper, we consider boundary value problems for the inhomogeneous complex
biharmonic equation

(∂z∂z̄)
2ω = f (z, z̄), (1)

in the complex z-plane which is the physical x − y plane through the assignment
z = x + iy. Note that the left hand operator of the above equation is the bihar-
monic operator �2 in the physical (real) plane except for a factor of 1/16 (i.e.,
(∂z∂z̄)

2 = �2/16), thus the above equation corresponds to two uncoupled bihar-
monic equations in the physical plane provided the inhomogeneous term f does not
depend on the solution ω and it can be separated into real and imaginary parts. How-
ever, problems associated with these two uncoupled biharmonic equations can be
coupled through the boundary conditions in which case these two coupled problems
can be solved simultaneously by solving the boundary value problem (see the prob-
lem (D1) in Section 2 below) for the complex biharmonic (1). When the source term
f is real and the prescribed boundary values are real, we recover the conventional
inhomogeneous biharmonic problem in the physical plane. Thus, the complex bihar-
monic equation is a more general case and can be used to solve biharmonic problems
in the physical plane as well as in the complex plane.

It should be mentioned that numerical solutions of biharmonic problems in real
plane are constructed by a variety of methods including finite difference [7, 31] (see
also references therein), finite element [8, 11, 12, 29, 32], and integral equation meth-
ods [18–20, 27]. Importance of solving biharmonic problems in the physical plane
cannot be over-emphasized as they also arise as an intermediary step in solving many
linear and nonlinear elliptic and parabolic problems such as problems involving the
Navier-Stokes equations and so on; see [21, 24, 30]. The complex biharmonic prob-
lems, even though less common in applications, do arise (see [30, 35]). Because they
do not arise that often, these have not received much attention except in the most
recent work of the authors [17] on the decomposition approach. This paper is a sequel
to [17].

There are following two general approaches for solving inhomogeneous bihar-
monic problems: (i) the decomposition method in which inhomogeneous biharmonic
problems are decomposed into two Poisson problems and also one homogeneous
biharmonic problem in some cases, as further discussed in the following paragraph.
The homogeneous biharmonic problems are solved in [17] by the direct approach
which we discuss in this paper for the first time. The fast algorithms based on the first
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approach (i.e., the decomposition method) has been recently addressed in [17] and
(ii) the direct method in which these problems are solved directly without the use of
lower order problems such as Poisson problems. This paper is about fast algorithms
based on this direct method in which the classical Green’s function approach provides
integral representations for the solutions of the biharmonic problems in the complex
z-plane (physical plane). Existence of solutions and their integral representations for
four types of biharmonic problems in a unit disk have been recently provided by
Begehr [3–6]. The boundary and domain integrals involved in these representations
are singular. It is well established (see [2, 10, 13–15, 17]) by now that the use of FFT
and Recursive Relations (RR) for the evaluation of these singular integrals results in
fast and accurate algorithms. However, it requires analysis in the complex plane and
careful synthesis of various components to develop the RR relations as we will see in
this paper.

There are several reasons for the development of fast algorithms based on this
direct method. Firstly, solving homogeneous biharmonic problems using the direct
method presented in this paper requires evaluation of boundary integrals only which
can be done rapidly with spectral accuracy as we will see in Section 5. On the other
hand, solving these homogeneous problems using the decomposition method of [17]
significantly reduces the order of accuracy (depending on the quadrature method
used) and increase computational time because the method requires evaluation of vol-
ume integrals since one of the two decomposed problems in this method is a Poisson
problem (see [17]). Moreover, as we have seen in Ghosh and Daripa [17], solving two
of the four boundary value problems ((D1) and (D3) problems) by the decomposition
method requires solving homogeneous biharmonic problems which are efficiently
done by the method proposed here. Secondly, the algorithms based on the direct
method is worth comparing to those ([17]) based on the decomposition method. The
pros and cons of these two different approaches have been discussed later when we
discuss numerical results.

In the FFTRR-based method, we expand the integrals in terms of their Fourier
series and derive their radius dependent Fourier coefficients in terms of one dimen-
sional non-singular integrals. These one-dimensional integrals bear some recursive
relations which are at the heart of the low computational cost of the full algo-
rithms for solving these inhomogeneous biharmonic problems. There are several such
singular integrals which appear in the integral representation of solutions of these
problems. FFTRR-based method is applied to each one of these, and the resulting
formulas are integrated together in an efficient way that give rise to the fast and accu-
rate algorithms for solving these biharmonic problems. These algorithms do not need
to do anything special to overcome the coordinate singularity at the origin as often
the case when solving these problems in polar coordinates using finite difference
methods.

In this paper, we develop such FFTRR-based fast algorithms for four different
types of biharmonic problems inside a unit disk. The problems chosen serve only
as examples for many other complex biharmonic problems (see Begehr [3–6]) for
which similar FFTRR-based fast algorithms can be developed, if desired, using the
procedure outlined here. The FFTRR formulas which make up the algorithms given
in the Section 3 do not need to be translated in real variables for application of the
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fast algorithms to solving real biharmonic problems. However, a complex rewriting
of the real biharmonic problem is necessary for application of the fast algorithms.
This is exemplified in Section 5 where we solve steady incompressible Navier-Stokes
equations in the physical plane. Many problems in plane elasticity [30, 35] are also
naturally formulated as complex biharmonic problems whose solutions can be com-
puted using the fast algorithms developed in this paper. It is conjectured that complex
biharmonic problems can play an important role in applied mathematics and classical
physics.

The algorithms developed in this paper enjoy many desired properties which
include the following: (i) low asymptotic computational complexity: O(logN) per
point where N2 is the total number of grid points; (ii) very low value of the con-
stant in this order estimate meaning the ratio of computational time to (N2 logN)

is small and weakly dependent of N for large N ; (iii) parallel by construction; (iv)
easy to implement; (v) high order accurate (with further qualification, see Section 4)
without additional grid points for the integration of one-dimensional integrals that
appear in these algorithms; and (vi) easily adapted to non-uniform grids as well as to
weakly singular source terms in the inhomogeneous biharmonic equations. All of the
properties will be evident from expositions in this paper except that the last property,
namely (vi), falls outside the scope of this paper and property (iii), which should be
transparent, nonetheless has been briefly explained in Section 3.4. based on a desired
accuracy: this has been addressed in [17] where we solve the biharmonic problems
by using the decomposition method.

This paper is laid out as follows. In Section 2, we present four different types
of biharmonic problems, the integral representations of their solutions arising from
Green’s function approach, and the analysis of these representations using FFTRR
method leading to the development of the basic ingredients for the fast algorithms
presented in Section 3. Numerical results are presented in Section 4. These algo-
rithms are applied to solving low to moderate Reynolds number fluid flow problems
in Section 5. Finally, we conclude in Section 6. In the Appendix, we give the proofs
of various theorems presented in Section 2.

2 Biharmonic problems

In this section, we use the direct approach and develop the mathematical foundation
of fast algorithms for four different types of biharmonic problems ((D1), (D2), (D3),
and (D4), see below) in a unit disc D = {z ∈ C, |z| ≤ 1} in the complex plane.
Each problem is distinguished by a different boundary condition. Using the classical
Green’s function approach, integral representations of the solutions of these problems
have been recently provided by Begehr [5]. These integral representations involve
weakly singular integrals (see the area integrals in Theorems 1, 3, 5, and 7 below
in this section) whose analysis for the purpose of fast and accurate evaluation is
performed in this section. The theorems resulting from this analysis to be used in
the development of the fast algorithms given in the Section 3 are given below and
their proofs are given in the Appendix. We should mention here that the existence
of solutions to problems (D2) and (D4) defined below is given under the assumption
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that the inhomogeneous term f ∈ Lp(D;C), p > 2 (see Begehr [5]). However,
we develop the algorithms for constructing solutions of these problems numerically
under the assumption that is expandable in a Fourier series.

2.1 Dirichlet problem of type (D1)

We first consider the biharmonic equation with Dirichlet-1 (or (D1)) type boundary
conditions. This problem arises in plane elasticity [30].

(∂z∂z̄)
2ω = f, in D,

ω = h0, on ∂D,

∂z̄ω = h1, on ∂D.

⎫
⎬

⎭
(D1)

Henceforth, we refer to it as the (D1) problem. In this and all problems described
below, the inhomogeneous term f and the boundary data (such as h0 and h1 for
the above problem) associated with each problem will in general be functions of
one or both the variables: z and z. It is worth mentioning here that this prob-
lem cannot be decomposed into two Poisson problems only. In order to develop
the fast algorithm in this direct approach, we use the following theorem from
Begehr [5].

Theorem 1 The Dirichlet-1 (D1) biharmonic problem is uniquely solvable for f ∈
L2(D;C), h0 ∈ C2(∂D,C), h1 ∈ C(∂D,C). Its solution is given by

ω(z) = u2(z) + v2(z) + r2(z) + Ĝf (z) (2)

where

u2(z) = 1

2πi

∫

∂D
g1(z, ζ )h0(ζ )

dζ

ζ
, (3)

v2(z) = (1 − |z|2)
2πi

∫

∂D

zζ̄

(1 − zζ̄ )2
h0(ζ )

dζ

ζ
, (4)

r2(z) = − (1 − |z|2)
2πi

∫

∂D
g1(z, ζ )h1(ζ )dζ̄ , (5)

Ĝf (z) = − 1

π

∫∫

D

G2(z, ζ )f (ζ )dξdη, ζ = ξ + i η, (6)

G2(z, ζ ) = |ζ − z|2 log
∣
∣
∣
∣
1 − zζ̄

ζ − z

∣
∣
∣
∣

2

− (1 − |z|2)(1 − |ζ |2), (7)

g1(z, ζ ) = −1

2
∂νG1(z, ζ ) = 1

1 − zζ̄
+ 1

1 − z̄ζ
− 1. (8)

Here, G2(z, ζ ) is the Green’s function for the (D1) biharmonic problem but with
homogeneous boundary conditions and G1 is the harmonic Green’s function.
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We write Ĝf (z)) = I3(z) + I4(z) + I5(z), where

I3(z) = (1 − |z|2)
π

∫∫

D

f (ζ )(1 − |ζ |2)dξdη, (9)

I4(z) = − 2

π

∫∫

D

|ζ − z|2 log |1 − zζ̄ |f (ζ )dξdη, (10)

I5(z) = 2

π

∫∫

D

|ζ − z|2 log |ζ − z|f (ζ )dξdη. (11)

The Fourier coefficients of the solution ω(z) to the (D1) biharmonic problem is
embedded in the following theorem. Its proof is given in the Appendix.

Theorem 2 If ω(r, α) is the solution of the (D1) biharmonic problem, z =
reiα , f (reiα) =

∞∑

n=−∞
fn(r)e

inα, h0(e
iα) =

∞∑

n=−∞
ane

inα, and h1(e
iα) =

∞∑

n=−∞
bne

inα, then the Fourier coefficients ωn(r) of ω(z) can be written as

ωn(r) = I3,n(r) + I4,n(r) + I5,n(r) + u2,n(r) + v2,n(r) + r2,n(r),

where

u2,n(r) =
{

anr
|n|, if n �= 0,

a0, if n = 0,
(12)

v2,n(r) =
{

(1 − r2)
(2)n−1
(n−1)! r

nan, if n ≥ 1,
0, if n < 1,

(13)

where (x)n = �(x+n)
�(x)

,

r2,n(r) =
{

b1+nr
|n|(1 − r2), if n �= 0,

b1(1 − r2), if n = 0,
(14)

I3,n(r) =
{
2(1 − r2)

∫ 1
0 f0(ρ) ρ(1 − ρ2) dρ, if n = 0,

0, if n �= 0.
(15)

Moreover, I4,n = I
(1)
4,n + I

(2)
4,n + I

(3)
4,n + I

(4)
4,n where

I
(1)
4,n(r) =

{

2r2
∫ 1
0 fn(ρ)

(rρ)|n|
|n| ρdρ, if n �= 0,

0, if n = 0,
(16)

I
(2)
4,n(r) =

{

2
∫ 1
0 fn(ρ)

(rρ)|n|
|n| ρ3dρ, if n �= 0,

0, if n = 0,
(17)
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I
(3)
4,n(r) =

⎧
⎪⎨

⎪⎩

− 2
(n+1)

∫ 1
0 fn(ρ)(rρ)n+2ρdρ, if n > −1,

2
(n+1)

∫ 1
0 fn(ρ)(rρ)−nρdρ, if n < −1,

0, if n = −1,

(18)

I
(4)
4,n(r) =

⎧
⎪⎨

⎪⎩

− 2
(n−1)

∫ 1
0 fn(ρ)(rρ)nρdρ, if n > 1,

2
(n−1)

∫ 1
0 fn(ρ)(rρ)2−nρdρ, if n < 1,

0, if n = 1.

(19)

and I5,n = I
(1)
5,n + I

(2)
5,n + I

(3)
5,n + I

(4)
5,n where

I
(1)
5,n(r) =

⎧
⎨

⎩

−2r2
[∫ r

0 fn(ρ)(
ρ
r
)|n| ρ

|n|dρ + ∫ 1
r
fn(ρ)( r

ρ
)|n| ρ

|n|dρ
]
, if n �= 0,

4r2
[∫ r

0 f0(ρ)
(

ρ
r

)
r log rdρ + ∫ 1

r
f0(ρ)ρ log ρdρ

]
, if n = 0,

(20)

I
(2)
5,n(r) =

⎧
⎨

⎩

−2
|n|

[∫ r

0 fn(ρ)(
ρ
r
)|n|ρ3dρ + ∫ 1

r
fn(ρ)( r

ρ
)|n|ρ3dρ

]
, if n �= 0,

4
[∫ r

0 f0(ρ)
(

ρ
r

)3
r3 log rdρ + ∫ 1

r
f0(ρ)ρ3 log ρdρ

]
, if n = 0,

(21)

I
(3)
5,n(r) =

⎧
⎨

⎩

2r
|n+1|

[∫ r

0 fn(ρ)(
ρ
r
)|n+1|ρ2dρ + ∫ 1

r
fn(ρ)( r

ρ
)|n+1|ρ2dρ

]
,if n �= −1,

−4r
[∫ r

0 f−1(ρ)ρ2 log rdρ + ∫ 1
r
f−1(ρ)ρ2 log ρdρ

]
, if n = −1,

(22)

I
(4)
5,n(r) =

⎧
⎨

⎩

2r
|n−1|

[∫ r

0 fn(ρ)(
ρ
r
)|n−1|ρ2dρ + ∫ 1

r
fn(ρ)( r

ρ
)|n−1|ρ2dρ

]
, if n �= 1,

−4r
[∫ r

0 f1(ρ)ρ2 log rdρ + ∫ 1
r
f1(ρ)ρ2 log ρdρ

]
, if n = 1.

(23)

2.2 Dirichlet problem of type (D2)

Consider the biharmonic equation with Dirichlet-2 (or (D2)) type boundary condi-
tions. The following theorem is taken from Begehr [5]. This problem is sometimes
called Riquier and also Navier problem. This problem arises in the theory of
elasticity, specially in modeling bending of plates (see [25]).

Theorem 3 The Dirichlet-2 problem for the biharmonic equation given by

(∂z∂z̄)
2ω = f, in D,

ω = h0, on ∂D,

∂z∂z̄ω = h2, on ∂D.

⎫
⎬

⎭
(D2)
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is uniquely solvable for f ∈ Lp(D;C), p > 2, h0 ∈ C(∂D;C), h2 ∈ C(∂D;C)

and the solution is given by

ω(z) = u2(z) + v3(z) + Gf (z),

where

u2(z) = 1

2πi

∫

∂D
g1(z, ζ )h0(ζ )

dζ

ζ
, (24)

v3(z) = 1

2πi

∫

∂D
H2(z, ζ )h2(ζ )

dζ

ζ
, (25)

Gf (z) = − 1

π

∫∫

D

G12(z, ζ )f (ζ )dξdη, (26)

H2(z, ζ ) = (1 − |z|2)
[
1

zζ̄
log(1 − zζ̄ ) + 1

z̄ζ
log(1 − z̄ζ ) + 1

]

, (27)

G12(z, ζ ) = |ζ − z|2 log
∣
∣
∣
∣
1 − zζ̄

ζ − z

∣
∣
∣
∣

2

+ (1− |z|2)(1− |ζ |2)

×
[
log(1 − zζ̄ )

zζ̄
+ log(1 − z̄ζ )

z̄ζ

]

(28)

Here, G12(z, ζ ) is the Green’s function for the (D2) biharmonic problem but with
homogeneous boundary conditions and g1(z, ζ ) in (24) is given by (8).

Substituting the expressions for H2(z, ζ ) from (27) in (25), we obtain the
following integral representation for v3(z).

v3(z) = 1

2πi
(1 − |z|2)

∫

∂D

h2(ζ ) log(1 − zζ̄ )

z|ζ |2 dζ

+ 1

2πi
(1 − |z|2)

∫

∂D

h2(ζ ) log(1 − ζ z̄)

z̄ζ 2
dζ + 1

2πi
(1 − |z|2)

∫

∂D
h2(ζ )

dζ

ζ
.

= v
(1)
3 (z) + v

(2)
3 (z) + v

(3)
3 (z). (29)

Also, substituting G12(z, ζ ) from (28) in (26) and recalling ζ = ξ + i η, we obtain

Gf (z) = I4(z) + I5(z) + I6(z) + I7(z), (30)

where I4(z) and I5(z) are given before (see (10) and (11)) and

I6(z) = − 1

π

(1 − |z|2)
z

∫∫

D

(1 − |ζ |2) log(1 − ζ̄ z))

ζ̄
f (ζ )dξdη, (31)

I7(z) = − 1

π

(1 − |z|2)
z̄

∫∫

D

(1 − |ζ |2) log(1 − z̄ζ ))

ζ
f (ζ )dξdη. (32)

We develop fast and accurate algorithms to evaluate the singular integrals appearing
above in the expression of Gf (z). Since we assume f is smooth, the integrands in
these integrals have removable singularities. As we will see below, evaluation of the
Fourier coefficients of these integrals using the following theorem (for proof, see the
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Appendix) leads to evaluation of one-dimensional nonsingular integrals in the fast
algorithm for solving the (D2) biharmonic problem.

Theorem 4 If ω(r, α) is the solution of the (D2) biharmonic problem, z =
reiα , f (reiα) =

∞∑

n=−∞
fn(r)e

inα, h0(e
iα) =

∞∑

n=−∞
ane

inα, and h2(e
iα) =

∞∑

n=−∞
cne

inα , then the Fourier coefficients ωn(r) of ω(r, α) can be written as

ωn(r) = I4,n(r) + I5,n(r) + I6,n(r) + I7,n(r) + u2,n(r) + v3,n(r),

where I4,n(r), I5,n(r) and u2,n(r) are same as in Theorem 2 and

I6,n(r) =
{

2(1−r2)rn

(n+1)

∫ 1
0 fn(ρ) ρ(n+1)(1 − ρ2) dρ, if n ≥ 0,

0, if n < 0,
(33)

I7,n(r) =
{

2(1−r2)r−n

(1−n)

∫ 1
0 fn(ρ) ρ(1−n)(1 − ρ2) dρ, if n ≤ 0,

0. if n > 0,
(34)

v3,n(r) =
{

cn(r |n|+2−r |n|)
n+1 , if n �= 0,

c0(1 − r2), if n = 0.
(35)

Next, we consider two biharmonic problems having Neumann type boundary
conditions.

2.3 Dirichlet-Neumann problem of type (D3)

The first problem we consider with Neumann type boundary conditions is called the
Dirichlet-Neumann1 (D3) biharmonic problem below. This problem arises in radar
imaging [1] as well as in fluid mechanics. The following theorem is taken from
Begehr [5].

Theorem 5 The Dirichlet-Neumann1 (D3) biharmonic problem is given by

(∂z∂z̄)
2ω = f, in D,

ω = h0, on ∂D,

∂νω = h1, on ∂D,

⎫
⎬

⎭
(D3)

is uniquely solvable for f ∈ L1(D;C), h0 ∈ C2(∂D;C), and h1∈ C1(∂D;C).
The integral representation of its solution based on classical Green’s function
approach [5] is given by

ω(z) = (1+|z|2)
4πi

∫

∂D
g1(z, ζ )h0(ζ )

dζ
ζ

+ (1−|z|2)
4πi

∫

∂D
g2(z, ζ )h0(ζ )

dζ
ζ

− (1−|z|2)
2πi

∫

∂D
g1(z, ζ )h1(ζ )

dζ
ζ

− 1
π

∫∫

D
G2(z, ζ )f (ζ )dξdη,
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where

g2(z, ζ ) = 1

(1 − zζ̄ )2
+ 1

(1 − z̄ζ )2
− 1,

and G2(z, ζ ), g1(z, ζ ) are given by (3) and (8) respectively. We again remind here
that ζ = ξ + i η.

We write ω(z) as

ω(z) = u3(z) + h3(z) + r3(z) + I3(z) + I4(z) + I5(z) (36)

where

u3(z) = (1 + |z|2)
4πi

∫

∂D

g1(z, ζ )h0(ζ )
dζ

ζ
, (37)

h3(z) = (1 − |z|2)
4πi

∫

∂D

g2(z, ζ )h0(ζ )
dζ

ζ
, (38)

r3(z) = − (1 − |z|2)
4πi

∫

∂D

g1(z, ζ )h1(ζ )
dζ

ζ
. (39)

The terms I3(z), I4(z), and I5(z) are given in (9), (10), and (11), respectively. Evalu-
ation of the Fourier coefficients of these integrals using the following theorem (for a
proof, see the Appendix) will lead to the desired fast algorithm for solving the (D3)
biharmonic problem.

Theorem 6 If ω(r, α) is the solution of the (D3) biharmonic problem defined in

Theorem 5, z = reiα , f (reiα) =
∞∑

n=−∞
fn(r)e

inα, h0(e
iα) =

∞∑

n=−∞
ane

inα, and

h1(e
iα) =

∞∑
n=−∞

bne
inα, then the Fourier coefficients ωn(r) of ω(r, α) can be written

as

ωn(r) = I3,n(r) + I4,n(r) + I5,n(r) + u3,n(r) + h3,n(r) + r3,n(r),

where the Fourier coefficients of the boundary integrals are given by

u3,n(r) =
{

1+r2

2 r |n|an, if n �= 0,
1+r2

2 a0, if n = 0,

h3,n(r) =
{

(1−r2)
2

(2)|n|
|n| r |n|an, if n �= 0,

(1−r2)
2 a0, if n = 0,

r3,n(r) =
{

− (1−r2)
2 bnr

|n|, if n �= 0,

− (1−r2)
2 b0, if n = 0.
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The Fourier coefficients I3,n(r), I4,n(r), and I5,n(r) have already been evaluated in
Theorem 2.

2.4 Dirichlet-Neumann problem of type (D4)

We now consider a second kind of biharmonic problems called Dirichlet-Neumann2
(D4) biharmonic problem. The following theorem is taken from Begehr [5].

Theorem 7 The Dirichlet-Neumann2 (D4) biharmonic problem given by

(∂z∂z̄)
2w = f, in D,

w = h0, on ∂D,

∂νwzz = h2, on ∂D,

k = 1
2π i

∫

∂D
wzz(z)

dz
z

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(D4)

is uniquely solvable for f ∈ Lp(D;C), p > 2, h0, h2∈ (∂D;C) if and only if
1
4i

∫

∂D h2(ζ )
dζ
ζ

= ∫

D f (ζ )dξdη and the solution obtained directly using the Green’s
function is given by

w(z) = k(|z|2 − 1) + 1

2πi

∫

∂D

g1(z, ζ )h0(ζ )
dζ

ζ
+ 1

4πi

∫

∂D

G13(z, ζ )h2(ζ )
dζ

ζ

− 1

π

∫∫

D

G13(z, ζ )f (ζ )dξdη, (40)

where g1(z, ζ ) is the function defined in (8), and

G13(z, ζ ) = −|ζ − z|2 log |ζ − z|2

−(1 − |z|2)
(

4 + (1 − zζ̄ )

zζ̄
log(1 − zζ̄ ) + (1 − z̄ζ )

z̄ζ
log(1 − z̄ζ )

)

− (ζ − z)(1 − zζ̄ )

z
log(1 − zζ̄ ) − (ζ − z)(1 − z̄ζ )

z̄
log(1 − z̄ζ ).

(41)

We write w(z) as

w(z) = k(|z|2 − 1) + u2(z) + V (z) + I (z), (42)

where

u2(z) = 1

2πi

∫

∂D
g1(z, ζ )h0(ζ )

dζ

ζ
, (43)

V (z) = 1

4πi

∫

∂D
G13(z, ζ )h2(ζ )

dζ

ζ
, (44)

I (z) = − 1

π

∫∫

D

G13(z, ζ )f (ζ )dξdη. (45)
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We notice here that u2(z) is similar to u3(z) (see (37)). The other two integrals above,
namely V (z) and I (z), are evaluated as follows. We write V (z) = V (1)(z)+V (2)(z)+
V (3)(z) + V (4)(z) where

V (1)(z) = − 1

4πi

∫

∂D
|ζ − z|2 log |ζ − z|2h2(ζ )

dζ

ζ
,

V (2)(z) = − (1 − |z|2)
4πi

∫

∂D

(

4 + (1 − zζ̄ )

zζ̄
log(1 − zζ̄ ) + (1 − z̄ζ )

z̄ζ
log(1 − z̄ζ )

)

h2(ζ )
dζ

ζ
,

V (3)(z) = − 1

4πi

∫

∂D

(ζ − z)(1 − zζ̄ )

z
log(1 − zζ̄ )h2(ζ )

dζ

ζ
,

V (4)(z) = − 1

4πi

∫

∂D

(ζ − z)(1 − z̄ζ )

z̄
log(1 − z̄ζ )h2(ζ )

dζ

ζ
.

Also, we write I (z) = I5(z) − I ′
6(z) − I ′

7(z) + I8(z) + I9(z) + I10(z) where I5(z) is
given in (11) and where

I ′
6(z) = (1 − |z|2)

πz

∫

D

(1 − zζ̄ ) log(1 − zζ̄ )

ζ̄
f (ζ )dξdη,

I ′
7(z) = (1 − |z|2)

πz̄

∫

D

(1 − ζ z̄)

ζ
log(1 − ζ z̄)f (ζ )dξdη,

I8(z) = 4

π
(1 − |z|2)

∫∫

D

f (ζ )dξdη,

I9(z) = 1

π

∫∫

D

(ζ − z)(1 − zζ̄ )

z
log(1 − zζ̄ )f (ζ )dξdη,

I10(z) = 1

π

∫∫

D

(ζ − z)(1 − z̄ζ )

z̄
log(1 − z̄ζ )f (ζ )dξdη.

We now consider the following theorem for the Fourier coefficients of the solution to
the (D4) biharmonic problem but the details for the coefficients are provided in the
Appendix.

Theorem 8 If w(r, α) is the solution of the (D4) biharmonic problem men-

tioned in Theorem 7, and z = reiα , f (reiα) =
∞∑

n=−∞
fn(r)e

inα, h0(e
iα) =

∞∑

n=−∞
ane

inα, and h2(e
iα) =

∞∑

n=−∞
cne

inα, then the Fourier coefficients ωn(r) of

ω(r, α) can be written as wn(r) = u2,n(r)+V
(1)
n (r)+V

(2)
n (r)+V

(3)
n (r)+V

(4)
n (r)−

I5,n(r)−I6,n(r)−I7,n(r)+I8,n(r)+I9,n(r)+I10,n(r), where the Fourier coefficients
of the integrals are given in the Appendix.

Summary Before we move on to the next section, we summarize some salient fea-
tures of the above theorems involving the Fourier coefficients of solutions of four
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types of biharmonic problems discussed above. In the Theorems 2, 4, 6, and 8,
expressions for the Fourier coefficients of solutions of the four biharmonic prob-
lems are given. They all involve I5,n(r) which is explicitly given in the Theorem 2
(see (20) through (23)). As can be seen from these expressions, evaluation of I5,n(r)

requires numerical evaluation of one-dimensional integrals. In the next subsection,
we develop some recursive relations (see (48) and (52)) for these integrals which
are at the heart of the fast algorithms presented in the next Section 3. These recur-
sive relations are compactly written using notations which we introduce first in the
subsection below before writing down the recursive relations.

2.5 Recursive relations

As mentioned above, we introduce below some notations purely for the convenience
of developing the recursive relations (48), (49), (52) and (53) for the singular integral
I5(z) which will be used in the development of the fast algorithms in Section 3. We
define the following for (j, k) = (1, 1) and (2, 3),

p
(j)

1,n(r) = −2
∫ r

0 fn(ρ)
(

ρ
r

)n ρk

n
dρ, if n > 0

p
(j)

2,n(r) = −2
∫ 1
r
fn(ρ)

(
r
ρ

)n
ρk

n
dρ, if n > 0

s
(j)

1,n(r) = 2
∫ r

0 fn(ρ)
(

r
ρ

)n
ρk

n
dρ, if n < 0

s
(j)

2,n(r) = 2
∫ 1
r
fn(ρ)

(
ρ
r

)n ρk

n
dρ, if n < 0

t
(j)

1,0(r) = 4
∫ r

0 f0(ρ)
(

ρ
r

)k
dρ,

t
(j)

2,0(r) = 4
∫ 1
r
f0(ρ)ρk log ρ dρ.

For (j, k) = (3, −1) when n > −1 and for (j, k) = (4, 1) when n > 1, we define

p
(j)

1,n(r) = 2
∫ r

0
fn(ρ)

(ρ

r

)(n−k) ρ2

(n − k)
dρ,

p
(j)

2,n(r) = 2
∫ 1

r

fn(ρ)

(
r

ρ

)(n−k)
ρ2

(n − k)
dρ,

s
(j)

1,n(r) = −2
∫ r

0
fn(ρ)

(
r

ρ

)(n−k)
ρ2

(n − k)
dρ,

s
(j)

2,n(r) = −2
∫ 1

r

fn(ρ)
(ρ

r

)(n−k) ρk

(n − k)
dρ,

t
(j)

1,k (r) = −4
∫ r

0
fk(ρ)ρ2 dρ,

t
(j)

2,k (r) = −4
∫ 1

r

fk(ρ)ρ2 log ρ dρ.

Corollary 1 It follows from the notations above that p(j)

1,n(0) = p
(j)

2,n(1) = s
(j)

1,n(0) =
s
(j)

2,n(1) = t
(j)

1,n(0) = t
(j)

2,n(1) = 0, for j = 1, 2, 3, 4, and for values of n given above.
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Corollary 2 Let 0 < r1 < r2 < · · · · · < rM = 1. For rj > ri , 1 ≤ i, j ≤ M if

A
i,j

n,1 = 2
∫ rj

ri

fn(ρ)

(
RA

ρ

)n
ρ

n
dρ, B

i,j

n,1 = 2
∫ rj

ri

fn(ρ)

(
ρ

RB

)n
ρ

n
dρ, (46)

and

A
i,j

0,1 = 4
∫ rj

ri

f0(ρ)

(
ρ

rj

)

dρ, B
i,j

0,1 = 4
∫ rj

ri

f0(ρ)ρ log ρ dρ, (47)

where

RA =
{

ri, if n > 0,
rj , if n < 0,

RB =
{

rj , if n > 0,
ri , if n < 0,

then for 1 ≤ i, j ≤ M and rl < ri < rj we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(1)
1,n(ri) =

(
rl
ri

)n

p
(1)
1,n(rl) − B

l,i
n,1, if n > 0,

p
(1)
2,n(ri) =

(
ri
rj

)n

p
(1)
2,n(rj ) − A

i,j

n,1, if n > 0,

s
(1)
1,n(ri) =

(
ri
rl

)n

s
(1)
1,n(rl) + A

l,i
n,1, if n < 0,

s
(1)
2,n(ri) =

(
rj
ri

)n

s
(1)
2,n(rj ) + B

l,j

n,1, if n < 0,

t
(1)
1,0(ri) =

(
rl
ri

)
t
(1)
1,0(rl) + A

l,i
0,1,

t
(1)
2,0(ri) = t

(1)
2,0(rj ) + B

i,j

0,1,

(48)

and

I
(1)
5,n(ri) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r2i

(
ri log ri t

(1)
1,n(rl) + t

(1)
2,n(ri)

)
, if n = 0,

r2i

(
p

(1)
1,n(ri) + p

(1)
2,n(ri)

)
, if n > 0,

r2i

(
s
(1)
1,n(ri) + s

(1)
2,n(ri)

)
, if n < 0,

(49)

In a similar fashion with definitions of A
i,j

n,2, B
i,j

n,2 for 1 ≤ i, j ≤ M , we build the

recursive relations for I
(2)
5,n(r).

Corollary 3 Let 0 < r1 < r2 < · · · · · < rM = 1 and for rj > ri , 1 ≤ i, j ≤ M if

A
i,j

n,3=2
∫ rj

ri

fn(ρ)

(
R

ρ

)(n+1)
ρ2

(n+1)
dρ, B

i,j

n,3=2
∫ rj

ri

fn(ρ)
( ρ

R

)(n+1) ρ3

(n+1)
dρ,

(50)
and

A
i,j

−1,3 = 4
∫ rj

ri

f−1(ρ)ρ2 dρ, B
i,j

−1,3 = 4
∫ rj

ri

f−1(ρ)ρ2 log ρ dρ. (51)

where

RA =
{

ri, if n > −1,
rj , if n < −1,

RB =
{

rj , if n > −1,
ri , if n < −1,
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then for l = 1 · · · · · ·M and rl < ri < rj we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(3)
1,n(ri) =

(
rl
ri

)(n+1)
p

(3)
1,n(rl) + B

l,i
n,3, if n > −1,

p
(3)
2,n(ri) =

(
ri
rj

)(n+1)
p

(3)
2,n(rj ) + A

i,j

n,3, if n > −1,

s
(3)
1,n(ri) =

(
ri
rl

)(n+1)
s
(3)
1,n(rl) − A

l,i
n,3, if n < −1,

s
(3)
2,n(ri) =

(
rj
ri

)(n+1)
s
(3)
2,n(rj ) − B

l,j

n,3, if n < −1,

t
(3)
1,−1(ri) = t

(3)
1,−1(rl) − A

l,i
−1,3,

t
(3)
2,−1(ri) = t

(3)
2,−1(rj ) − B

i,j

−1,3,

(52)

and

I
(3)
5,n(ri) =

⎧
⎪⎪⎨

⎪⎪⎩

ri log ri t
(3)
1,n(ri) + ri t

(3)
2,n(ri), if n = −1,

ri

(
p

(3)
1,n(ri) + p

(3)
2,n(ri)

)
, if n > −1,

ri

(
s
(3)
1,n(ri) + s

(3)
2,n(ri)

)
, if n < −1,

(53)

Applying similar idea and with similar definitions ofAi,j

n,4, B
i,j

n,4 for 1 ≤ i, j ≤ M , we

build the recursive relations for I
(4)
5,n(r). In the case when the inhomogeneous term f

and the boundary conditions are real, the relation fn = f−n can be exploited to avoid
some of the recursive relations. These recursive relations can be further simplified
in this case. For details in the context of such algorithms for problems involving
Poisson’s equation, see Borges and Daripa [10]. Such simplified recursive relations
have been made use of in solving fluid flow problems discussed in Section 5.

2.6 Quadrature Method

We discuss here the quadrature methods employed to compute A
i,j
n,k and B

i,j
n,k . We use

Trapezoidal rule and Euler-Maclaurin expansion to compute the integrals. Here, we
provide some theorems from Sidi and Israeli [34] for the Euler-Maclaurin expansion
that we have used for computing the integrals. Let xl = a + lh, l = 0, 1, ..M, h =
b−a
M

and M a positive integer. We state the following theorems.

Theorem 9 If a function f (x) is 2n times differentiable on [a, b] then
∫ b

a

f (x)dx = h

ṁ∑

i=0

f (xi) +
n−1∑

ν=1

B2ν

2ν
[f (2ν−1)(a) − f (2ν−1)(b)]h2ν + R2n[f ; (a, b)]

where

R2n[f ; (a, b)] = h2n
∫ b

a

B̄2n[(x − a)/h] − B2n

2n
f (2n)(x)dx.

Bν are the Bernoulli numbers and B̄ν(x) are periodic Bernoullian function of order

ν and
ṁ∑

i=0

f (xi) is the summation with the first and the last terms multiplied with 1
2 .



952 Numer Algor (2017) 75:937–971

Theorem 10 If a function f (x) is 2n times differentiable on [a, b] and F(x) =
(x − a)sf (x), s > −1 then

∫ b

a

F (x)dx = h

ṁ∑

i=1

F(xi) −
n−1∑

ν=1

B2ν

(2ν)! [F
(2ν−1)(b)h2ν

−
2n−1∑

ν=0

ζ(−s − ν)

ν! f (ν)(a)hν+s+1 + ρ2n

where ζ(t) is the Riemann zeta function for Re(t) > 1 and ρ2n = O(h2n) as h → 0.

In our implementation to compute A
i,j
n,k and B

i,j
n,k , we used m = 1 for each

i = 1, 2...M and the first-order derivative of the integrands of A
i,j
n,k and B

i,j
n,k are com-

puted for ν = 1, to incorporate the correction term as given in the theorems. These
theorems provide a very high order accuracy for computing A

i,j
n,k and B

i,j
n,k .

3 Fast algorithms

Recall where problems (D1), (D2), (D3), and (D4) are introduced in the paper. We
now build fast, high-order accurate algorithms for solving the biharmonic problems.
Below, the numerical algorithms are presented only for problems (D1) and (D2). The
algorithms for problems (D3) and (D4) are similar and can be easily formulated.
For the fast algorithms developed below, the unit disk is discretized into M × N

equidistant points, M in the radial direction and N in the angular direction. Let 0 =
r1 < r2 < . . . < rM = 1.

3.1 Algorithm for (D1) biharmonic problem

Now, we consider the algorithm for the (D1) biharmonic problem. The algorithm is
similar for the (D3) biharmonic problem.

Initialization: Choose M and N. Define K = N
2 .

Inputs: M, N, h0(e
2πik
N ), h1(e

2πik
N ), f (rle

2πik
N ), for l = 1, · · · , M, for k =

1, · · · , N.

Step 1. Compute the Fourier coefficients an, bn, fn using FFT for n = (−K +
1), · · · , K.

Step 2. Compute u2,n(rl), v2,n(rl), r2,n(rl), I3,n(rl), I
(k)
4,n(rl) to obtain

I3(z), I4(z), u2(z), v2(z), r2(z) using (12), (13), (14), (15), (16), (17),
(18), and (19), respectively, for n = (−K + 1), · · · , K, for l =
1, · · · M, and for k = 1, · · · , 4

Step 3. Compute A
i,i+1
n,k , B

i,i+1
n,k for i = 1 · · · , (M − 1), for n = (−K +

1), · · · , K, and for k = 1, · · · , 4 using (46), (47), (50), and (51) in
Corollaries 2 and 3.
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Step 4. Compute the recursive relations p
(j)

1,n(rl), p
(j)

2,n(rl), t
(j)

1,n(rl), t
(j)

2,n(rl) for

n = 0, · · · , K and s
(j)

1,n(rl), s
(j)

2,n(rl) for n = (−K + 1), · · · , −1, for j =
1, · · · , 4 and for l = 1, · · · , M using Corollaries 2 and 3 as shown in the
following pseudocodes.
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Step 5. Compute I5,n(rl), for n = (−K + 1), · · · , K, for l = 1, · · · , M using
Corollaries 2 and 3.

Step 6. Finally, compute ω(rle
2πik
N ) =

K∑

n=−K+1

(u2(rl) + v2(rl) + r2(rl) + I3(rl) + I4

(rl) + I5(rl)) e
2πnik

N using FFT for k = 1, · · · , N, l = 1, · · · , M.

3.2 Algorithm for (D2) biharmonic problem

Now, we consider the algorithm for the (D2) biharmonic problem. The algorithm is
similar for the (D4) biharmonic problem.
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Initialization: Choose M and N. Define K = N
2 .

Inputs: M, N, h0(e
2πik
N ), h2(e

2πik
N ), f (rle

2πik
N ), for l = 1, · · · , M, for k =

1, · · · , N.

Step 1. Compute the Fourier coefficients an, cn, fn using FFT for n = (−K +
1), · · · , K.

Step 2. Compute u2,n(rl), v3,n(rl), I
(k)
4,n(rl), I6,n(rl), I7,n(rl), to obtain

I4(z), I6(z), I7(z) using (12), (35), (16), (17), (18) (19), (33), (34) respec-
tively for n = (−K + 1), · · · , K, for l = 1, · · · , M, and for k =
1, · · · , 4.

Step 3. Compute A
i,i+1
n,k , B

i,i+1
n,k for i = 1, · · · (M − 1), for n = (−K +

1), · · · , K, and for k = 1, · · · , 4 using (46), (47), (50), (51) in Corollar-
ies 2 and 3.

Step 4. Compute p
(j)

1,n(rl), p
(j)

2,n(rl) for n = 1, · · · , K and s
(j)

1,n(rl), s
(j)

2,n(rl) for

n = (−K + 1), · · · , −1 t
j

1,0(rl), t
j

2,0(rl), for j = 1, · · · , 4 and for l =
1, · · · , M using Corollaries 2 and 3 with the following recursive relations
as in the previous algorithm with (D1) biharmonic problem.

Step 5. Compute I5,n(rl), for n = (−K + 1), · · · , K and l = 1, · · · , M using
Corollaries 2 and 3.

Step 6. Finally compute ω(rle
2πik
N ) using FFT for k = 1, · · · , N, l = 1, · · · , M.

3.3 Computational complexity

The asymptotic operation counts for the (D1) biharmonic problem is discussed in
Table 1. It is the same for all other problems. The table shows that the theoretical
computational complexity is of the order of O(logN) per point where N2 is the total
number of degrees of freedom.

3.4 Parallel algorithms

The FFTRR-based methods offer good parallelization opportunities. The intrinsic
parallelism in the sequential fast algorithms given in Section 3 can be identified in

Table 1 The complexity at each step for the (D1) biharmonic problem

StepOperation Count

1 The M discrete Fourier transforms of N data sets contribute O(MN logN).

2 Computation of I3,n, I4,n, u2,n, v2,n, r2,n contribute O(MN).

3 Computation of A
i,i+1
n,j and B

i,i+1
n,j , i = 1, · · · (M − 1), n = (−K + 1), · · · ,K , j = 1, · · · , 4

contribute O(MN).

4 Computation of each p
(j)

1,n, p
(j)

2,n, s
(j)

1,n, s
(j)

2,n, t
(j)

1,0 , t
(j)

2,0 , j = 1, · · · , 4 contribute O(MN).

5 Computation I5,n(rl ), l = 1, · · · ,M , n = (−K + 1), · · · ,K contributeO(MN).

6 Computation ofω(rle
2πik
N ), k = 1, · · · N, l = 1 · · · ,M by FFT contributesO(MN logN) forM×N

grid points.
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steps 1 and 6 where two groups of Fourier transforms are evaluated independently
for each fixed radius. Consequently, their computations can be performed in par-
allel. Recursive relations also offer efficient implementation of the algorithms by
redefining the inherently sequential recurrences present in the sequential algorithms
presented above. These and related communication issues between processors have
been explained in considerable detail through the formulation of FFTRR-based fast
parallel algorithms for the evaluation of singular integrals (see Borges and Daripa [9])
and for the solution of Dirichlet and Neumann problems for Poisson’s equation (see
Borges and Daripa [10]). Parallel versions of the sequential fast algorithms given in
Section 3 can be developed using these same principles. Development of such paral-
lel fast algorithms for the biharmonic problems considered in this paper falls outside
the scope of this paper and will be taken up in the future.

4 Numerical results

This section consists of two parts: (i) validation of the algorithms and comparing
the accuracy of the method with that of the method based on the “decomposition”
method (see [17]) and (ii) application of these to solving low to moderate Reynolds
number steady fluid flow problems within a disk. Since the algorithm is based on
exact analysis, the error in the numerical computation arises from the evaluation of
the one dimensional integrals in the algorithm and the truncation of the Fourier series.
The integrands ρ log ρ and ρ2 log ρ in the integrals (47) and (51), respectively, varies
rapidly near the origin where some care is necessary in accurate evaluation of these
integrals. In our implementation, we have found that replacing log ρ by log (ρ + ε)

with ε = O(0.01) when ri = 0 in these integrals (see (47) and (51) ) improves the
overall accuracy of the solutions. In the future, we will explore in detail on even more
accurate evaluation of these integrals which will perhaps help obtain very high-order
accurate solutions.

Numerical implementations of the algorithms were done in MATLAB, and com-
putations were performed using double precision arithmetic. The algorithms were
first tested on several examples to validate the algorithms and the code. For each type
of biharmonic problems ((D1) through (D4) as described in Section 2), the source

Table 2 Relative errors for the
(D2) Ex.1 in || · ||∞ using
Euler-Maclaurin formula with
N = 8

Direct method Decomposition method

M || · ||∞ order || · ||∞ order

16 6.8 × 10−5 − 4.7 × 10−5 −
32 2.8 × 10−6 4.6 2.5 × 10−6 4.2

64 1.5 × 10−7 4.2 1.5 × 10−7 4.1

128 9.2 × 10−9 4.1 8.9 × 10−9 4.1

256 5.6 × 10−10 4.0 5.5 × 10−10 4.0

512 3.5 × 10−11 4.0 3.4 × 10−11 4.0
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Table 3 Relative error for the
(D1) Ex.2 in || · ||∞ using
Euler-Maclaurin formula with
N = 32

Direct Method Decomposition Method

M || · ||∞ order || · ||∞ order

16 5.0 × 10−2 − 1.2 × 10−3 −
32 1.2 × 10−2 2.1 1.0 × 10−4 3.6

64 3.0 × 10−3 2.0 8.0 × 10−6 3.7

128 7.4 × 10−4 2.0 6.4 × 10−7 3.6

256 1.8 × 10−4 2.0 5.2 × 10−8 3.6

512 4.5 × 10−5 2.0 4.1 × 10−9 3.7

term and boundary data were generated from the solution of the problem which was
chosen a priori. We show computational results using the following examples (iden-
tified by the chosen solutions) to highlight some of the accuracy issues we noticed
for the algorithms with these examples. We computationally evaluate the accuracy
and complexity of these algorithms below using the following examples (identified
by the chosen solutions).

1. ω = z2z̄4.

2. ω = iz3z̄4.

3. ω = z
3
2 z̄

5
2 + iz

5
2 z̄

9
2 .

We show and discuss the numerical solutions of the (D2) problem for the first
example, (D1) and (D3) problems for the second example and (D4) problem for the
third example. Tables 2, 3, 4 and 5 show relative errors in the numerical solutions
for these problems obtained with the algorithms of the direct method presented in
this paper. These tables also compare these relative errors with the same obtained
with the “decomposition” method presented in Ghosh and Daripa [17]. These tables
show that the direct method gives fourth order or better accuracy for one case and
second order or better accuracy for the other cases. In contrast, the “decomposition”
method gives approximate fourth order accuracy for all these cases. The second-order
accuracy observed in Tables 2 through 4 is due to lower accuracy in the numerical
evaluation of the singular integrals involving logarithm for Fourier coefficients with

Table 4 Relative error for the
(D3) Ex.2 in || · ||∞ using
Euler-Maclaurin formula with
N = 64

Direct method Decomposition method

M || · ||∞ Order || · ||∞ Order

16 4.4 × 10−1 − 4.3 × 10−3 −
32 1.1 × 10−1 2.0 3.8 × 10−4 3.5

64 2.7 × 10−2 2.0 2.6 × 10−5 3.8

128 6.7 × 10−3 2.0 1.8 × 10−6 3.8

256 1.7 × 10−3 2.0 1.3 × 10−7 3.7

512 4.1 × 10−4 2.0 8.4 × 10−9 3.9
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Table 5 Relative error for the
(D4) Ex.3 in || · ||∞ using
Euler-Maclaurin formula with
N = 32

Direct method Decomposition method

M || · ||∞ Order || · ||∞ Order

16 7.0 × 10−2 − 1.8 × 10−4 −
32 1.7 × 10−2 2.0 1.5 × 10−5 3.6

64 4.1 × 10−3 2.1 1.2 × 10−6 3.6

128 1.0 × 10−3 2.0 1.0 × 10−7 3.6

256 2.5 × 10−4 2.0 7.8 × 10−9 3.7

512 6.2 × 10−5 2.0 5.8 × 10−10 3.7

index n = 0, −1, 1 (see (46), (51)). The order of accuracy perhaps can be improved
with better quadrature methods such as in [22] for numerical evaluation of these
weakly singular integrals. We intend to look into this in the future.

Table 6 shows results obtained with these two methods for solving the (D2) homo-
geneous biharmonic problem (see Section 2.2) with f (z) = 0, h0 = 1 and h2 = 1. It
shows that the direct method for homogeneous biharmonic problems give spectrally
accurate solutions whereas the “decomposition method” gives only second-order
accurate solutions. This is due to that fact that the boundary integrals involved in the
direct method are evaluated with spectral accuracy. However, the domain integrals
involved in the “decomposition method” are evaluated using the Euler-Maclaurin
formulae which has finite order of accuracy. Recall that this same homogeneous
biharmonic problem needs to be solved while solving the (D1) and (D3) inhomoge-
neous biharmonic problems using the “decomposition method” (see [17]). Therefore,
the “direct method” is an integral part of the “decomposition method” for some
boundary value problems, and hence, it is an important reason to develop the fast
algorithms for the direct method which are developed in this paper for the first time.

Next, we compare numerical asymptotic complexity with our theoretical com-
plexity O(N2 logN) where N2 is the total number of grid points. Complexity of
the algorithms has been evaluated based on CPU time required to solve biharmonic
problems (D2) and (D3) with different values of N using the Euler-Maclaurin inte-
gration scheme. The number of grid points in the radial and azimuthal directions has

Table 6 Relative errors for the
homogeneous (D2) problem in
|| · ||∞ using Euler-Maclaurin
rule with N = 64

Direct method Decomposition method

M || · ||∞ || · ||∞ Order

16 7.2 × 10−15 7.2 × 10−3 −
32 7.2 × 10−15 1.4 × 10−3 2.4

64 7.2 × 10−15 3.2 × 10−4 2.1

128 7.2 × 10−15 7.2 × 10−5 2.4

256 7.2 × 10−15 1.7 × 10−5 2.1

512 7.2 × 10−15 5.7 × 10−6 1.6
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been taken to be same, N . From this, we also compute the constant c hidden in the
order estimate by dividing the total computation time by N2 logN . The CPU time
and the estimate of the constant c for these two problems, (D2) and (D3), have been
tabulated in Table 7 for several values of N . The CPU time versus N2 logN and
computed values of c versus N are shown in Fig. 1a and b, respectively. Figure 1a
shows that the computationally obtained estimate of the complexity agrees with the
theoretical one. Figure 1b shows that the constant hidden behind the order estimate
of the complexity is indeed very small for large N which is another big advantage
for these FFTRR-based algorithms. Similar results are obtained for (D1) and (D4)
problems. Identical plots as in these figures are obtained when the decomposition
algorithm [17], instead of the direct method of this paper, is used to solve these
problems.

Towards this end, it is worth mentioning that CPU time depends on many param-
eters including the computational speed of the processor used, precision of the
arithmetics (such as 8-digit, 16-digit, etc.) used, type of programming language (such
as Matlab, C, Fortran, python), issues related to the implementation of algorithms,
and code optimization tools used to enhance performance. However, the computa-
tional complexity of a specific algorithm does not depend on these factors and this
is what has been the motivating factor behind our numerical study leading to the
Table 7, Fig. 1a and b. The data in the Table 7 were obtained from computations in
a MATLAB 7.9.0(R2009b) version in ASUS A55A series without any kind of Mat-
lab code optimization. The CPU time reported in the table can be improved by many
fold depending on how the above parameters on which CPU time depends are cho-
sen. Improvement of CPU time by varying these parameters is altogether a separate
topic and falls outside the scope of this paper.

5 Application to incompressible fluid flows

In this section, we apply these fast, direct algorithms to solve steady, viscous,
incompressible Navier Stokes equation within a circular cylinder as in [19, 23, 28]

Table 7 CPU times and estimates for the constant c using Euler-Maclaurin formula for (D2) and (D3)
problems using the direct method

For the biharmonic problem (D2) For the biharmonic problem (D3)

M = N CPU time in s c CPU time in s c

16 0.41 5.8 × 10−4 0.41 5.78 × 10−4

32 0.44 1.24 × 10−4 0.45 1.27 × 10−4

64 0.70 4.11 × 10−5 0.71 4.17 × 10−5

128 1.53 1.92 × 10−5 1.52 1.91 × 10−5

256 4.12 1.13 × 10−5 4.25 1.17 × 10−5

512 12.68 7.75 × 10−6 12.81 7.83 × 10−6
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Fig. 1 Plots of the CPU timings and the constant c = T/(N2 logN) for the fast algorithms applied to the
biharmonic problems (D2) and (D3) problems using the Euler-Maclaurin formula in the direct method.
Plots for (D2) and (D3) problems in each of the figures Fig. 1a and b are indistinguishable from each other

generated by the tangential motion of part or all of the boundary and the inflow, out-
flow of the fluids in which fluid is injected over one portion and ejected radially over
another portion of the boundary of the disc. These types of problems arise in recir-
culation of fluids in cavities and in confined ventilation. The governing equations
associated with the steady, viscous, incompressible flow are given by

(u · ∇)u = −∇p + ∇ · (R−1∇u) (54)

∇ · u = 0, (55)

where p is the pressure, R is the Reynolds number, and u is the velocity. In polar
coordinates (r, θ), the velocity is given by ur = 1

r
∂ψ
∂θ

, uθ = − ∂ψ
∂r

in terms of stream
function ψ . The vorticty ϕ = ∇ × u satisfies ϕ = −�ψ . Taking the curl of both
sides of (54), we obtain

�2ψ = −RJ [ψ, �ψ], (56)

where J [ψ, �ψ] = 1
r
(∂rψ∂θ�ψ − ∂r�ψ∂θψ). Since (∂z∂z̄)

2 = �2/16, it follows
that the boundary value problem associated with the slow viscous flow problem is
given by (see also [23, 28])

(∂z∂z̄)
2ψ = − R

16J [ψ, ψzz̄], in r < 1,
ψ = f1(θ), on r = 1,

∂ψ
∂r

= f2(θ), on r = 1,

⎫
⎬

⎭
(57)

where boundary data f1(θ) and f2(θ) come from specific problems to be chosen as
we will see below. Notice that this problem (57) is our (D3) biharmonic problem
of Section 2.3 except that the right hand side of the equation (57)1 is not known a
priori. Below, we apply our fast algorithm for this problem from Section 3 to solve
(57) subject to various boundary conditions using an iteration procedure since the



962 Numer Algor (2017) 75:937–971

inhomogeneous term depends on the solution itself. This iteration procedure based
on the existing body of works (see [19, 28]) is briefly outlined below.

The iteration procedure starts with an initial guess ψ(0) obtained from the solution
of Stokes flow problem given by ψ

(0)
zz̄zz̄ = 0 subject to the same boundary conditions

as below, and then at each (k + 1)th stage we solve

ψ
(k+1)
zz̄zz̄ = − R

16J [ψ(k), ψ
(k)
zz̄ ] in r < 1,

ψk+1 = f1(θ) on r = 1,
∂ψ(k+1)

∂r
= f2(θ) on r = 1,

⎫
⎪⎬

⎪⎭
(58)

using our fast algorithm to the (D3) inhomogeneous biharmonic problem. The vortic-
ity ϕ is obtained through ϕ = −�ψ. We continue the iteration until the convergence

criterion ||ψk+1||−||ψk ||
||ψk+1|| < tol is met. In our computations, the tolerance ‘tol’ is taken

to be 3 × 10−4. The Jacobian is obtained using the central difference formula on
mesh points inside the disk and either backward or forward difference for points on
the boundary.

For the specific problems discussed below, the above iteration scheme diverges for
R > 4. For R > 4, we use a relaxation factor as in the Gauss-Seidel SOR method
(see [28]). We start with our initial guess as before to obtain ψ(0)(z) and use the
fast algorithm for the (D3) problem to solve for the iterate ψ(k+1)(z) by solving the
problem (58). For convergence, we use two relaxation factors α and β for fields ϕ

and ψ. To update the values of ϕ and ψ , we use

ϕ
(k+1)
n,l = αϕ

�(k+1)
n,l + (1 − α)ϕ

(k)
n,l , and ψ

(k+1)
n,l = βψ

�(k+1)
n,l + (1 − β)ψ

(k)
n,l .

The starred quantities denote values obtained at each iterative step. The relaxation
factor helps in convergence and suitable choices for α and β are taken to be 0.3 and
0.5, respectively. The convergence is continued until a given tolerance is reached.
This iteration is suitable for problems with moderate Reynolds number and is unsta-
ble for problems with high Reynolds number. Next, we consider several specific
examples.

We consider first flows generated by rotation of the circumference as in Mills [28]
with f1(θ) = 0 and f2(θ) = −(1 + cos θ)/2. Here, Reynolds number R = Ur/ν

where ‘r’ is the radius of the cylinder, U is the speed of the rotation of the circumfer-
ence, and ν is the kinematic viscosity of the fluid. For studies on similar problems,
see [19, 23, 26, 28, 33]. Using the procedure outlined above, the problem (57) with
f1(θ) = 0 and f2(θ) = −(1+ cos θ)/2 is solved numerically using iteration scheme
(58) on 64× 64 grid points. With tolerance set at 3× 10−5, the scheme converged in
30 and 62 iterations, respectively, for R = 30 and R = 64. Plots of computed stream-
lines are shown in Fig. 2. The flow pattern is not symmetric about the x-axis and
the vortex center is shifted away from the center of the disk. Similar features of the
flow have been observed by Imai [23]. Another similar flow problem but now with
f2(θ) = − cos θ was also solved by the same scheme using the same tolerance and
the same number of grid points as the above problem. Numbers of iterations taken to
converge were 18 and 32, respectively, at R = 16 and R = 45. Plots of streamlines
and vorticity patterns are shown respectively in Figs. 3 and 5. Sharp change in the
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Fig. 2 Computed streamline patterns with 64×64 grid points when f1(θ) = 0 and f2(θ) = −(1+cos θ)/2

vorticity is observed with increasing Reynolds number. All of these plots in Figs. 2,
3 and 5 are in qualitative agreement with similar plots in Imai [23].

Now, we consider the moving wall problem with the boundary condition ψ(r =
1) = 0, and the discontinuous boundary condition

∂ψ

∂r

∣
∣
∣
∣
r=1

=
{−1, 0 ≤ θ < π,

0, π ≤ θ < 2π.
(59)

We computed the flow for several values of R in the interval 0 ≤ R ≤ 20 with 128×
128 grid points using a tolerance same as in the previous examples. The numbers of
iterations were 1 and 27 respectively for R = 0 and R = 10. The plots of streamline
patterns are shown in Fig. 6. We observe a non-symmetric flow here with the center
of the vortex shifted away from the center of the disk. These results are in qualitative
agreement with those by Mills [28] and Mabey [26].
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Fig. 3 Computed streamline patterns with 64 × 64 grid points when f1(θ) = 0 and f2(θ) = − cos θ
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Fig. 4 Plots of computed streamlines for the inflow-outflow problem with the boundary data (60) using
128 × 128 grid points

Next, we apply our fast algorithm for (D3) biharmonic problem along with the
iteration scheme discussed above for computing outflow-inflow problem subject to
the following boundary data taken from Mills [28].

∂ψ

∂r

∣
∣
∣
∣
r=1

= 0, & ψ(r = 1, θ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + (θ−α)
ε

, α − ε < θ < α + ε,

2, α + ε < θ < β − ε,

1 + (β−θ)
ε

, β − ε < θ < β + ε,

0, β + ε < θ < 2π + α − ε.

(60)
We take α = 0, ε = π/32 and β = π . The Reynolds number of the flow here is given
by R = Uε/ν, where U is the speed and Uε the flow across the arc intercepted by ε.
Computations were performed with 128×128 grid points using the same tolerance as
in the previous examples. Numbers of iterations to converge were 13 and 20 at R =
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Fig. 5 Computed vorticity patterns with 64 × 64 grid points when f1(θ) = 0 and f2(θ) = − cos θ
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Fig. 6 Plots of computed streamlines for the moving wall problem with the discontinuous boundary
data (59) using 128 × 128 grid points

0.009 and R = 0.02, respectively. Plots of streamline patterns for very low Reynolds
number are shown in Fig. 4. This flow has been studied before by Dennis [16]. To
compute flows at higher Reynolds numbers, an inexact Newton iteration (see [19])
is required. Such higher Reynolds number flows using our fast algorithm will be
computed in the future.

6 Conclusions

In this paper, we have developed FFTRR (FFT and recursive-relation)-based accu-
rate and fast algorithms for several biharmonic problems in a unit disc in the complex
plane using the “direct” method as opposed to the “decomposition” method dis-
cussed in Ghosh and Daripa [17]. In the “direct” method, solutions of the biharmonic
problems are written directly in terms of Green’s functions of these problems. The
fast algorithms developed here based on the “direct” method have been implemented
using MATLAB programs. Their performance in terms of accuracy and complexity
has been numerically evaluated and presented using several test problems. Computed
values of complexity agree with the theoretical computational complexity:O(logN)

per degree of freedom. These fast algorithms have been applied to solving incom-
pressible slow viscous flow problems at low to moderate Reynolds numbers. The
results on these flow problems agree well with the works of others on similar test
problems. Application of these algorithms to solving higher Reynolds number flows
can be done using inexact Newton iteration since this iteration has been successful
in solving higher Reynolds number flows [19]. This is a topic of future research and
falls outside the scope of this paper.

Acknowledgments The authors are thankful to the chief editor, Dr. Claude Brezinski, and the reviewers
for their constructive criticisms which have helped us to improve the paper.
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Appendix: Proofs of the Theorems

In this section, proofs of the theorems stated in Section 2 of this paper are sketched.

Proof of Theorem 2 From (2), we rewrite ω(z) as ω(z) = u2(z) + v2(z) + r2(z) +
I3(z) + I4(z) + I5(z). We evaluate first,

I4(z) = − 2

π

∫∫

D

(|ζ |2 + |z|2 − ζ z̄ − ζ̄ z) log |1 − zζ̄ |f (ζ )dξdη

= I
(1)
4 (z) + I

(2)
4 (z) + I

(3)
4 (z) + I

(4)
4 (z)

where

I
(1)
4 (z) = −2r2

π

∫∫

D

log |1 − zζ̄ |f (ζ )dξdη, I
(2)
4 (z) = − 2

π

∫∫

D
ρ2 log |1 − zζ̄ |f (ζ )dξdη,

I
(3)
4 (z) = 2

π

∫∫

D

z̄ζ log |1 − zζ̄ |f (ζ )dξdη, I
(4)
4 (z) = 2

π

∫∫

D
zζ̄ log |1 − zζ̄ |f (ζ )dξdη.

Let I (1)
4 (z) =

∞∑

n=−∞
I

(1)
4,n(r)einα and α − θ = τ. Then

I
(1)
4,n(r) = − r2

π2

∫∫

D

f (ζ )

∫ 2π

0
log |1 − zζ̄ |e−inαdαdξdη

= 2r2
∫ 1

0
fn(ρ)G

(1)
4,n(r, ρ)ρdρ, (61)

where G
(1)
4,n(r, ρ) = − 1

π

∫ 2π

0
log |1 − zζ̄ |e−inτ dτ =

{
(rρ)|n|

|n| , if n �= 0
0. if n = 0.

(62)
Substituting (62) in (61), we recover the Fourier coefficients of I

(1)
4 (z). Pursuing

similar idea, we obtain the Fourier coefficients of I
(2)
4 (z), I

(3)
4 (z), I

(4)
4 (z). Now, we

evaluate I5(z) given by (11).

I5(z)= 2r2

π

∫∫

D

log |ζ −z|f (ζ )dξdη+ 2

π

∫∫

D

|ζ |2 log |ζ −z|f (ζ )dξdη

− 2

π

∫∫

D

z̄ζ log |ζ −z|f (ζ )dξdη− 2

π

∫∫

D

zζ̄ log |ζ −z|f (ζ )dξdη (63)

=I
(1)
5 (z) + I

(2)
5 (z) + I

(3)
5 (z) + I

(4)
5 (z). (64)
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Notice the singular integral associated with I
(1)
5 (z) are similar (see [17]), and we

compute I
(3)
5 (z). Let I (3)

5 (z) =
∞∑

n=−∞
I

(3)
5,n(r)einα where I

(3)
5,n(r) is similarly given by

I
(3)
5,n(r) =

∫∫

�r
0

z̄ζf (ζ )Q1
n(r, ζ )dξdη +

∫∫

�1
r

z̄ζf (ζ )Q1
n(r, ζ )dξdη, (65)

where Q1
n(r, ζ ) = 1

π2

∫ 2π
0 e−inαz̄ log |ζ − z|dα. For r > ρ, we have

Q1
n(r, ζ )= 1

π2

∫ 2π

0
e−inαre−iα

⎛

⎝log r−
∑

m �=0

(ρ

r

)|m| 1

2|m|e
imτ

⎞

⎠ dα

= r

π2

∫ 2π

0
e−i(n+1)α log rdα− r

π2

∑

m �=0

(ρ

r

)|m| 1

2|m|e
−imθ

∫ 2π

0
ei(m−n−1)αdα

=
{

r
π |n+1| (

ρ
r
)|n+1|e−i(n+1)θ if n �= −1,

−2
π

r log r if n = −1.
(66)

Similarly, we obtain for r < ρ,

Q1
n(r, ζ ) =

{
r

π |n+1|
(

r
ρ

)|n+1|
e−i(n+1)θ , if n �= −1,

− 2
π
r log ρ, if n = −1.

(67)

Substituting (66), (67) in (65), we have for n > −1,

I
(3)
5,n(r)=

∫∫

�r
0

ζf (ζ )Q1
n(r, ζ )dξdη+

∫∫

�1
r

ζf (ζ )Q1
n(r, ζ )dξdη

= r

π(n+1)

∫ r

0

∫ 2π

0
ρeiθf (ρeiθ )

(ρ

r

)(n+1)
e−i(n+1)θρdθdρ

+ r

π(n+1)

∫ 1

r

∫ 2π

0
ρeiθf (ρeiθ )

(
r

ρ

)(n+1)

e−i(n+1)θρdθdρ

= r

π(n+1)

∫ r

0

(ρ

r

)(n+1)
ρ2

∞∑

m=−∞
fm(ρ)

∫ 2π

0
ei(m−n)θdθdρ

+ r

π(n+1)

∫ 1

r

(
r

ρ

)(n+1)
ρ2

∞∑

m=−∞
fm(ρ)

∫ 2π

0
ei(m−n)θdθdρ

=2r
∫ r

0

(ρ

r

)n+1 ρ2

(n+1)
fn(ρ)dρ+2r

∫ 1

r

(
r

ρ

)(n+1)
ρ2

(n+1)
fn(ρ)dρ. (68)

Similarly, we evaluate for n < −1 and n = −1 and obtain (11). We evalu-
ate the Fourier Coefficients of the rest in a similar manner. Now, let I3(z) =
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∞∑

n=−∞
I3,n(r)e

inα. Then

I3,n(r) = (1 − r2)

π

∫ 1

0
(1 − ρ2)

∞∑

m=−∞
fm(ρ)

∫ 2π

0
eimθρdθdρ,

= 2(1 − r2)

∫ 1

0
ρ(1 − ρ2)f0(ρ)dρ,

=
{
2(1 − r2)

∫ 1
0 ρ(1 − ρ2)fn(ρ)dρ, if n = 0,

0, if n �= 0.
(69)

Thus, we recover (15). Now, for the boundary integrals u2(z), v2(z) and r2(z), the
idea is similar and hence we skip the details.

Proof of Theorem 4 We first evaluate the Fourier coefficients I6,n(r) of I6(z).

I6,n(r) = 1

2π2

∫∫

D

f (ζ )Pn(r, ζ )dξdη, (70)

where Pn(r, ζ ) = (r2 − 1)(1 − |ζ |2)
∫ 2π

0
e−inα log(1 − zζ̄ )

zζ̄
dα

= (1 − r2)(1 − |ζ |2)
∞∑

m=1

(rζ̄ )(m−1)

m

∫ 2π

0
e−i(m−n−1)αdα

=
{

2π (1−r2)(1−|ζ |2)(rζ̄ )n

(n+1) , if n ≥ 0,
0, if n < 0.

(71)

Substituting (71) in (70), the formula (33) for I6,n(r) is recovered. Similarly, we
obtain I7,n(r). The boundary integrals in the expression (29) for v3(z) are simi-
larly evaluated to obtain its Fourier coefficient given by (35). The calculations are
straightforward and we skip the details. This concludes the proof of Theorem 4.

As for the proof of Theorem 6, the area integrals I3(z), I4(z), I5(z) are same as
before and hence details are skipped. The approach to evaluate the boundary integrals
are also similar as before so we omit the proof.

Proof for Theorem 8 We evaluate V (z) first. Now,

V (1)(z) = − 1

4πi

∫

∂D
|ζ − z|2 log |ζ − z|2h2(ζ )

dζ

ζ

= 1

2πi

∫

∂D
(1 + r2 − z̄ζ − zζ̄ )

⎛

⎝
∑

n�=0

|zζ̄ ||n|

2|n| einτ

⎞

⎠ h2(ζ )
dζ

ζ

= V
(1)
1 (z) + V

(1)
2 (z) + V

(1)
3 (z).
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Let h2(e
iθ ) =

∞∑

n=−∞
cne

inθ . The Fourier coefficients of the boundary integrals

V
(1)
i (z) for i = 1, 2, 3 are easy to compute. These are given by

V
(1)
1,n (r) =

⎧
⎪⎨

⎪⎩

1+r2

2n rncn, if n > 0,

− 1+r2

2n r−ncn, if n < 0,
0, if n = 0.

V
(1)
2,n (r) =

⎧
⎪⎨

⎪⎩

− rn+2

2(n+1) cn, if n > −1,
r−n

2(n+1) cn, if n < −1,
0, if n = −1.

V
(1)
3,n (r) =

⎧
⎪⎨

⎪⎩

− rn

2(n−1) cn, if n > 1,
r2−n

2(n−1) cn, if n < 1,
0, if n = 1.

Similarly, we evaluate V
(2)
n (r), V

(3)
n (r), V

(4)
n (r) and obtain

V (2)
n (r) =

{
(r2 − 1)c0, if n = 0,
(r2−1)r |n|
2|n|(1+|n|) cn, if n �= 0.

(72)

V (3)
n (r) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2c0, if n = 0,
− 3

4 rc1, if n = 1,
rn

2(n+1) cn − rn

n
cn + rn

2(n−1) cn, if n ≥ 2.
0, if n < 0.

(73)

V (4)
n (r) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2cn, if n = 0,
3
4 rcn, if n = −1,

r−n

2(1−n)
cn − r−n

n
cn − rn

2(n+1) cn, if n ≤ −2,
0, if n > 0.

(74)

Now, we evaluate I ′
6(z), I

′
7(z), I8(z), I9(z) and I10(z). The Fourier coefficients of

I ′
6(z), I

′
7(z) are given by

I ′
6,n(r) =

⎧
⎪⎨

⎪⎩

−2(1 − r2)
∫ 1
0 fn(ρ)ρdρ, if n = 0,

2(1−r2)
n(n+1)

∫ 1
0 (rρ)nfn(ρ)ρdρ, if n ≥ 1

0 otherwise

(75)

I ′
7,n(r) =

⎧
⎪⎨

⎪⎩

−2(1 − r2)
∫ 1
0 fn(ρ)ρdρ, if n = 0,

2(1−r2)
n(n−1)

∫ 1
0 (rρ)−nfn(ρ)ρdρ, if n ≤ −1

0 otherwise

(76)

The Fourier coefficients of I8(z) are given by

I8,n(r) = (1 − r2)

2π2

∫

D
f (ζ )

∫ 2π

0
4e−inαdαdξdη

=
{
8(1 − r2)

∫ 1
0 fn(ρ)ρdρ, if n = 0,

0, if n �= 0.
(77)
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We write I9(z) = I
(1)
9 (z) + I

(2)
9 (z) where

I
(1)
9 (z)= 1

πz

∫

D

ζ(1−zζ̄ ) log(1−zζ̄ )f (ζ )dξdη, I
(2)
9 (z)=− 1

π

∫

D

(1−zζ̄ ) log(1−zζ̄ )f (ζ )dξdη.

Now, we evaluate I
(1)
9,n(r).

I
(1)
9,n(r) = 1

2π2z

∫ 1

0

∫ 2π

0
f (ρ, θ)e−inθ

∫ 2π

0
ζ(1 − zζ̄ ) log(1 − zζ̄ )e−inτ dτρdθdρ

=

⎧
⎪⎨

⎪⎩

−2
∫ 1
0 f0(ρ)ρ3dρ, if n = 0,

2rn

n(n+1)

∫ 1
0 ρn+3fn(ρ)dρ, if n ≥ 1,

0, if n < 0.

(78)

Similarly, we obtain

I
(2)
9,n(r) =

⎧
⎪⎨

⎪⎩

2r
∫ 1
0 fn(ρ)ρ2dρ, if n = 1,

− 2(rn)
n(n−1)

∫ 1
0 ρn+1fn(ρ)dρ, if n ≥ 2,

0, if n < 1.

(79)

We now write I10(z) = I
(1)
10 (z) + I

(2)
10 (z) where

I
(1)
10 (z)= 1

πz̄

∫

D
ζ̄ (1−ζ z̄) log(1−ζ z̄)f (ζ )dξdη, I

(2)
10 (z)=− 1

π

∫

D
(1−ζ z̄) log(1−ζ z̄)f (ζ )dξdη.

Their Fourier coefficients are easily evaluated which are given by

I
(1)
10,n(r) =

⎧
⎪⎨

⎪⎩

−2
∫ 1
0 f0(ρ)ρ3dρ, if n = 0,

2 r−n

n(n−1)

∫ 1
0 ρ3−nfn(ρ)dρ, if n ≤ −1,

0, if n > 0.

(80)

I
(2)
10,n(r) =

⎧
⎪⎨

⎪⎩

2r
∫ 1
0 f−1(ρ)ρ2dρ, if n = −1,

−2 r−n

n(n+1)

∫ 1
0 ρ1−nfn(ρ)dρ, if n ≤ −2,

0, if n > −1.

(81)
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