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a b s t r a c t

We consider the linear stability of three-layer Hele-Shaw flows with each layer having
constant viscosity and viscosity increasing in the direction of a basic uniform flow. While
the upper bound results on the growth rate of long waves are well known from our earlier
works, lower bound results on the growth rate of short stable waves are not known to date.
In this paper, we obtain such a lower bound. In particular, we show the following results:
(i) the lower bound for stable short waves is also a lower bound for all stable waves, and
the exact dispersion curve for the most stable eigenvalue intersects the dispersion curve
based on the lower bound at a wavenumber where the most stable eigenvalue is zero; (ii)
the upper bound for unstable longwaves is also an upper bound for all unstable waves, and
the exact dispersion curve for themost unstable eigenvalue intersects the dispersion curve
based on the upper bound at a wavenumber where the most unstable eigenvalue is zero.
Numerical results are provided which support these findings.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The depth-averaged velocity of a fluid flowing through the gap in a Hele-Shaw cell resembles the formula for Darcy’s
law, which is applicable to porous media flows. The viscous profile created due to rarefaction waves behind a sweeping
front in two-phase immiscible flows in porous media can be modeled using a viscous profile behind the sweeping front in a
Hele-Shaw flow. These analogies have motivated extensive studies in two-layer Hele-Shaw flows (see [1–4]) to understand
various issues related to porousmedia flows. The design of chemical enhanced oil recovery (EOR) processes usually involves
flooding oil reservoirs with a sequence of displacing fluids of various compositions containing chemicals (see [5]). A closely
analogous system is that of multi-layer Hele-Shaw flows, which have recently been studied by Daripa [6]. This same analogy
motivates the current study of three-layer Hele-Shaw flows in order to gain an understanding of some of the complicated
issues surrounding EOR technology.

The three-layer Hele-Shaw model consists of three different fluid phases in three distinct regions separated by sharp
interfaces which have interfacial tensions. It is worth mentioning that the role of interfacial tension in actual porous
media is more involved, which results in diffuse two-phase regions, not sharp interfaces (see [7]). Towards this end, we
mention that the linear stability of miscible displacement processes in porous media in the absence of dispersion has been
studied earlier (see [8]). The approximation of diffused interfaces by sharp interfaces in our Hele-Shaw model allows exact
studies through analysis of some hydrodynamic stability issues which play important roles in enhanced oil recovery. Many
such issues related to three-layer Hele-Shaw flows have been studied by the author and his collaborators in recent years
(see [6,9–11]). In such flows as our present interest in this paper, there is a middle layer of fluid of constant viscosity
µ between the displacing fluid of viscosity µl and the displaced fluid of viscosity µr . The viscosity µ is chosen so that
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µl < µ < µr . Two initially planar interfaces including all three fluids in the three layers move with velocity U along the
positive direction of x-axis. The y-axis is in the plane of the plates and extends all the way to infinity in both directions of
the y-axis. In a framemoving with velocity U , x = 0 and x = −L are taken to be initial locations of the two planar interfaces,
with the displaced fluid extending all the way to x = ∞ and the displacing fluid extending all the way to -∞. The interfacial
tension at the leading interface at x = 0 is denoted by T and that at the trailing interface at x = −L is denoted by S.

The eigenvalue problem arising from linear stability analysis of this uniform flow using equations relevant for Hele-Shaw
flows has been derived in Daripa [11] and also in some references cited therein. This derivation is outlined here briefly. The
disturbances (ũ, ṽ, p̃) in basic velocity (U, 0) and basic pressure P (see [11] for P) are first decomposed in normal modes
according to the ansatz

(ũ, ṽ, p̃) = (f (x), φ(x), ψ(x))e(iky+σ t), (1)

where k is the wavenumber and σ is the growth rate. Then these are used in the linearized disturbance equations arising
fromHele-Shaw flow equations and the linearized dynamic and kinematic boundary conditions. The resulting equations are
then manipulated to obtain the following eigenvalue problem in f (x). Details of this derivation can be found in [11].

fxx − k2f = 0, (2)

f +

x (−L) = (λ r + s)f (−L), f −

x (0) = (λ p + q)f (0), (3)

where λ = 1/σ and r, s, p, and q are given by

r = {(µl − µ)Uk2 + S k4}/µ, s = µlk/µ ≥ 0, (4)

p = {(µr − µ)Uk2 − T k4}/µ, q = −µrk/µ ≤ 0. (5)

Notice that the eigenvalue σ appears in the boundary conditions (3) through λ. There are two non-trivial eigenvalues σ+(k)
and σ−(k) (where σ+(k) > σ−(k)) of this eigenvalue problem; this has been discussed in [11].

Pastworks on this problem that are relevant for this paper are reviewed briefly here. This is also necessary for the purpose
of continuity so that we place the contribution of this paper in a proper perspective. An absolute upper bound on the growth
rate has been derived in [9,10] in two different ways. In [9], this has been done using numerical analysis of the discrete
version of the above eigenvalue problem followed by an application of Gerschgorin’s localization theorem for eigenvalues.
Since an absolute upper bound need not be the best upper bound (i.e., maximum growth rate), we sought to derive this by
another approach, hoping that an improved upper bound can be obtained. In a subsequent paper [10], this was done using
the variational formulation of the eigenvalue problem, which is more elegant and straightforward. Even though we have
not emphasized the local upper bound on the growth rates of long waves in these two papers, they are embedded in the
content of those papers from which the local upper bound result for long waves follows. However, to date, no local lower
bound result on the growth rates of short waves exists. This is partly due to the fact that such short waves are stable due to
surface tension effects. Therefore, it was felt at the time that the local lower bound for short waves may not be of interest.
In retrospect, it turns out that this is not true, for many reasons. Short waves participate and thus play an important role in
determining the overall stability in an experimental set up of finite (in the y-direction)width of the plates.More importantly,
in this paper we obtain stronger results: the local upper bound on the growth rates for most unstable modes which include
the long waves, and the local lower bound on the growth rates for most stable modes which include the short waves.

For our purposes below, we recall from [6] that σ is referred to as the growth rate even when σ < 0. The growth
rate (σ < 0) characteristic of any short wave depends on the values of the parameters such as the viscosity of the three
fluids, the interfacial tensions, and the length of the middle layer. Therefore, the growth rate of a short wave can vary
widely in the space of these parameters. Even for a fixed set of parameter values, the growth rate can decrease rapidly
with increasing wavenumber. If a local lower bound on the growth rate for short waves also shares these same properties of
the growth rate with respect to variation in one or more of these parameters, then it is possible to use the local lower
bound to find approximately the qualitative effect of changes in parameter values on the stability of short waves. This
quantitative information can be useful in the selection of one or more of the parameters appropriately in order to achieve
some stabilization objectives of these short waves and in particular the system as a whole. In fact, its effect on the size of
the unstable band (which usually is outside the band of short waves) can also be inferred in a qualitative sense, i.e., whether
more or fewer unstable waves participate in determining the stability of the system as the parameter values are changed.
For example, if it is found from the local lower bound that the short waves as a group can become more stable as a result of
some changes in some parameter values, then it is very likely that the unstable band will also shrink in size.

Below,we first analyze the above eigenvalue problem to estimate this local lower bound for shortwaves. This can be done
in three different ways, all leading to the same result, and two of these three methods parallel the ones we have presented
in [9,10] for estimating the local upper bound for long waves. Below, we present all these three approaches to derive some
inequalities from which not only the local lower bound on the growth rate for short waves but also the local upper bound
on the growth rate of long waves follows. Some degree of overlap with the author’s work in [9,10] is not only unavoidable
but also necessary in order to establish the equivalence among these three methods, one of which is new. In this paper, we
also compare these bounds with the exact growth rates of these waves found numerically in [6]. Such comparisons validate
not only the bounds but also some other results derived below.
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Fig. 1. Plots of functions a − b = 0 and ab − k2 = 0 for k = 1 with a and b as the two axes. The regions where both a − b > 0 and ab − k2 > 0 hold or
both a − b < 0 and ab − k2 < 0 hold are shaded.

2. The estimates of the growth rate σ

Upper and lower bounds on the growth rates of short and long waves are derived in this section. We will later show that
these are also the bounds on the growth rates for unstable and stable modes. This derivation will be based on the following
proposition, which we prove first. Recall that λ = 1/σ .

Proposition 1. There are only the following two possibilities.

a := λp + q > 0, or b := λr + s < 0. (6)

Proof. The above result will be proved using three methods: (i) calculation using the general solution of (2); (ii)
discretization of the stability system (2)–(3) and Gerschgorin’s localization theorem for eigenvalues; and (iii) variational
formulation of the stability system.

(i) Calculation using the general solution of (2). The general solution of system (2)–(3) is given by

f (x) = A ekx + B e−kx, (7)

where A and B satisfy the algebraic system

k(A − B) = (λp + q)(A + B),
k(A e−kL

− B ekL) = (λr + s)(A e−kL
+ B ekL).


(8)

The above system has non-trivial solution A, B iff the determinant is zero; that is,

(a − k) ekL(b + k)− (a + k) e−kL(b − k) = 0, (9)

or

(ab − k2)(e2kL − 1)+ k(a − b)(e2kL + 1) = 0. (10)

In [6], this algebraic equation has been solved for eigenvalues σ+ and σ− as a function of wavenumber k. Suppose that a < 0
and b > 0. Then both the terms in the left-hand side of the Eq. (10) are negative, and the sum cannot equate to the right-
hand side, which is zero. One can easily verify this and other possible scenarios from Fig. 1 and arrive at the conclusion (6).
This figure shows zero-level sets of (ab − k2) and (a − b) using a and b as the two axes. The five curves in the figure then
clearly identify regions when both ab > k2 and a > b hold or when both ab < k2 and a < b hold. These regions are shown
shaded in the figure. These are then the regions in which the solution (a, b) of (10) cannot lie, thus justifying the assertion
(6).

(ii) Discretization of the stability system (2)–(3) and Gerschgorin’s localization theorem for eigenvalues. The
discretization version is first recalled here from [9]. The domain [−L, 0] is discretized into M subintervals of equal length
d = L/M by introducing the points x0 = 0, x1 = −d, . . . , xi = −id, . . . , xM = −L. The notation f (xi) = fi is used. The
derivative fxx at the interior points x1, x2, . . . , xM−1 has been approximated as follows.

fxx(xi) ≈
f (xi + d)− 2f (xi)+ f (xi − d)

d2
. (11)
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The end-point derivatives f −
x (x0) and f +

x (xM) are approximated as follows.

fx(x0) ≈
f0 − f1

d
, fx(xM) ≈

fM−1 − fM
d

. (12)

Therefore the boundary conditions (3) become

(f0 − f1)/d = (λp + q)f0, (fM−1 − fM)/d = (λr + s)fM . (13)

The discretized form of the stability system (2)–(3) is given by

Eijfj = Fijfj, (14)

where E is the tridiagonal matrix with its entries given by

Ejj = −2 except E0,0 = (1 − d q) and EM,M = −(1 + ds),
Ej−1,j = Ej,j+1 = 1 except E0,1 = −1, (15)

and F is the diagonal matrix with its entries given by

Fi,i = d2k2 except F0,0 = λd p and FM,M = λd r. (16)

In the particular caseM = 4, we have three equidistant interior points, and system (14) becomes

f0(1 − d q)− f1 = (λd p)f0,
f0 − 2f1 + f2 = d2k2f1,
f1 − 2f2 + f3 = d2k2f2,
f2 − 2f3 + f4 = d2k2f3,
f3 − f4(1 + d s) = (λd r)f4.

 (17)

Using Gerschgorin’s theorem, we obtain, from (14),

|Ekk − Fkk| ≤

−
j≠k

|Ekjfj|/|fk| ≤

−
j≠k

|Ekj|,

if max |fi| = |fk|. Now, the following three possibilities exist.
(a) If max |fi| = |fj|, 0 < j < M , then, from (14), we obtain

|d2k2 + 2| ≤ 2 ⇒ −4 ≤ d2k2 ≤ 0. (18)

It is obvious that this last relation is false.
(b) If max |fi| = |f0|, then we obtain

|λd p − 1 + d q| ≤ 1 ⇒ 0 ≤ d(λp + q) ≤ 2. (19)

(c) If max |fi| = |fM |, then we obtain

|λdr + 1 + d s| ≤ 1 ⇒ −2 ≤ d(λr + s) ≤ 0. (20)

Thus we see that only the possibilities (b) and (c) are meaningful, from which we again get the relation (6).
(iii) Variational formulation of the stability system. Multiplying Eq. (2) by f (x) and then integrating the resulting equation

in the interval [−L, 0], we obtain, after using the boundary conditions (3),

(λp + q)f 2(0)− (λr + s)f 2(−L) =

∫ 0

−L
f 2x dx + k2

∫ 0

−L
f 2 dx. (21)

Therefore, using the notations introduced in (6), we have

af 2(0)− bf 2(−L) ≥ 0. (22)

Suppose that a < 0 and b > 0; then both terms in the above inequality are negative, and the sum cannot be positive.
Therefore, the assumption that a < 0 and b > 0 is false, and we obtain the result (6).

This completes the proof of the Proposition 1 in three different ways. �

We see from (5) that p > 0 if 0 < k < k1 and p < 0 if k > k1, where k21 = U(µr − µ)/T . Similarly, from (4), (−r) > 0
if 0 < k < k2 and (−r) < 0 if k > k2, where k22 = U(µ − µl)/S. Therefore, both p > 0 and (−r) > 0 hold when
0 < k < min(k1, k2) (which we call ‘‘small’’ wavenumber below) and both p < 0 and (−r) < 0 hold when k > max(k1, k2)
(which we call ‘‘large’’ wavenumber below). In the following, we analyze these two cases: the case of ‘‘small’’ wavenumbers
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for which p > 0 and (−r) > 0, and the case of ‘‘large’’ wavenumbers for which p < 0 and (−r) < 0. We can see that (recall
µl < µ < µr )

p > 0 and (−r) > 0 ⇔ k2 ≤ min

U(µr − µ)

T
,
U(µ− µl)

S


, (23)

p < 0 and (−r) < 0 ⇔ k2 ≥ max

U(µr − µ)

T
,
U(µ− µl)

S


. (24)

We first consider the case of small wavenumbers. Then, using (23) and Proposition 1, we obtain the following two
possibilities.

λ >
−q
p
> 0 ⇒ λ > 0 and σ <

p
−q

=
Uk(µr − µ)− k3T

µr
, (25)

or

λ >
s

−r
> 0 ⇒ λ > 0 and σ <

−r
s

=
Uk(µ− µl)− k3S

µl
. (26)

Therefore, in this case, we obtain the following upper bound σul on the growth rate of long waves (i.e., small wavenumbers).

0 < σ < σul = max

Uk(µr − µ)− k3T

µr
,
Uk(µ− µl)− k3S

µl


. (27)

This upper bound for long waves is consistent with one of our results in [6]. There we have shown that σul is an upper bound
for all unstable waves (the word unstable was inadvertently left out from the third line after Eq. (33) in [6]), i.e. for all waves
in the range

k ≤ max(k1, k2) = max


U(µr − µ)

T
,


U(µ− µl)

S


. (28)

This range contains all long waves, and thus the upper bound result (27) for long waves is consistent with our result in [6].
It is easy to verify that σul = 0 at k = max(k1, k2). We have also shown in [6] that σ+

= 0 at k = max(k1, k2). Thus plots
of σul versus wavenumber k should intersect the dispersion curves σ+(k) at k = max(k1, k2), where σul = σ+

= 0. This,
along with the upper bound result (27), will be validated below numerically.

In the case of largewavenumbers forwhich (24) holds, the inequality signs in the relations (25)–(26) are reversed because
p, (−r) are negative. Therefore, the growth rate of short waves (i.e., large wavenumbers) becomes negative, and we obtain
the following lower bound σls for short waves.

0 > σ > σls = min

Uk(µr − µ)− k3T

µr
,
Uk(µ− µl)− k3S

µl


. (29)

The new principal element of this paper is the last estimate (29) for short waves. It is also easy to verify that σls = 0
at k = min(k1, k2). We have also shown in [6] that σ−

= 0 at k = min(k1, k2). This proves that the plot of σls versus
wavenumber k will intersect the dispersion curve σ−(k) at k = min(k1, k2), where σls = σ−

= 0. This, along with the
lower bound result (29), is validated numerically in the next section.

3. Numerical results

We have obtained the above upper and lower bounds on the growth rates of short and long waves, respectively, but it
turns out, as explained and justified above, that these bounds also hold for all unstable and stable waves, respectively. Since,
in general, the bounds are rarely optimal, allowing room for possible further improvement in these estimates through some
different kind of analysis which we are not aware of at this point, it is useful to test the tightness of these bounds against
exact calculations of the dispersion curves. In [6], such dispersion curves have been obtained numerically. The upper and
lower bounds given above will now be compared with such numerically obtained exact dispersion curves.

In Figs. 2 through 5, we present plots for several choices of the set (S, T ,U, L, µ) with the viscosities of the end layers
fixed, namely µr = 10 and µl = 2. Fig. 2(a) shows the plots of σ+, σ− & σul versus k and Fig. 2(b) shows the plots of
σ+, σ− & σls versus k for one such choice of the set: (S, T ,U, L, µ) = (1, 1, 1, 1, 4). For the other three choices of the set
(S, T ,U, L, µ), such plots are shown in Figs. 3–5 for (S, T ,U, L, µ) = (1, 1, 1, 0.5, 4), (S, T ,U, L, µ) = (1, 0.5, 1, 1, 4), and
(S, T ,U, L, µ) = (0.5, 1, 1, 1, 4), respectively. These figures support the validity of the estimates σul and σls. Also, these
figures support our results: σul = σ+

= 0 at k = max(k1, k2) and σls = σ−
= 0 at k = min(k1, k2). The validity of these

has been confirmed for many other choices of the set (S, T ,U, L, µ).
The point of illustrating four typical cases is to have a qualitative idea of the trend of the difference between the exact

values of the growth rates and the corresponding bounds as the parameters are varied. Giving more case studies than one
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σ σ

(a) Validation of the upper bound σul for long waves. (b) Validation of the lower bound σls for short waves.

Fig. 2. Plots of σ+, σ−,& σul versus k in the left subfigure, (a). Similarly, plots of σ+, σ−,& σls versus k in the right subfigure, (b). The parameter values are
S = T = U = 1, L = 1, and µ = 4.

(a) Validation of the upper bound σul for long waves. (b) Validation of the lower bound σls for short waves.

Fig. 3. Plots of σ+, σ−,& σul versus k in the left subfigure, (a). Similarly, plots of σ+, σ−,& σls versus k in the right subfigure, (b). The parameter values are
S = T = U = 1, L = 0.5, and µ = 4.

(a) Validation of upper bound σul for long waves. (b) Validation of the lower bound σls for short waves.

Fig. 4. Plots of σ+, σ−,& σul versus k in the left subfigure, (a). Similarly, plots of σ+, σ−,& σls versus k in the right subfigure, (b). The parameter values are
S = L = U = 1, T = 0.5, and µ = 4.
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(a) Validation of upper bound σul for long waves. (b) Validation of the lower bound σls for short waves.

Fig. 5. Plots of σ+, σ−,& σul versus k in the left subfigure, (a). Similarly, plots of σ+, σ−,& σls versus k in the right subfigure, (b). The parameter values are
L = T = U = 1, S = 0.5, and µ = 4.

usually tends to answer the questions that may otherwise arise in readers’ minds. For example, from these typical case
studies and the associated figures, one finds that the plots of the upper bound σul versus k in regions of interest (long wave
regime) can have a double-hump or a single-hump characteristic (one being more pronounced than the other when there
is a double hump). In Figs 2(a), 3(a), 4(a), and 5(a), the upper bound plots shown by the dashed curves are not that far off
from the exact growth rates σ+ of most unstable waves which include very long waves. This leaves very little room for
further improvement in the upper bound, especially when we consider the fact that the bound which does not depend on
L has to hold for all values of L on which the growth rates depend, though the dependence of exact growth rates on L is
exponentially small (see [6]). In [6], it has been shown that the quadratic equation whose solutions are σ+ and σ− contains
a term involving e−kL, and none of the other terms in the equation depends on L. On the other hand, in Fig. 2(b), 3(b), 4(b),
and 5(b), the lower bound shown by dashed curves agrees closely with the actual growth rates σ− only for modest values of
large wavenumbers, and quickly diverges away from the actual growth rates with increasing wavenumber. Thus, there is a
lot of room for improving the lower bound result (29). It will be worthwhile in the future to make an attempt at improving
upon this lower bound result.

In closing this section, it must be stressed that the bounds (27) and (29) are valid for any values of the parameters,
including L > 0. As discussed above, the large-k regime for which the bound (29) holds corresponds to all stable modes,
which includes modest values of k as well as k → ∞ (see Figs. 2 through 5). In this asymptotic limit, k → ∞ with L finite,
kL → ∞, and in this limit, dispersion equation (9) gives either a = k or b = −k. Using these values of a and b and the
definitions of r, p, s, q from (4) and (5) in (6), it follows that

σ = [(µr − µ)Uk − Tk3]/(µr + µ) < 0, or σ = [(µ− µl)Uk − Sk3]/(µ+ µl) < 0, (30)

in the limit k → ∞. This is consistent with the bound σls given in (29), keeping in mind that the value of this bound
will be negative for large k. The two limiting values of σ given by (30) as kL → ∞ are actually formulas for pure individual
Saffman–Taylor growth rates of two individual interfaces. Thismakes sense, because this limit also includes the limit L → ∞

(for any finite k) when the instabilities of the two interfaces should be independent of each other and should be driven by
pure individual Saffman–Taylor instability, i.e., the eigenvalue corresponding to each of the two interfaces should be given
by the Saffman–Taylor formula with viscosity jump across that interface only.

4. Conclusions

Wehavederivedhere for the first time a lower boundσls on the growth rate of shortwaves and re-derived anupper bound
σul on the growth rate of long waves. We have also shown that the lower bound is valid for all stable waves, i.e. σls < σ− for
all k > min(k1, k2), and that the upper bound is valid for all unstable waves, i.e. σul > σ+ for all k < max(k1, k2). Therefore,
we have provided here the upper bound on all the most unstable modes (σ+) and the lower bound on all the most stable
modes (σ−). Moreover, we have shown that σls = σ−

= 0 at k = min(k1, k2) and σul = σ+
= 0 at k = max(k1, k2). These

have been also validated using numerical results.
These results are useful in many ways. One can use these exact results without resorting to computation to qualitatively

estimate the influence of changes of various parameters such as S, T ,U , and µ on the growth rates of stable and unstable
waves. In [11], stabilization criteria have been given based on an absolute upper bound on the growth rate. However, this
does not imply that a stabilized system based on an absolute upper bound (see [11]) will stabilize all individual modal
disturbances. The lower andupper bounds (27) and (29) for stable andunstablewaves, respectively, canbeused to determine
the influence of such stabilization on any individual modal disturbance. There are many creative ways one can think of for
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using these exact results. For example, following the exact procedure outlined in [11], one can find new stabilization criteria
(i.e., the values of S, T , µ) based on these local bounds rather than the absolute upper bound, and the purpose of doing so
will be to target the stabilization of specific stable or unstable waves.

We should mention in closing the limitations of the upper and lower bounds (27) and (29). These results are certainly
valid, for reasonsmentionedpreviously, to predict the onset of instability.Moreover, these bounds contain all the parameters
including both interfacial tensions which show that the interaction between the interfaces prevails even within the
linearized theory. Thus, there is a transfer of instability between the interfaces regardless of how weak the interfacial
disturbances are. As the disturbances grow and the shapes of the interfaces change, nonlinearity comes into play, and these
bounds based on linear theory may not hold in the nonlinear regime. Nonetheless, it will be worthwhile to test this using
numerical as well as physical experiments, which falls outside the scope of this paper.
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