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Exact analytical solutions are found for the steady state creeping flow in and around a vapor—liquid
compound droplet, consisting of two orthogonally intersecting spheres of arbitraryaadidb),
submerged in axisymmetric extensional and paraboloidal flows of fluid with visca$lty The
solutions are presented in singularity form with the images located at three points: the two centers
of the spheres and their common inverse point. The important results of physical interest such as
drag force and stresslet coefficient are derived and discussed. These flow properties are
characterized by two parameters, namely the dimensionless viscosity parafmetgf?)/(u(?

+ 1), and the dimensionless paramet@r: b/a, whereu(? is the viscosity of the liquid in the
spherg(part of the compound drop)etvith radiusb. We find that for some extensional flows, there
exists a critical value oB= 3. for each choice o\ in the interval B=A=<1 such that the drag force

is negative, zero or positive depending on wheper3., 8= ., or B> . respectively. For other
extensional flows, the drag force is always positive. The realization of these various extensional
flows by simply changing the choice of the origin in our description of the undisturbed flow field is
also discussed. In extensional flows where the drag force is always positive, we notice that this drag
force D, for vapor—liquid compound droplet is maximum whgis1 (i.e., two spheres have almost

the same radii Moreover, we find the drag forde. is a monotonic function of\, i.e., the drag

force for vapor-liquid compound droplet lies between vapor—vapor and vapor-rigid assembly
limits. We also find that the maximum value of the drag in paraboloidal flow depends on the
viscosity ratioA and significantly on the liquid volume in the dispersed phase.26©0 American
Institute of Physicg.S1070-663100)01310-9

I. INTRODUCTION the use of spherical harmonics. The motion of ellipsoidal
particles in a viscous fluid has also been treated using sophis-
The study of hybrid multiphase droplets is of great in-ticated analysis of ellipsoidal harmonics. For references on
terest in many areas of science and technology. These droghese works together with some perspectives on analytical
lets occur in processes such as melting of ice particles in thgnd numerical techniques for Stokes-flow past submerged
atmosphere, liquid membrane technology as well as in oth&sodies, the reader is directed to the standard monographs on
industrial operations. Furthermore, the compound dropletghe subject®*? The singularity method, which was origi-
are also found to exist in lipid bilaykand polymer graftéd  nated by Lorent?? has also been applied by many to con-
membranes in concentrated solutions. The fluid mechanics @fider the fluid motion about nonspherical particles and
such droplets is discussed for instance in Avedisaall, Chwang and Wi has exploited it further and gave refer-
Johnson and Sadhknd Sadhakt al> among many others. ences to previous works. Payne and Pateated the creep-
In electrostatics, the compouritherging objects are mod-  jng flow problems of axially symmetric bodies by employing
eled as two overlapping spherical surfaces and their rey stream function technique. Comparing the singularity
sponses to applied electric fields are explored. In this casgnethod with the other methods, one finds that the former is
the solutions of Laplace equation provide excellent theoretisimmer and more elegant. Surprisingly, only ellipsoids and
cal results as explained in Jofiemnd Radchiket ?'-7 How-  spheroids have received more attention in earlier studies with
ever, the fluid mechanics of such obje(tsthe limit of zero  {he singularity method. For bodies consisting of overlapping
Reynolds numbgrdepends on the solutions of vector bihar- grfaces, the solution in singularity form was found only
monic equations. recently by Palaniappan and KithThere is another notable
Solutions of Stokes-flow problems, in which inertial ef- |,k by Vuong and SadhHi concerning the translation and
fects are negligible in comparison with the viscous effectsyrowth of a compound drop. The cited authors used the tor-
have been studied since the time of Stdkedio himself  igal coordinates and solved the problem analytically for ar-
solved the problem of a translating sphere. Many years lat§fjyary contact angle. The solutions and the drag are ex-
Lami’ presented the general solution of Stokes equations bY¥ressed in terms of infinite integrals that needed further

numerical computations. However, in those studfe< only
dAuthor for correspondence. the problem of uniform flow past a partially encapsulated
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droplet was discussed to illustrate the basic idea. P(xy,z)
Interests in droplet motions in non-uniform velocity
fields stem from a variety of industrial and naturally occur-
ring processes involving suspended particles. For instance
the motion of cells in capillaries and processing emulsions is Sy
of considerable interest in many areas. Furthermore, the
problem of cross-stream migration of suspended particles
due to hydrodynamic interactions has also attracted
attention'®2° But the attention is focussed only for spheres
in these studies. In the case of bodies attached to surface
the analytical approach has been avoided owing to the diffi-
culty to describe those geometries mathematically. As a re-
sult, numerical solutions are sought for problems involving
drops attached to surfac®s.
Motivated by the above, in the present analysis we cal-
culate the detailed Stokes-flow past a compound droplet im-
mersed in axisymmetric extensional and paraboloidal flow FIG. 1. The two-sphere assemtly
fields. Analytic solutions for the two-sphere assembly are
obtained in closed forms in terms of the stream function in
spherical coordinates. The required singularities for the solu- P 5
tions are obtained by repeated application of the sphere theo- r'e=re-2crcosg+c’, @
rems developed previousfy. The final solutions are pre- a2 a’
sented in singularity forms with the image singularities R2=r2—2Fr cosf+ 2
located at the two centers of the spheres and their common
inverse point inside the two-sphere assembly. The drag and ' b2 , , b* 3)
the stresslet coefficients follow directly from the solutions =riet2--ricost’+ .
without integrating the surface stresses.
The organization of the paper is as follows. We startOn the spheres, andS;, r' andr reduce to

O D (o) Z-axis

with the geometrical description of the compound droplet c

together with the statement of the problem and the boundary r'=_R onr=a, (4)
conditions. In Sec. lll, we reformulate the problem and also

derive the boundary conditions in terms of stream function. c ,

Then using the sphere theorems, we construct the solutionin '~ R ©on r'=b. ®)

singularity form for the two non-uniform flow fields in sub- . I, N
sections Il A and Il B. It is clear from the present method 1€ SPhereS, contains a liquidwith viscosity different from

that the toroidal coordinate system is not required to find thdh€ outside fluid regionand spheré, is a bubble containing

solutions for this special geometry. The discussion of the/2Por- We designate the fluid region exteriorlteas| and

results including derivation of drag and stresslet coefficienf® SPherical regionS,, and S, andll andlll, respectively.

are presented in Sec. IV. The additional characteristics of thghe surfaqe tension fprces are a_tssumed to be large e_nough_ to
drag in extensional flow are provided in Sec. V followed by keep _the mterfaces_ n a spherlcal_ sh_ape. AS me_ntloned n
the concluding remarks in Sec. VI. Palaniappan and Kirtf the vapor—liquid configuration ex-

ists at rest with contact angle approximately 90°+if,

~ vy, >y Which is in agreement with Laplace law on

all interfaces. Here the’s denote the surface tension at the
The schematic of the compound droplet is depicted ininterface separating regions.

Fig. 1. The two-sphere assembly, denotedlhyconsists of The Reynolds number of the flow fields is assumed to be

two unequal sphereS, andS, of radii a andb intersecting  small so that all inertial effects are neglected. The governing

orthogonally with center® and O’, respectively. The two equations for fluid flow are the Stokes equations or creeping

cen;cers share :;1 comzmor; in\éerse pointsuch thatOD  flow equations,

=a‘/c, DO'=b%/c, c°=a“+b* whereOO’=c. The ge- i I N o

ometry drawn in Fig. 1 is more realistic if one of the spheres pVPU=vpl, V=0, (=12, ©)

is a solid which is a special case of our analysis. It should bavhere i=1,2 is used to denote the dispersed and the

remarked that the interfackB adjoining the two segments continuous-phase liquids, respectivedy), pt”, andu® are

will have curvature different from that of the sphe&8gfor a  the velocities, pressures, and viscosities in the respective

fluid—fluid system. We use the spherical polar coordinatephases. The boundary and interface conditions are summa-

(r,6,¢), (r',0',¢), and R,0,¢) of any point outside the rized below:

assemblyl” with O, O’ andD as origins, respectively. The

geometrical relations connecting the coordinates are

Il. PROBLEM STATEMENT

« far from the droplet, velocity, and pressure are that of the
basic flow;
r’=r'?+2cr’ cosf’ +c?, (1)  + zero normal velocity om=a andr’=b;
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* continuity of tangential velocity and shear stress at liquid—  y(D=0=y(?), (14)
liquid interface 111 atr' =b;
* zero shear-stress ata. oD gyl
— = (15

The governing Stokes equation®) subject to the o o

asymptotic and boundary as well as interface conditions
stated above constitute a well-posed problem whose solution (1)(
provides the velocity and pressure prevailing in the presence

of the compound droplet.

(1) (2)
o 1 ay®\_ L0 1oy 6
ar'r'? or' )"

e o e

on the remaining part of the droplet where=b. Below, we
1. EXACT SOLUTIONS obtain the exact solutions for the two problems.

We consider two separate problems namely, compoung. Extensional flow past a compound droplet
droplet suspended in axisymmetrig extensional andii)
paraboloidal flows. As the flow is axisymmetric abatsxis,
we use Stokes stream function formulation which require
the solution of the fourth-order scalar equation

We consider a stationary compound droplet with bound-
ary T, part of which is filled with another liquid of different
viscosity immersed in an axisymmetric shear flow. The
stream function corresponding to this axisymmetric flow is
L2 ,4=0, (7) o= ar®sir? Acoss, wherea is a shear constant ardj un-
less otherwise mentioned below, refers to the polar angle

whereL _; is the axisymmetric Stokes operator defined b ) :
! y P y measured counterclockwise @tfrom the axis of symmetry

B 7 1-n* & of the droplet as shown in Fig. 1. It is worth pointing out that
Lfl_a_rﬂ_ 12 on? if the angled is measured with respect to a different origin
5 PR along the axis, then th¢, as given above will correspond to

J 1-%~ 9 ®) a different extensional flow. Therefore this stream function

= + —7, . .
ar'? r'2 oy’ o can be used to refer to several extensional flows simply

shifting the pointO for the purposes of measurement of
angle 6.

We now determine the perturbed stream function in the
presence of the compound droplet. In order to construct the

for the coordinatesr( ) with »=cosf and (',6’) with
7' =cosé respectively. Now the velocity components in
terms of the stream function are given by

i 1 gy image system for the two-sphere assembly we write the
qiV= — (9) ”
" rsing 960’ modified external flow as
(i)
g =t 10 Y=ot dat i+ Y. (17
' rsing or ’

The expression foky, consists of the image of, in the

and the pressure is obtained from sphereS, which is a stress-free. Applying the sphere theo-

ap) 7 0 " rem [see Eq.(21) in Palaniapparet al??] for a shear-free
o " " tZsingaeL-1) (1) spherical surface, we find that the image is a stresslet located
_ at the pointO (see Fig. L

" d (i)

6 " singar L-1¥). (12) = — aa3sir? 6 cose. (18)
The boundary conditions in terms of the stream function bewye again apply the sphere theof@ro find the image ofl,
come in the spherés, . It can be seen that the image system in this

g 1 gy case consists of four singularities viz. Stokeslet, stresslet,
yV=0= T (13)  degenerate Stokes-quadrup@petential-doubletand degen-
erate Stokes-octupole all located@t (see Fig. 1L The ex-
on the part of the droplet where=a and pression fory, may be written as

FIG. 2. Typical streamline pattern for flow around a
vapor-liquid compound droplet in extensional flow.

Q
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5p3 3b% coshd’ 3bc these singularities depend on radii, the distance between the
pp=A (— 7c050’+ > 7 Tr' centers and the viscosity ratio. The resulting expression is
written as
bc 3a°h _ ah®| a? a’h® | a?
- H rl_ _ 3 i ’ ’ _ i = S . eV <
+2r’ asmze} (1—A)[ ab®sir? 6’ cose Yan=A = R T 9c2 2)0036 >R 3C2 2)
+aber’ sirf 6'], (19) 3a°0° co© 3a’b® cosO] |
@ (4 @ is to f &b _ab’ i
where A= '/ (' + n'9). The next step is to find the X|—R— —%-c0s0 |a Sirf O. (20
image of ¢, and ¢, in S, and S, respectively. Once again ¢ ¢

applying the sphere theorem, the images for a stresslet imhe images ofj, in S, (obtained using the same procedure
S, are found to be Stokeslet, Stokes-doublet, Stokesas beforg¢are found to be the same as in EB0) and so we
guadrupole, degenerate Stokes-quadrupole and degenerateve,,= .. Therefore the complete stream function for
Stokes-octupole all located Bt(see Fig. 1 The strengths of the flow exterior tol" is

5b3 3b% cos#’ 3bc bic| .
——-cost’ + —- ——r1'+=|asif

(1) _ 3o _ 3o
Y V(r,0)=ar®sir? 6 cosd— aa®sir? 6 cosf+ A 5 o 5 o

1—A)[ab’sir? 8’ cosd’ +abcer’ sir? 6’1+ A 3615bR a®’ 9a2 2 |cosO a’h’ ?,a2 2
( )[ab®si cosé’ + abcer’ si 1+ Ty 23|92 COoS >R 32
3a°b° cogO® 3a’b®cosO] a’b_ a’b® .
= =t S R asifO+(1-A) —~7 R——3-cosO asirf o, (21)
and the stream function for the internal flow is
r/2_ 2 rr2_b2
¢<2)(r,e)=(1—A)%[—3+2r'—%L1 (r®—a®)asir? 6 cosé, (22

whereL _, is defined as in Eq8). Thus by repeated application of sphere theorems developed previously in the literature, we
have determined the stream functions for the dispersed and continuous phases. It is important to note that the solutions are
obtained in singularity form.

Some typical streamline patterns inside and outside the compound droplet are shown in Fig. 2. We discuss other important
physical quantities extracted from this solution in Sec. IV.

B. Paraboloidal flow past a compound droplet

We now consider the compound droplet submerged in an axisymmetric paraboloidal flow. The stream function corre-
sponding to the unbounded paraboloidal flowsis= Kr* sin 6, whereK is a constant. The perturbed stream function may be
obtained as explained in the previous subsection. The respective images can be derived using the same method discussed in th
previous subsection. The final expressions for the stream functions in both regions are as follows. For the fluid exterior to the
droplet, we have

5
a
JV(r,0)=Kr*sin* 9—K Tsin4 6+ A

r' '3 b

7b 5b3 4b 2B 2r’ b®
—Tsinz 6’+Wsin2 0"+ — }Kb“sinza’—(l—/\)Kr—,sin“a’

2a5b3R 8a°b® o 4a7b5+a5b5
c® 6 Ccos ¢c'’R  2c®

+A

2/ R c® R? 2¢° R

bz) sif® 5a’b’ sif O cos® 5a’b’ sif O

8a°b’ cos 6 . 8a’b’ cosO . 2a%b’
c’ R ¢ R c’R®

_ a°b® sin* O
KS|n26+(1—A)K—C5 R

(23
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FIG. 3. Typical streamline pattern for flow around a
vapor-liquid compound droplet in paraboloidal flow.

and for the fluid inside the droplet, we have IV. RESULTS AND DISCUSSION

/2 12 Simple exact solutions for the flow fields in and around a

(r'=—=b%) : . .
—3+2r ————FL_, compound droplet submerged in extensional and paraboloi-
2 dal flows have been found in the previous sections. We are

a5 now in a position to examine the other important physical
1- r_5) Kr4sin® 6, (24 quantities such as drag force and stresslet coefficient for the
two-sphere assembly. Since we have determined the solu-

) . . . tions in singularity form, it is a straightforward task to derive

whereL _, is defined in Eq(8). The image system for the ¢,0a5 for these physical quantities directly without inte-

external flow C_OTSiStS ofi) potential-doublet and Stokes- a4ing the surface stresses. The strengths of the total Stoke-
quadrupole a0; (ii) Stokeslet, potential-doublet, Stokes and g5 getermine the drag force and for the extensional flow we

potential quadrupoles and potential octupoléat and (iii) find the drag forc, from Eq.(21) to be
Stokeslet, Stokes and potential doublets, Stokes and potential €

quadrupoles, and Stokes and potential octupoleB.athe De B'[3A 1 1

strengths of these singularities depend on the radind b, 8raDab? F[T( 1 +(1—A)( 1- B—,g”

distance between the centers and the viscosity ratio. Some H

typical streamline patterns inside and outside the compound (29)

droplet are shown in Fig. 3. It can be seen that the flow has We see that the drag force depends on many parameters

two “backflow” regions on both sides of the compound such asB=b/a, the distance=a,(1+ B%)=aB’ between

droplet which may be due to geometrical effect. We discusshe centers, rate of sheas and the viscosity parametéy.

the drag in paraboloidal flow briefly in the next section. This drag perhaps arises due to the geometrical asymmetry.
We observe that the solutions for a compound droplefThis geometrical asymmetry vanishes in the limiting cases:

suspended in extensional and paraboloidal flows involvéi) a=0, b>0; and(ii) b=0, a>0. In these limiting cases,

only point image singularities. The locations of these imagesve expect the drag to be zero provided the origin about

are the two center®, O’, and their common inverse point which 6 is measuredsee Fig. 1 is at the center of the

D. For the extremal values df the solutiong21)—(24) re-  sphere. In fact, we see from E@5) that this drag force is

duce to vapor—vapor and vapor—solid assembly limits. Théndeed zero fob=0 as expected. However, it is nonzero for

complete velocity and pressure fields may be computed eas—=0 because the origin shifts in this case and is no more at

ily from Egs. (9) to (12). the center of the sphere. Figure 4 shows the plots of nor-

(r/2_b2)

YA 0)=(1-A) —p

X

ﬁ,5

FIG. 4. Drag force in extensional flow.

0 ! I 1
0 1 2 . 3 4

B=bfa
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malized drag forc® /8w uMab? versusB=b/a for several . J: 32

values of the viscosity parametdr.0.0, 0.3, 0.5, 0.7, and mzﬂ/\ 3B- E( - F))

1.0. It shows that the normalized drag force increases Wwith a

for any fixed value of the parametgr It is worth noting that 2B

the normalized drag force is maximumg@i=1 for all values + (1_/\)( 2B— F) : (26)

of A<1.0.

It is of some interest to calculate the stresslet coefficient
for a force-free compound droplet. The solution for a force-
free droplet may be obtained by subtracting the translational N required translational velocity can now be found from
velocity (arising in Stokes problepfrom Egs.(21) to (22).  Egs.(25 and(26). Solutions(21)—(22) are now modified in
For a force-free droplet, the sum of the translational andiccordance with this zero drag condition and the stresslet
extensional contributions to the drag must vanish, namelglominates the flow field in the case of a force-free droplet.
D.+D;=0. The expression fdD, is [Eq. (28) in Ref. 1§ The effective stresslet coefficient is

3A(1 1 +(1 A)(l ! )
Se 5 a5 - ~ a3 3 3 2
—3=2Bp' e 2 £ A(ﬁ—,3+—ﬁﬂ’—£,z(3 B—z +(1—A)<BB’
aa 2+ A 3,6’—£(3— b ) +(1—A)(2,8—2—'8 } pr 2 p P
B \" B? B’
B 3 38 5 B9 ° B
—W”—[l—/\(—zﬂﬁ'LF 257 5B+ 2,(3’3(?_2 +(1—/\)(,33 WJFB,B'Z— [w” (27)
|
Note that the first ter.m on the right hanq side of B!Y) is sy , g B p°-1-p°
due to the subtraction of the translational velocity. The 23 1+p +F+Fm} (29)

stresslet coefficient plays a very important role in the theory

of viscosity of suspensions in rheology. However, we will Since many similarities between Stokes flow and electrostat-

not proceed here to calculate the effective viscosity but disics is well known in the literature, it may be worthwhile to
cuss in brief the stresslet coefficient for two extreme valuegoint out few such similarities noticed here. Firstly, the

of the viscosity parametek:0 and 1. above result differs only in sign from the polarizability of the
conducting double sphere in electrostatit&econd, the di-
A. Vapor—solid assembly A=1 pole moment in electrostatics is independent of the choice of
The effective stresslet coefﬁcieSE in this case is coordinate system and so is the stresslet coefficient for a

vapor—vapor assembly. It should be pointed out that the
vapor—vapor assembly corresponds to zero-viscosity limit

. (1_ i) (i.e., u®—0) compound droplet. However, the physical re-
Se —383' B B . 3 alization of such a vapor—vapor assembly with sharp edges
wad 3PP B B2 B 2 P8 has not been achieveexcept for soap bubbl&} yet to the
2+3B- 5 3- 572 best of our knowledge. Hence, these results for vapor—vapor
assembly appear to be of limited significance at the present
B 3 B 1 2 3B time.
CEKANEKINE HPL 28’5 Now we discuss briefly the drag in paraboloidal flows. In
. 59 the case of a compound droplet submerged in paraboloidal
~ p3 o flow, the drag is
i A( - ) (30)
S .
We note thatSf=—aa® whenb=0 as it should be for a 16muVKb? B

single bubble. Foa=0, S§= —3b® and we recover the Ein-

i . - . It follows from this equation that the drag force is zero
stein viscosity coefficient for a rigid sphere.

for a vapor—vapor assembly and it is maximum for vapor—
solid assembly. In fact, it shows that the drag force increases
monotonically withA for a fixed vapor-liquid droplet. We
This corresponds to the case of composite bubbles. Aave plotted the normalized drag forcEep/167r,u(1)Kb3
brief discussion on composite bubbles and the forces moldagainst3=b/a for several values of the viscosity parameter
ing them is provided in Boy& From Eq.(27) we see that A:0.1, 0.3, 0.5, 0.7, and 0.9 in Fig. 5. It shows that the
the stresslet coefficient now becomes normalized drag very quicklywith b/a) approaches its

B. Vapor—vapor assembly A =0
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04 | 4 FIG. 5. Drag force in paraboloidal flow.
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0.1

0 : 1 1 !
0 1 2 3 4

T T
1 !

maximum value. The maximum value depends on the viscoswvhere the second suff indicates that the origin is taken at
ity ratio and significantly on the liquid volume in the dis- this point. Clearly, Eqs(25) and(31) are quite different and
persed phase. We notice from this figure that for larger valinterestingly the latter reveals the existence of zero drag cor-
ues of A, the maximum value of this drag force is attained responding to equilibrium. We observe that the shifting of
when the volume of the liquid sphere is much greater tharorigin alone does not make the drag zero. Rather, the equi-

the vapor volume in the two-sphere assembly. librium position (for which the force vanish¢gepends on
the viscosity and radii ratios. The plots shown in Fig. 6 fur-

V. FURTHER FEATURES OF DRAG FORCE IN ther illustrates these features. The various values for which

EXTENSIONAL FLOWS the force vanishes may be obtained by equating(B#). to

The drag in extensional flow significantly depends on theZeT0 which yields the following relation between viscosity

choice of the origin. We shall now illustrate this by choosing parameter\ and ratio of radii parametgs =b/a:
the origin atD, i.e., at the center of the contact circle. The 2B'3(1-B°%)

governing differential equations are the same as they are in- = W

variant under translation of origin and the complete solutions ) ) -

can be derived by the use of sphere theorems as explained 1€ above expression yields the critical valdg of 5 for

Sec. IIIA. It can be seen that the shift of origin strongly Which the drag vanishes at a specified value\ofSince A
influences the strength of primary image singularities such aS between 0 and 1, E¢32) gives the constraing.<1 or
Stokeslet, stresslet and potential-doublet and further introquivalentlyb<a. This in turn implies that the liquid vol-
duces an extra Stokeslet@t The higher order singularities, Ume should be less than the vapor volume in order to have a
however, remain unaffected. For the sake of brevity we omi¥anishing drag force. It also follows from E(B2) that 3 is

the details and focus our attention on the expression for th@n increasing function ofA (see Fig. 6 with 5.
drag which is found to be =0.7965595828 forA=1 andB.=1 for A=0. In other

words, when the sphei®, is also a vapor A =0), the drag
Dep _ B 1- =4 becomes zero if the two radii of the spheres are equal which
8ruPab?® B’ B> 2p"”° corresponds to the case of composite bubbles. Due to the

(32

(B'3+2)), 31

T

A=

T

15

0.5

—
T

coooo

otomoyoo

DeD
8ruD ab? 0

FIG. 6. Drag force in extensional flow with origin at the
center of the circle of intersection of two spheres.

|
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added symmetry about the plane of intersection in this caseuspended in nonuniform flow fields. By repeated applica-
one would expect this result to be true even for the case dion of sphere theorems, the solutions are found in singular-
arbitrary contact angle. For the vapor—solid assembly ( ity form for the droplet placed in axisymmetric extensional
=1), the force vanishes whewa=0.7965595828. In all and paraboloidal flows. It is found that the dimensionless
cases for which the drag force is zero, the stresslet coefficientiscosity ratioA and the dimensionless paramejg+ b/a
follows directly from the solution without subtracting the (ratio of radi) strongly influence the flow field, the drag, and
translational velocity. the stresslet coefficient. The drag force in extensional flow is
It is also of interest to analyze the stability of the equi- shown to be significantly dependent on the choice of the
librium (zero drag position found above. The stability issue origin. If the origin is chosen at the center of the circle of
concerning compound drops has been addressed by maintersection, then the drag vanishes at a critical vatue
workers in variety of circumstances. The review on com-= B, which depends ork. The reversal phenomenon is ex-
pound multiphase drops by Johnson and Sddpeivides hibited wheng goes through those critical values. Two rules
references to various earlier works on the stability of suchare proposed for eliminating this reversal effect which may
drops. A later work by Sadhal and Odtanalyzed the sta- perhaps have a general validity. The solutions for more com-
bility of a completely engulfed drop/bubble suspended inplicated axisymmetric flows in the presence of a compound
uniform flow of a viscous fluid. The cited authors examineddroplet can be obtained in a similar fashion. Finally, the
the translatory motion of a compound drop—consisting of aconfiguration considered here is special because the two
liquid drop/bubble completely engulfed by a larger sphericalspheres share a common inverse point that admits elegant
surface containing another immiscible liquid—in a distinct solutions. However, as evidenced from the present results,
third liquid. By balancing the viscous drag with a suitable the typical features of the flow can be observed even with the
buoyant force, they found stable, unstable and metastablenited constraintc?=a?+b?2. Furthermore, the comparison
equilibrium positions of the inner sphere with respect to theof streamlines for pure translation presented in Palaniappan
outer spherical surface. Following their work, we provideand Kimt® and Vuong and Sadhdlshows that the contact
here a brief discussion on the stability of the zero drag posiangle does not influence significantly the flow fields in and
tion of the compound drop' (Fig. 1) in extensional flow. around the compound droplet. Therefore, the orthogonality
We first observe that in extensional flow the equilibrium constraint may not be excessively restrictive. The relaxation
results even in the absence of buoyant force and(Bg. of the this constraint will introduce contact angle as an ad-
gives the values oA andp corresponding to equilibrium for ditional parameter and in this case the problem may be
which the drag force vanishes. The stability of this zero dragsolved by the use of conical functions in toroidal coordi-
position can be analyzed by moving the origin alongnates. In such investigations, the solutions and the physical
z-direction. We noticed in the beginning of this section thatquantities will contain infinite integrals involving compli-
the shifting of origin alongz-axis changes the drag force cated functions which have to be evaluated numerically.
significantly. It can be seen from Eq®5) and(31) that for
a given equilibrium value o\ and 8 with >0, moving the ACKNOWLEDGMENTS
origin towards O results a drag force along positive
z-direction. Similarly it can be shown that moving the origin
towardsO’ leads to a drag force along negatix-eirection.
Therefore, the equilibrium in this case is clearly stable. Fo
the same equilibrium values &f and 8 with «<<0, a similar
examination shows unstable equilibrium.
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