
A Parallel Solver for Singular Integrals

Leonardo Borges and Prabir Daripa

Department of Mathematics

Texas A&M University

College Station, TX-77843, U.S.A.

Abstract A parallel version of a fast algorithm

for singular integral transforms [6] is presented.

The parallel version only utilizes a linear neighbor-

to-neighbor communication path which makes the

algorithm very scalable and suitable for any dis-

tributed memory architecture.

Keywords: Fast Algorithm, Parallel Algorithm,

Singular Integral Transforms, Distributed Memory,

Partial Differential Equation

1 Introduction

Fast algorithms for the accurate evaluation of
singular integral operators are of fundamental
importance in solving elliptic partial differen-
tial equations using integral equation represen-
tations of their solutions. For example, the
following singular integral transform arises in
solving Beltrami equation [4].

Tmh(σ) = −
1

π

∫ ∫

B(0;1)

h(ζ)

(ζ − σ)m
dξdη, (1)

ζ = ξ+iη, where h is a complex valued function
of σ defined on B(0; 1) = {z: |z| < 1}, for a
suitable finite positive integer m. Daripa [4, 5]
used the Beltrami equation for quasiconformal
mappings [4] and for inverse design of airfoils
[2].

The use of quadrature rules to solve (1)
presents two major disadvantages: First, the
complexity of the method is O(N 4) for a N 2

net of grid points. In terms of computa-
tional time, it represents an impracticable ap-
proach for large problems sizes. Also, quadra-
ture methods deliver poor accuracy when em-

ployed to evaluate certain singular integrals.
Daripa [3, 6] presented a fast and accurate al-
gorithm for rapid evaluation of the singular in-
tegral (1). The resulting method has theoret-
ical computational complexity O(log2 N) per
point which represents substantial savings in
computational time when compared with the
complexity O(N 2) of quadrature rules.

In this paper we summarize the parallel al-
gorithm to solve the singular integral opera-
tor (1) presented in [?]. The implementation
is based on having two simultaneous fluxes of
data traversing processors in a linear configura-
tion. It allows us overlap computational work
simultaneously with data-exchanges, and min-
imize the number of messages in the communi-
cation channels. The algorithm is very scalable
and independent of a particular computer ar-
chitecture.

2 The Algorithm

The fast algorithm to evaluate the singular in-
tegral transform (1) was developed in [4, 5].
The method divides the interior of the unit disk
B(0; 1) into a collection of annular regions so
that the integral is expanded in terms Fourier
series on each angular direction. The result is
a collection of Fourier coefficients where each
group of coefficients depends on the radius of
the associated angular region. The good per-
formance of the algorithm is due to the use of
scaling one-dimensional integrals in the radial
direction to produce the solution over the en-
tire domain. Specifically, scaling factors are
employed to define exact recursive relations

which evaluate the Fourier coefficients of (1).
Then inverse Fourier transforms are applied on
each angular region to obtain the solution of
the integral. The mathematical foundation of
the algorithm was presented in [5]:

Theorem 2.1 If Tmh(σ) exists in the unit
disk as a Cauchy principal value, and

h(reiα) =
∞
∑

n=−∞

hn(r)einα, then the nth

Fourier coefficient Sn,m(r) of Tmh(reiα) can be
written as

Sn,m(r) =

Cn,m(r) + Bn,m(r), r 6= 0,
0, r = 0 and n 6= 0,
S0,m(0), r = 0 and n = 0,

(2)

with Bn,m(r) and S0,m(0) as in [5], and
Cn,m(r) defined by

2(−1)m+1

rm−1

(

−n−1
m−1

)

r
∫

0
αn,m(r) dρ, n ≤ −m,

0, −m < n < 0,

− 2
rm−1

(m+n−1
m−1

)

1
∫

r
αn,m(r) dρ, n ≥ 0,

where

αn,m(r) =

(

r

ρ

)m+n−1

hm+n(ρ) (3)

The strength of the above theorem is ev-
ident when considering the unit disk B(0; 1)
discretized by N × M lattice points with N
equidistant points in the angular direction and
M equidistant points in the radial direction.
Let 0 = r1 < r2 < . . . < rM = 1 be the
radii defined on the discretization. The fol-
lowing corollaries of Theorem 2.1 are extracted
from [5]:

Corollary 2.1 It follows from (3) that
Cn,m(1) = 0 for n ≥ 0, and Cn,m(0) = 0 for
n ≤ −m. We repeat from (3) that Cn,m(r) = 0
for −m < n < 0 for all values of r in the
domain.

Corollary 2.2 If rj > ri and

Ci,j
n,m =

2(−1)m+1

rm−1
j

(

−n−1
m−1

)

rj
∫

ri

αn,m(rj) dρ

for n ≤ −m, and

2
rm−1
i

(m+n−1
m−1

)

rj
∫

ri

αn,m(ri) dρ

for n ≥ 0,

then

Cn,m(rj) =

(

rj

ri

)n

Cn,m(ri) + C i,j
n,m, n ≤ −m,

Cn,m(ri) =

(

ri

rj

)n

Cn,m(rj) − C i,j
n,m, n ≥ 0.

Corollary 2.3 Let 0 = r1 < r2 < · · · < rM =
1, then

Cn,m(rl) =
l
∑

i=2

(

rl

ri

)n

Ci−1,i
n,m (4)

for n ≤ −m and l = 2, . . . ,M , and

Cn,m(rl) = −
M−1
∑

i=l

(

rl

ri

)n

Ci,i+1
n,m (5)

for n ≥ 0 and l = 1, . . . ,M − 1.

Corollary 2.2 defines the recursive relations
that are used in the calculation of the Fourier
coefficients Sn,m of the singular integrals in (1).
It prescribes two recursive relations based on
the sign of the index n of the Fourier coeffi-
cient Sn,m being evaluated. We will address
the coefficients (such as Cn,m) with index val-
ues n ≤ −m as negative modes and the ones
with index values n ≥ 0 as positive modes.
Equation (4) shows that negative modes are
built up from the smallest radius r1 towards
the largest radius rM . Conversely, equation (5)
constructs positive modes from rM towards r1.

3 Parallel Implementation

The fast algorithm in Section 2 requires mul-
tiple fast Fourier transforms (FFT) to be per-
formed. For the sake of a more clear expla-
nation, let P be the number of available pro-
cessors and M be a multiple of P . There are

distinct strategies to solve multiple FFTs in
parallel systems [1, 7]. We adopt an improved
implementation of parallel calls to sequential
FFTs by assigning grid points within a group
of circles to each processor. One sequential N -
point FFT algorithm is available on each pro-
cessor. For a total of P processors, the M
sequences are distributed between processors
so that each one performs M/P calls to the
FFT routine. The FFT transforms present in
the algorithm contribute the most to the com-
putational cost of the algorithm. Also, each
FFT calculation presents a high degree of data
dependency between grid points rle

2πik/N for
a fixed radius rl, l ∈ [1,M]. Data locality
is preserved by performing Fourier transforms
within a processor. To obtain a more compact
notation we define γ(j) = jM/P . Given P pro-
cessors pj , j = 0, . . . , P − 1, data is distributed
so that processor pj contains the data associ-
ated with the grid points rle

2πik/N , k ∈ [1, N]
and l ∈ [γ(j) + 1, γ(j + 1)]. Thus, each FFT
can be evaluated in place, without communica-
tion. This approach is free of network conges-
tion. Moreover, all M/P Fourier transforms
can be performed simultaneously. In practice,
it means that mechanisms like bit-reversal and
calls to sines and cosines are computed only
once on each processor. Other strategies for
solving the multiple FFTs present in the algo-
rithm are discussed in [?].

Redundant computations can be used to im-
prove performance of the parallel algorithm.
Since the algorithm employs equations from
Corollaries 2.2 and 2.3 that only utilize con-
secutive radii, only terms of the form C l−1,l

n,m

and C l,l+1
n,m , l ∈ [γ(j) + 1, γ(j + 1)], are re-

quired in processor pj . Notice that pj al-
ready evaluates the Fourier coefficients hn(rl),
l ∈ [γ(j) + 1, γ(j + 1)]. In the case of a numer-
ical integration based on the trapezoidal rule
and m = 1, for example, only the Fourier coef-
ficients for l = jM/P and l = (j + 1)M/P + 1
must be added to the set of known coefficients
for processor pj . That is, if the initial data
is overlapped so that each processor evaluates
coefficients for radii rl, l ∈ [γ(j), γ(j + 1) + 1],

there is no need for communication. The num-
ber of circles whose data overlap between any
two neighbor processors remain fixed regard-
less of the total number of processors in use.
Consequently, this strategy does not compro-
mise the scalability of the algorithm.

An even distribution of computational load
is obtained by splitting the computational
work when performing recurrences (4) and (5).
We define the following partial sums for each
processor pj, j = 0, . . . , P − 1. For the case
n ≤ −m let the initial partial sum t−0 obtained
in processor p0 be

t−0 (n) = rn
γ(1)+1

γ(1)
∑

i=2

(

1

ri

)n

Ci−1,i
n,m ,

and the remaining partial sums t−j obtained in
processors pj , j = 1, . . . , P − 1, given by

t−j (n) = rn
γ(j+1)+1

γ(j+1)
∑

i=γ(j)+1

(

1

ri

)n

Ci−1,i
n,m .

Similarly, for the case n ≥ 0 let the initial par-
tial sum t+P−1 obtained in processor pP−1 be

t+P−1(n) = rn
γ(P−1)

M−1
∑

i=γ(P−1)+1

(

1

ri

)n

Ci,i+1
n,m ,

and the remaining partial sums t+j obtained in
processors pj , j = 0, . . . , P − 2, given by

t+j (n) = rn
γ(j)

γ(j+1)
∑

i=γ(j)+1

(

1

ri

)n

Ci,i+1
n,m .

Since coefficients C i−1,i
n,m (n ≤ −m) and C i,i+1

n,m

(n ≥ 0) are already stored in processor pj when
i ∈ [γ(j) + 1, γ(j + 1)], partial sums t−j and

t+j can be computed locally in processor pj .
Although computations as defined above may
look unstable, partial sums t−j and t+j can be
obtained by performing very stable computa-
tions as described in [?].

If the accumulated sums ŝ−j and ŝ+
j , j =

0, . . . , P − 1, are defined for n ≤ −m as

ŝ−0 (n) = t−0 (n),

ŝ−j (n) =
(

rγ(j+1)+1

rγ(j)+1

)n
ŝ−j−1(n) + t−j ,

(6)

and for n ≥ 0 as

ŝ+
P−1(n) = t+P−1(n),

ŝ+
j (n) =

(

rγ(j)

rγ(j+1)

)n
ŝ+
j+1(n) + t+j ,

(7)

then we have a recursive method to accumulate
partial sums t−j and t+j computed in processors

pj, j = 0, . . . , P − 1. Accumulated sums ŝ−j
and ŝ+

j can now be used to calculate coeffi-
cients Cn,m locally on each processor. Given a
fixed radius rl, the associated data belongs to
processor pj where l ∈ [γ(j)+1, γ(j+1)]. Com-
putations in pj only make use of accumulated
sums from neighbor processors. For n ≤ −m
local updates in processor p0 are performed as
described in Corollary 2.2. Local updates in
processors pj, j = 1, . . . , P − 1, use the accu-
mulated sum ŝ−j−1 from the previous processor:

Cn,m(rγ(j)+1) = ŝ−j−1(n) + C
γ(j),γ(j)+1
n,m

Cn,m(rl) =
(

rl

rl−1

)n
Cn,m(rl−1) + C l−1,l

n,m ,

(8)

For n ≥ 0 local updates in processor pP−1 are
also performed as described in Corollary 2.2.
Local updates in processors pj, j = 0, . . . , P−2
use the accumulated sum ŝ+

j+1 from the next
processor:

Cn,m(rγ(j+1))= −ŝ+
j+1(n) − C

γ(j+1),γ(j+1)+1
n,m

(9)

Cn,m(rl)=
(

rl

rl+1

)n
Cn,m(rl+1) − C l,l+1

n,m .

The advantage of using equations (8) and (9)
over original recurrences in Corollary 2.2 is
that accumulated sums ŝ−j and ŝ+

j are obtained

using partial sums t−j and t+j . Since all partial
sums can be computed locally (without mes-
sage passing) and hence simultaneously, the se-
quential bottleneck of the original recurrences
is removed. The only sequential component in
this process is the message-passing mechanism
to accumulate the partial sums. The notation
in equations (6) and (7) will be simplified to
allow a clear exposition:

• Relation s−j = s−j−1 + t−j represents the
updating process in recurrence (6), and

p0

- =1 + -
1s 0

-s t

= -s P/2-1 + -t P/2
-s P/2

= +s P/2 s t P/2
+ +

P/2+1
+

= +s s+ +
P-2 P-1 t +

P-2

=

=1 + 1s s t+ + +
2

= +s sP-2 t P-2P-3
- - -

= +

p1

pP-1

pP-2

pP/2

- =s -
0 0t

s+
P-1 t +

P-1

= +s s t+ + +
0 1 0

s s t- - -
P-1 P-2 P-1

Positive stream

Negative stream

time

A

(FP)

(SP)

(MP)

B

C

Figure 1: Message distribution in the algo-
rithm. Two streams of neighbor-to-neighbor
messages cross communication channels simul-
taneously.

• Relation s+
j = s+

j+1 + t+j represents updat-
ing (7).

Figure 1 presents the general structure
for the algorithm. Processors are divided
into three groups: processor pP/2 is de-
fined as the middle processor (MP), proces-
sors p0, . . . , pP/2−1 are the first half processors
(FP), and pP/2+1, . . . , pP−1 are in the second
half (SP). We define a negative stream (nega-
tive pipe): A message started from processor
p0 containing the values s−0 = t−0 and passed
to the neighbor p1. Generically, processor pj

receives the message s−j−1 from pj−1, updates

the accumulated sum s−j = s−j−1+t−j , and sends

the new message s−j to processor pj+1. It cor-
responds to the downward arrows in Figure 1.
In the same way, processors on the second half
start computations for partial sums s+. A pos-
itive stream starts from processor pP−1: pro-
cessor pj receives s+

j+1 from pj+1 and sends

the updated message s+
j = s+

j+1 + t+j to pj−1.
The positive stream is formed by the upward
arrows in Figure 1. The resulting algorithm
is composed by two simultaneous streams of
neighbor-to-neighbor communication, each one
with messages of length N/2.

Note from Figure 1 that negative and posi-
tive streams arrive at the middle processor si-
multaneously due to the symmetry of the com-
munication structure. In [?] we describe an effi-
cient interprocessor coordination scheme which
leads to having local computational work per-
formed simultaneously with the message pass-
ing mechanism. In short, it consists on having
messages arriving and leaving the middle pro-
cessor as early as possible so that idle times
are minimized: Any processor pj in the first
half (FP) obtains the accumulated sum s−j and
immediately sends it to the next neighbor pro-
cessor pj+1. Computations for partial sums t+j
only start after the negative stream have been
sent. It correspond to evaluate t+j within re-
gion A in Figure 1. Similarly, any processor pj

in the second half (SP) performs all the compu-
tations and message-passing work for the posi-
tive stream prior to the computation of partial
sums t−j in region B. This mechanism mini-
mizes delays due to interprocessor communica-
tion. In fact, in [?] we compare this approach
against other parallelization strategies by pre-
senting complexity models for distinct parallel
implementations. The analysis shows the high
degree of scalability of the algorithm.

Two variants of the parallel algorithm can
be devised. As defined above, calculations of
coefficients Cn,m in equations (8) and (9) are
locally performed on each processor after pos-
itive and negative streams are completed. It
means that all Cn,m are computed within re-
gion C in Figure 1. For the first half proces-
sors, Fourier coefficients associated with neg-
ative modes (n ≤ −m) only depend on the
accumulated sums s−, which are already avail-
able in region A. It indicates that these coef-
ficients can be obtained earlier than in region
C. The tradeoff here is that lengthy compu-
tations for the Fourier coefficients may delay
the positive stream and, consequently, delay
all the next processors waiting for a message
from the positive stream. Thus, the best choice
depends on the problem size given by N and
M , and also the number of processors P . The
same idea applies for processors on the second
half: Fourier coefficients associated with pos-

itive modes (n ≥ 0) can be evaluated within
region B. We distinguish these variants of the
algorithm by defining

• the late computations algorithm as the
original version presented here where each
processor evaluates all the Fourier coeffi-
cients after all the neighbor-to-neighbor
communications have been completed;
and

• the early computations algorithm as the
version in which half of the Fourier coeffi-
cients are evaluated right after one of the
streams have crossed the processor.

4 Numerical Results

Equation (1) was solved for m = 1. Prob-
lem configurations where N = 512, 1024, 2048,
and M = 600, 1200, 2400. Parallel experiments
where carried out on an Intel Paragon com-
puter using up to 60 processors. Two experi-
ments were performed to compare the late and
early computations versions and to observe the
scalability of the algorithm. For a fixed number
N = 512 of angular grid points three distinct
numbers of radial grid points were employed:
M = 600, 1200 and 2400. Figure 2(a) presents
actual running times for both late and early
computations algorithms when increasing the
number of processors from P = 20 to P = 60.
As it was expected, larger levels of granularity,
i.e. larger problems sizes, imply more compu-
tational work performed locally on each proces-
sor and, consequently, better performance for
the algorithm. Similarly, three distinct num-
bers of angular grid points (N = 512, 1024 and
2048) were adopted on a discretization with a
fixed number of radial grid points M = 600, as
shown in Figure 2(b). When comparing both
versions of the algorithm, one can notice the in-
fluence of problem sizes and number of proces-
sors on the performance of the early computa-
tions version. For a relatively smaller problem
size, the strategy of evaluating terms Cn,m ear-
lier only incurs on delays for communication.
As a consequence, the problem of size N = 512

and M = 600 presents a better performance
for the late computations algorithm. In the
case of a large amount of data per processor,
early computations outperform late computa-
tions. A tradeoff between both approaches can
be observed for N = 512 and M = 1200 in Fig-
ure 2(a). For a higher level of computational
granularity on each processor, i.e. larger pieces
of input data per processor, early computa-
tions deliver results faster. However, as the
number of processors increases, the late com-
putations algorithm presents the best results.
It shows that the choice between early or late
computations depend the problem size and the
number of processors available.

In practice, performance critically depends
on the data-mapping and interprocessor co-
ordination process adopted for a coarse-grain
parallel architecture. By limiting the amount
of data based on memory constraints imposed
by a single-processor version of the algorithm,
one cannot perform numerical experiments to
validate a timing model for coarse-grain data
distribution when using large values of P . To
allow the usage of large problem sizes to ob-
serve speedups in a coarse-grained data distri-
bution, we define modified speedups S [20] which
are calculated by comparing performance gains
over the parallel algorithm running on a start-
ing configuration with 20 processors. Specifi-
cally we have

S[20] =
20 · T20

Tp
,

where TP is the parallel running time obtained
using P processors. Comparing with the actual
definition for relative speedup, the analysis al-
lows us to observe the performance of the algo-
rithm for a large number of processors without
having strong constraints on problem sizes.

Figures 3(a) and 3(b) describe the scalable
performance of the late computations algo-
rithm. They present modified speedups S [20]

for all problem configurations. Recall that
the performance of the parallel algorithm is
mainly determined by the number of proces-
sors and the communication overhead which
also depends on N . Although both configu-

20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

number of processors

tim
e

(s
ec

)

Early computations compared with late computations (N=512)

M= 2400 − late computation
M= 2400 − early computation
M= 1200 − late computation
M= 1200 − early computation
M= 600 − late computation
M= 600 − early computation

(a)

20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

number of processors

tim
e

(s
ec

)

Early computations compared with late computations (M=600)

N= 2048 − late computation
N= 2048 − early computation
N= 1024 − late computation
N= 1024 − early computation
N= 512 − late computation
N= 512 − early computation

(b)

Figure 2: Comparison between early and late
computations for the coefficients Cn,m of the
singular integral (1): (a) timings for a fixed
number of angular points N = 512; (b) timings
for a fixed number of radial points M = 600.

rations with either M or N fixed present run-
ning times for problems of same order N ×M ,
one can notice that the algorithm is more sen-
sitive to changes in N due to larger messages.
In Figure 3(a), message lengths are constant
with N = 512 and only the problem of size
M = 600 cannot scale up to 60 processors.
For M = 1200 and 2400, both curves indicate

20 25 30 35 40 45 50 55 60
20

25

30

35

40

45

50

55

60

number of processors

sp
ee

du
p

Modified speedups for N=512

M= 2400
M= 1200
M= 600

(a)

20 25 30 35 40 45 50 55 60
20

25

30

35

40

45

50

55

60

number of processors

sp
ee

du
p

Modified speedups for M=600

N= 2048
N= 1024
N= 512

(b)

Figure 3: Modified speedups S [20] for
20, 30, 40, 50 and 60 processors: (a) for N =
512 fixed; (b) for M = 600 fixed.

that more processors would deliver even larger
speedups. In the case of Figure 3(b), problems
of size N = 1024 and 2048 present increasing
message lengths and are almost at the high-
est value for speedup, that is, after adding a
few more processors to the system, no more
significant savings on running times would be
observed.

Acknowledgments

This material is based in part upon work sup-
ported by the Texas Advanced Research Pro-
gram under Grant No. TARP-97010366-030.

References

[1] W. Briggs, L. Hart, R. Sweet, and

A. O’Gallagher, Multiprocessor FFT
methods, SIAM J. Sci. Stat. Comput., 8
(1987), pp. 27–42.

[2] P. Daripa, On applications of a complex
variable method in compressible flows, J.
Comput. Phys., 88 (1990), pp. 337–361.

[3] , A fast algorithm to solve nonhomo-
geneous Cauchy-Riemann equations in the
complex plane, SIAM J. Sci. Stat. Comput.,
6 (1992), pp. 1418–1432.

[4] , A fast algorithm to solve the Bel-
trami equation with applications to qua-
siconformal mappings, J. Comput. Phys.,
106 (1993), pp. 355–365.

[5] P. Daripa and D. Mashat, An efficient
and novel numerical method for quasicon-
formal mappings of doubly connected do-
mains, Num. Algor., 18 (1998), pp. 159–
175.

[6] , Singular integral transforms and fast
numerical algorithms, Num. Algor., 18
(1998), pp. 133–157.

[7] R. Hockney and C. Jesshope, Par-
allel Computers: Archithecture, Program-
ming and Algorithms, Adam Hilger, Bris-
tol, 1981.

