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Compound droplet in extensional and paraboloidal flows
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Exact analytical solutions are found for the steady state creeping flow in and around a vapor–liquid
compound droplet, consisting of two orthogonally intersecting spheres of arbitrary radii~a andb!,
submerged in axisymmetric extensional and paraboloidal flows of fluid with viscositym (1). The
solutions are presented in singularity form with the images located at three points: the two centers
of the spheres and their common inverse point. The important results of physical interest such as
drag force and stresslet coefficient are derived and discussed. These flow properties are
characterized by two parameters, namely the dimensionless viscosity parameter:L5m (2)/(m (1)

1m (2)), and the dimensionless parameter:b5b/a, wherem (2) is the viscosity of the liquid in the
sphere~part of the compound droplet! with radiusb. We find that for some extensional flows, there
exists a critical value ofb5bc for each choice ofL in the interval 0<L<1 such that the drag force
is negative, zero or positive depending on whetherb,bc , b5bc , or b.bc respectively. For other
extensional flows, the drag force is always positive. The realization of these various extensional
flows by simply changing the choice of the origin in our description of the undisturbed flow field is
also discussed. In extensional flows where the drag force is always positive, we notice that this drag
forceDe for vapor–liquid compound droplet is maximum whenb'1 ~i.e., two spheres have almost
the same radii!. Moreover, we find the drag forceDe is a monotonic function ofL, i.e., the drag
force for vapor–liquid compound droplet lies between vapor–vapor and vapor-rigid assembly
limits. We also find that the maximum value of the drag in paraboloidal flow depends on the
viscosity ratioL and significantly on the liquid volume in the dispersed phase. ©2000 American
Institute of Physics.@S1070-6631~00!01310-6#
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I. INTRODUCTION

The study of hybrid multiphase droplets is of great
terest in many areas of science and technology. These d
lets occur in processes such as melting of ice particles in
atmosphere, liquid membrane technology as well as in o
industrial operations. Furthermore, the compound drop
are also found to exist in lipid bilayer1 and polymer grafted2

membranes in concentrated solutions. The fluid mechanic
such droplets is discussed for instance in Avedisianet al.,3

Johnson and Sadhal,4 and Sadhalet al.5 among many others
In electrostatics, the compound~merging! objects are mod-
eled as two overlapping spherical surfaces and their
sponses to applied electric fields are explored. In this c
the solutions of Laplace equation provide excellent theor
cal results as explained in Jones6 and Radchiket al.7 How-
ever, the fluid mechanics of such objects~in the limit of zero
Reynolds number! depends on the solutions of vector biha
monic equations.

Solutions of Stokes-flow problems, in which inertial e
fects are negligible in comparison with the viscous effe
have been studied since the time of Stokes8 who himself
solved the problem of a translating sphere. Many years l
Lamb9 presented the general solution of Stokes equation

a!Author for correspondence.
2371070-6631/2000/12(10)/2377/9/$17.00
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the use of spherical harmonics. The motion of ellipsoid
particles in a viscous fluid has also been treated using sop
ticated analysis of ellipsoidal harmonics. For references
these works together with some perspectives on analy
and numerical techniques for Stokes-flow past submer
bodies, the reader is directed to the standard monograph
the subject.10–12 The singularity method, which was origi
nated by Lorentz,13 has also been applied by many to co
sider the fluid motion about nonspherical particles a
Chwang and Wu14 has exploited it further and gave refe
ences to previous works. Payne and Pell15 treated the creep
ing flow problems of axially symmetric bodies by employin
a stream function technique. Comparing the singula
method with the other methods, one finds that the forme
simpler and more elegant. Surprisingly, only ellipsoids a
spheroids have received more attention in earlier studies
the singularity method. For bodies consisting of overlapp
surfaces, the solution in singularity form was found on
recently by Palaniappan and Kim.16 There is another notable
work by Vuong and Sadhal17 concerning the translation an
growth of a compound drop. The cited authors used the
oidal coordinates and solved the problem analytically for
bitrary contact angle. The solutions and the drag are
pressed in terms of infinite integrals that needed furt
numerical computations. However, in those studies,16,17 only
the problem of uniform flow past a partially encapsulat
7 © 2000 American Institute of Physics
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droplet was discussed to illustrate the basic idea.
Interests in droplet motions in non-uniform veloci

fields stem from a variety of industrial and naturally occu
ring processes involving suspended particles. For insta
the motion of cells in capillaries and processing emulsion
of considerable interest in many areas. Furthermore,
problem of cross-stream migration of suspended parti
due to hydrodynamic interactions has also attrac
attention.18–20 But the attention is focussed only for spher
in these studies. In the case of bodies attached to surfa
the analytical approach has been avoided owing to the d
culty to describe those geometries mathematically. As a
sult, numerical solutions are sought for problems involvi
drops attached to surfaces.21

Motivated by the above, in the present analysis we c
culate the detailed Stokes-flow past a compound droplet
mersed in axisymmetric extensional and paraboloidal fl
fields. Analytic solutions for the two-sphere assembly
obtained in closed forms in terms of the stream function
spherical coordinates. The required singularities for the s
tions are obtained by repeated application of the sphere t
rems developed previously.22 The final solutions are pre
sented in singularity forms with the image singulariti
located at the two centers of the spheres and their com
inverse point inside the two-sphere assembly. The drag
the stresslet coefficients follow directly from the solutio
without integrating the surface stresses.

The organization of the paper is as follows. We st
with the geometrical description of the compound drop
together with the statement of the problem and the bound
conditions. In Sec. III, we reformulate the problem and a
derive the boundary conditions in terms of stream functi
Then using the sphere theorems, we construct the solutio
singularity form for the two non-uniform flow fields in sub
sections III A and III B. It is clear from the present metho
that the toroidal coordinate system is not required to find
solutions for this special geometry. The discussion of
results including derivation of drag and stresslet coeffici
are presented in Sec. IV. The additional characteristics of
drag in extensional flow are provided in Sec. V followed
the concluding remarks in Sec. VI.

II. PROBLEM STATEMENT

The schematic of the compound droplet is depicted
Fig. 1. The two-sphere assembly, denoted byG, consists of
two unequal spheresSa andSb of radii a andb intersecting
orthogonally with centersO and O8, respectively. The two
centers share a common inverse pointD such thatOD
5a2/c, DO85b2/c, c25a21b2 where OO85c. The ge-
ometry drawn in Fig. 1 is more realistic if one of the sphe
is a solid which is a special case of our analysis. It should
remarked that the interfaceAB adjoining the two segment
will have curvature different from that of the sphereSa for a
fluid–fluid system. We use the spherical polar coordina
(r ,u,f), (r 8,u8,f), and (R,Q,f) of any point outside the
assemblyG with O, O8 and D as origins, respectively. Th
geometrical relations connecting the coordinates are

r 25r 8212cr8 cosu81c2, ~1!
Downloaded 06 May 2004 to 165.91.117.113. Redistribution subject to AI
-
e,

is
e
s
d

es,
-

e-

l-
-

e
n
u-
o-

on
nd

t
t
ry
o
.
in

e
e
t
e

n

s
e

s

r 825r 222cr cosu1c2, ~2!

R25r 222
a2

c
r cosu1

a4

c2 ,

~3!

5r 8212
b2

c
r 8 cosu81

b4

c2 .

On the spheresSa andSb , r 8 and r reduce to

r 85
c

a
R on r 5a, ~4!

r 5
c

b
R on r 85b. ~5!

The sphereSb contains a liquid~with viscosity different from
the outside fluid region! and sphereSa is a bubble containing
vapor. We designate the fluid region exterior toG as I and
the spherical regionsSb andSa and II and III , respectively.
The surface tension forces are assumed to be large enou
keep the interfaces in a spherical shape. As mentione
Palaniappan and Kim,16 the vapor–liquid configuration ex
ists at rest with contact angle approximately 90° ifg I ,II

'g II ,III @g I ,III which is in agreement with Laplace law o
all interfaces. Here theg’s denote the surface tension at th
interface separating regions.

The Reynolds number of the flow fields is assumed to
small so that all inertial effects are neglected. The govern
equations for fluid flow are the Stokes equations or creep
flow equations,

m~ i !¹2q~ i !5¹p~ i !, ¹•q~ i !50, ~ i 51,2!, ~6!

where i 51,2 is used to denote the dispersed and
continuous-phase liquids, respectively,q( i ), p( i ), andm ( i ) are
the velocities, pressures, and viscosities in the respec
phases. The boundary and interface conditions are sum
rized below:

• far from the droplet, velocity, and pressure are that of
basic flow;

• zero normal velocity onr 5a and r 85b;

FIG. 1. The two-sphere assemblyG.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2379Phys. Fluids, Vol. 12, No. 10, October 2000 Compound droplet in extensional and paraboloidal flows
• continuity of tangential velocity and shear stress at liqui
liquid interface I–II atr 85b;

• zero shear-stress atr 5a.

The governing Stokes equations~6! subject to the
asymptotic and boundary as well as interface conditi
stated above constitute a well-posed problem whose solu
provides the velocity and pressure prevailing in the prese
of the compound droplet.

III. EXACT SOLUTIONS

We consider two separate problems namely, compo
droplet suspended in axisymmetric~i! extensional and~ii !
paraboloidal flows. As the flow is axisymmetric aboutz-axis,
we use Stokes stream function formulation which requi
the solution of the fourth-order scalar equation

L21
2 c50, ~7!

whereL21 is the axisymmetric Stokes operator defined b

L215
]2

]r 2 1
12h2

r 2

]2

]h2 ,

5
]2

]r 82 1
12h82

r 82

]2

]h82 , ~8!

for the coordinates (r ,u) with h5cosu and (r 8,u8) with
h85cosu8 respectively. Now the velocity components
terms of the stream function are given by

qr
~ i !5

1

r 2 sinu

]c~ i !

]u
, ~9!

qu
~ i ! ,52

1

r sinu

]c~ i !

]r
, ~10!

and the pressure is obtained from

]p~ i !

]r
52

h

r 2 sinu

]

]u
~L21c~ i !!, ~11!

]p~ i !

]u
5

h

sinu

]

]r
~L21c~ i !!. ~12!

The boundary conditions in terms of the stream function
come

c~1!505
]

]r

1

r 2

]c~1!

]r
, ~13!

on the part of the droplet wherer 5a and
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c~1!505c~2!, ~14!

]c~1!

]r 8
5

]c~2!

]r 8
, ~15!

m~1!S ]

]r 8

1

r 28

]c~1!

]r 8
D 5m~2!S ]

]r 8

1

r 82

]c~2!

]r 8
D , ~16!

on the remaining part of the droplet wherer 85b. Below, we
obtain the exact solutions for the two problems.

A. Extensional flow past a compound droplet

We consider a stationary compound droplet with boun
ary G, part of which is filled with another liquid of differen
viscosity immersed in an axisymmetric shear flow. T
stream function corresponding to this axisymmetric flow
c05ar 3 sin2 u cosu, wherea is a shear constant andu, un-
less otherwise mentioned below, refers to the polar an
measured counterclockwise atO from the axis of symmetry
of the droplet as shown in Fig. 1. It is worth pointing out th
if the angleu is measured with respect to a different orig
along the axis, then thec0 as given above will correspond t
a different extensional flow. Therefore this stream functi
c0 can be used to refer to several extensional flows sim
shifting the pointO for the purposes of measurement
angleu.

We now determine the perturbed stream function in
presence of the compound droplet. In order to construct
image system for the two-sphere assembly we write
modified external flow as

c~1!5c01ca1cb1cab . ~17!

The expression forca consists of the image ofc0 in the
sphereSa which is a stress-free. Applying the sphere the
rem @see Eq.~21! in Palaniappanet al.22# for a shear-free
spherical surface, we find that the image is a stresslet loc
at the pointO ~see Fig. 1!:

ca52aa3 sin2 u cosu. ~18!

We again apply the sphere theorem22 to find the image ofc0

in the sphereSb . It can be seen that the image system in t
case consists of four singularities viz. Stokeslet, stress
degenerate Stokes-quadrupole~potential-doublet! and degen-
erate Stokes-octupole all located atO8 ~see Fig. 1!. The ex-
pression forcb may be written as
a
FIG. 2. Typical streamline pattern for flow around
vapor–liquid compound droplet in extensional flow.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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cb5LF S 2
5b3

2
cosu81

3b5

2

cosu8

r 82 2
3bc

2
r 8

1
b3c

2r 8 Da sin2 u8G2~12L!@ab3 sin2 u8 cosu8

1abcr8 sin2 u8#, ~19!

where L5m (2)/(m (1)1m (2)). The next step is to find the
image ofca and cb in Sb and Sa respectively. Once again
applying the sphere theorem, the images for a stressle
Sb are found to be Stokeslet, Stokes-doublet, Stok
quadrupole, degenerate Stokes-quadrupole and degen
Stokes-octupole all located atD ~see Fig. 1!. The strengths of
Downloaded 06 May 2004 to 165.91.117.113. Redistribution subject to AI
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these singularities depend on radii, the distance between
centers and the viscosity ratio. The resulting expression
written as

cab5LF3a5b

c4 R2
a3b3

2c3 S 9
a2

c222D cosU2
a5b3

2c4R S 3
a2

c222D
1

3a5b5

c6

cos2 U

R
1

3a7b5

2c7

cosU

R2 Ga sin2 U1~12L!

3Fa3b

c2 R2
a3b3

c3 cosUGa sin2 U. ~20!

The images ofcb in Sa ~obtained using the same procedu
as before! are found to be the same as in Eq.~20! and so we
havecab5cba . Therefore the complete stream function f
the flow exterior toG is
re, we
utions are

mportant

corre-
be
ssed in the
or to the
c~1!~r ,u!5ar 3 sin2 u cosu2aa3 sin2 u cosu1LF S 2
5b3

2
cosu81

3b5

2

cosu8

r 82 2
3bc

2
r 81

b3c

2r 8 Da sin2 u8G
2~12L!@ab3 sin2 u8 cosu81abcr8 sin2 u8#1LF3a5b

2c4 R2
a3b3

2c3 S 9
a2

c222D cosU2
a5b3

2c4R S 3
a2

c222D
1

3a5b5

c6

cos2 U

R
1

3a7b5

2c7

cosU

R2 Ga sin2 U1~12L!Fa3b

c2 R2
a3b3

c3 cosUGa sin2 U, ~21!

and the stream function for the internal flow is

c~2!~r ,u!5~12L!
~r 822b2!

2b2 F2312r 82
~r 822b2!

2
L21G~r 32a3!a sin2 u cosu, ~22!

whereL21 is defined as in Eq.~8!. Thus by repeated application of sphere theorems developed previously in the literatu
have determined the stream functions for the dispersed and continuous phases. It is important to note that the sol
obtained in singularity form.

Some typical streamline patterns inside and outside the compound droplet are shown in Fig. 2. We discuss other i
physical quantities extracted from this solution in Sec. IV.

B. Paraboloidal flow past a compound droplet

We now consider the compound droplet submerged in an axisymmetric paraboloidal flow. The stream function
sponding to the unbounded paraboloidal flow isc05Kr 4 sin4 u, whereK is a constant. The perturbed stream function may
obtained as explained in the previous subsection. The respective images can be derived using the same method discu
previous subsection. The final expressions for the stream functions in both regions are as follows. For the fluid exteri
droplet, we have

c~1!~r ,u!5Kr 4 sin4 u2K
a5

r
sin4 u1LF2

7b

2r 8
sin2 u81

5b3

2r 83 sin2 u81
4b

r 8
2

2b3

r 83 2
2r 8

b GKb4 sin2 u82~12L!K
b5

r 8
sin4 u8

1LF2a5b3

c5 R2
8a5b5

c6 cosU2
4a7b5

c7R
1

a5b5

2c5 S 725
b2

c2D sin2 U

R
2

5a7b7

c8

sin2 U cosU

R2 2
5a9b7

2c9

sin2 U

R3

1
8a5b7

c7

cos2 U

R
1

8a7b7

c8

cosU

R2 1
2a9b7

c9R3 GK sin2 U1~12L!K
a5b5

c5

sin4 U

R
, ~23!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Typical streamline pattern for flow around
vapor–liquid compound droplet in paraboloidal flow.
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and for the fluid inside the droplet, we have

c~2!~r ,u!5~12L!
~r 822b2!

2b2 F2312r 82
~r 822b2!

2
L21G

3S 12
a5

r 5 DKr 4 sin4 u, ~24!

whereL21 is defined in Eq.~8!. The image system for the
external flow consists of~i! potential-doublet and Stokes
quadrupole atO; ~ii ! Stokeslet, potential-doublet, Stokes a
potential quadrupoles and potential octupole atO8; and~iii !
Stokeslet, Stokes and potential doublets, Stokes and pote
quadrupoles, and Stokes and potential octupoles atD. The
strengths of these singularities depend on the radiia andb,
distance between the centers and the viscosity ratio. S
typical streamline patterns inside and outside the compo
droplet are shown in Fig. 3. It can be seen that the flow
two ‘‘backflow’’ regions on both sides of the compoun
droplet which may be due to geometrical effect. We disc
the drag in paraboloidal flow briefly in the next section.

We observe that the solutions for a compound drop
suspended in extensional and paraboloidal flows invo
only point image singularities. The locations of these ima
are the two centersO, O8, and their common inverse poin
D. For the extremal values ofL the solutions~21!–~24! re-
duce to vapor–vapor and vapor–solid assembly limits. T
complete velocity and pressure fields may be computed
ily from Eqs. ~9! to ~12!.
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IV. RESULTS AND DISCUSSION

Simple exact solutions for the flow fields in and around
compound droplet submerged in extensional and parabo
dal flows have been found in the previous sections. We
now in a position to examine the other important physi
quantities such as drag force and stresslet coefficient for
two-sphere assembly. Since we have determined the s
tions in singularity form, it is a straightforward task to deriv
formulas for these physical quantities directly without int
grating the surface stresses. The strengths of the total St
lets determine the drag force and for the extensional flow
find the drag forceDe from Eq. ~21! to be

De

8pm~1!ab2 5
b8

b F3L

2 S 12
1

b85D1~12L!S 12
1

b83D G .
~25!

We see that the drag force depends on many parame
such asb5b/a, the distancec5aA(11b2)5ab8 between
the centers, rate of sheara, and the viscosity parameterL.
This drag perhaps arises due to the geometrical asymm
This geometrical asymmetry vanishes in the limiting cas
~i! a50, b.0; and~ii ! b50, a.0. In these limiting cases
we expect the drag to be zero provided the origin ab
which u is measured~see Fig. 1! is at the center of the
sphere. In fact, we see from Eq.~25! that this drag force is
indeed zero forb50 as expected. However, it is nonzero f
a50 because the origin shifts in this case and is no mor
the center of the sphere. Figure 4 shows the plots of n
FIG. 4. Drag force in extensional flow.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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malized drag forceDe/8pm (1)ab2 versusb5b/a for several
values of the viscosity parameterL:0.0, 0.3, 0.5, 0.7, and
1.0. It shows that the normalized drag force increases witL
for any fixed value of the parameterb. It is worth noting that
the normalized drag force is maximum atb'1 for all values
of L<1.0.

It is of some interest to calculate the stresslet coeffici
for a force-free compound droplet. The solution for a forc
free droplet may be obtained by subtracting the translatio
velocity ~arising in Stokes problem! from Eqs.~21! to ~22!.
For a force-free droplet, the sum of the translational a
extensional contributions to the drag must vanish, nam
De1Dt50. The expression forDt is @Eq. ~28! in Ref. 16#
he
or
il

dis
ue

-

.
ol
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Dt

2pm~1!Ua
521LS 3b2

b

b8 S 32
b2

b82D D
1~12L!S 2b2

2b

b8 D . ~26!

The required translational velocityU can now be found from
Eqs.~25! and~26!. Solutions~21!–~22! are now modified in
accordance with this zero drag condition and the stres
dominates the flow field in the case of a force-free drop
The effective stresslet coefficient is
Se

aa3 52bb8

3L

2 S 12
1

b85D1~12L!S 12
1

b83D
F21LS 3b2

b

b8 S 32
b2

b82D D1~12L!S 2b2
2b

b8 D G
FLS b3

b83 1
3

2
bb82

b

b82 S 32
b2

b82D D1~12L!S bb8

2
b

b82D G2F12LS 2
3

2
bb821

3b

2b852
5

2
b31

b3

2b83 S 9

b8222D D1~12L!S b31
b3

b83 1bb822
b

b83D G . ~27!
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Note that the first term on the right hand side of Eq.~27! is
due to the subtraction of the translational velocity. T
stresslet coefficient plays a very important role in the the
of viscosity of suspensions in rheology. However, we w
not proceed here to calculate the effective viscosity but
cuss in brief the stresslet coefficient for two extreme val
of the viscosity parameterL:0 and 1.

A. Vapor–solid assembly LÄ1

The effective stresslet coefficientSe
R in this case is

Se
R

aa3 53bb8

S 12
1

b85D
F213b2

b

b8 S 32
b2

b82D G F S b3

b83 1
3

2
bb8

2
b

b82 S 32
b2

b82D D G2F11
3

2
bb822

3b

2b85

1
5

2
b32

b3

2b83 S 9

b8222D G . ~28!

We note thatSe
R52aa3 when b50 as it should be for a

single bubble. Fora50, Se
R52 5

2b
3 and we recover the Ein

stein viscosity coefficient for a rigid sphere.

B. Vapor–vapor assembly LÄ0

This corresponds to the case of composite bubbles
brief discussion on composite bubbles and the forces m
ing them is provided in Boys.23 From Eq.~27! we see that
the stresslet coefficient now becomes
y
l
-
s

A
d-

Se
V

aa3 52F11b31
b3

b83 1
b

b82

b85212b5

b81bb82bG . ~29!

Since many similarities between Stokes flow and electros
ics is well known in the literature, it may be worthwhile t
point out few such similarities noticed here. Firstly, th
above result differs only in sign from the polarizability of th
conducting double sphere in electrostatics.24 Second, the di-
pole moment in electrostatics is independent of the choic
coordinate system and so is the stresslet coefficient fo
vapor–vapor assembly. It should be pointed out that
vapor–vapor assembly corresponds to zero-viscosity li
~i.e., m (2)→0! compound droplet. However, the physical r
alization of such a vapor–vapor assembly with sharp ed
has not been achieved~except for soap bubbles23! yet to the
best of our knowledge. Hence, these results for vapor–va
assembly appear to be of limited significance at the pres
time.

Now we discuss briefly the drag in paraboloidal flows.
the case of a compound droplet submerged in parabolo
flow, the drag is

Dp

16pm~1!Kb3 5LS 12
1

b85D . ~30!

It follows from this equation that the drag force is ze
for a vapor–vapor assembly and it is maximum for vapo
solid assembly. In fact, it shows that the drag force increa
monotonically withL for a fixed vapor–liquid droplet. We
have plotted the normalized drag forceDp/16pm (1)Kb3

againstb5b/a for several values of the viscosity paramet
L:0.1, 0.3, 0.5, 0.7, and 0.9 in Fig. 5. It shows that t
normalized drag very quickly~with b/a! approaches its
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. Drag force in paraboloidal flow.
o
-
a

ed
a

th
ng
e

n
ed
ly
a

tr
,
m
th

t

cor-
of
qui-

r-
ich

ity

e a

ich
the
maximum value. The maximum value depends on the visc
ity ratio and significantly on the liquid volume in the dis
persed phase. We notice from this figure that for larger v
ues ofL, the maximum value of this drag force is attain
when the volume of the liquid sphere is much greater th
the vapor volume in the two-sphere assembly.

V. FURTHER FEATURES OF DRAG FORCE IN
EXTENSIONAL FLOWS

The drag in extensional flow significantly depends on
choice of the origin. We shall now illustrate this by choosi
the origin atD, i.e., at the center of the contact circle. Th
governing differential equations are the same as they are
variant under translation of origin and the complete solutio
can be derived by the use of sphere theorems as explain
Sec. III A. It can be seen that the shift of origin strong
influences the strength of primary image singularities such
Stokeslet, stresslet and potential-doublet and further in
duces an extra Stokeslet atO. The higher order singularities
however, remain unaffected. For the sake of brevity we o
the details and focus our attention on the expression for
drag which is found to be

DeD

8pm~1!ab2 5
b

b8 F12
1

b3 1
L

2b83 ~b8312!G , ~31!
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where the second suffixD indicates that the origin is taken a
this point. Clearly, Eqs.~25! and~31! are quite different and
interestingly the latter reveals the existence of zero drag
responding to equilibrium. We observe that the shifting
origin alone does not make the drag zero. Rather, the e
librium position ~for which the force vanishes! depends on
the viscosity and radii ratios. The plots shown in Fig. 6 fu
ther illustrates these features. The various values for wh
the force vanishes may be obtained by equating Eq.~31! to
zero which yields the following relation between viscos
parameterL and ratio of radii parameterb5b/a:

L5
2b83~12b3!

b3~b8312!
. ~32!

The above expression yields the critical valuebc of b for
which the drag vanishes at a specified value ofL. SinceL
lies between 0 and 1, Eq.~32! gives the constraintbc<1 or
equivalentlyb<a. This in turn implies that the liquid vol-
ume should be less than the vapor volume in order to hav
vanishing drag force. It also follows from Eq.~32! thatbc is
an increasing function ofL ~see Fig. 6! with bc

50.796 559 582 8 forL51 andbc51 for L50. In other
words, when the sphereSb is also a vapor (L50), the drag
becomes zero if the two radii of the spheres are equal wh
corresponds to the case of composite bubbles. Due to
e
FIG. 6. Drag force in extensional flow with origin at th
center of the circle of intersection of two spheres.
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added symmetry about the plane of intersection in this c
one would expect this result to be true even for the case
arbitrary contact angle. For the vapor–solid assemblyL
51), the force vanishes whenb/a50.796 559 582 8. In all
cases for which the drag force is zero, the stresslet coeffic
follows directly from the solution without subtracting th
translational velocity.

It is also of interest to analyze the stability of the eq
librium ~zero drag! position found above. The stability issu
concerning compound drops has been addressed by m
workers in variety of circumstances. The review on co
pound multiphase drops by Johnson and Sadhal4 provides
references to various earlier works on the stability of su
drops. A later work by Sadhal and Oguz25 analyzed the sta
bility of a completely engulfed drop/bubble suspended
uniform flow of a viscous fluid. The cited authors examin
the translatory motion of a compound drop—consisting o
liquid drop/bubble completely engulfed by a larger spheri
surface containing another immiscible liquid—in a distin
third liquid. By balancing the viscous drag with a suitab
buoyant force, they found stable, unstable and metast
equilibrium positions of the inner sphere with respect to
outer spherical surface. Following their work, we provi
here a brief discussion on the stability of the zero drag p
tion of the compound dropG ~Fig. 1! in extensional flow.

We first observe that in extensional flow the equilibriu
results even in the absence of buoyant force and Eq.~32!
gives the values ofL andb corresponding to equilibrium fo
which the drag force vanishes. The stability of this zero d
position can be analyzed by moving the origin alo
z-direction. We noticed in the beginning of this section th
the shifting of origin alongz-axis changes the drag forc
significantly. It can be seen from Eqs.~25! and~31! that for
a given equilibrium value ofL andb with a.0, moving the
origin towards O results a drag force along positiv
z-direction. Similarly it can be shown that moving the orig
towardsO8 leads to a drag force along negativez-direction.
Therefore, the equilibrium in this case is clearly stable. F
the same equilibrium values ofL andb with a,0, a similar
examination shows unstable equilibrium.

Equations~31! and ~32! point out yet another feature i
Stokes flow. It is obvious that the drag force is positive
b.bc ~at which the force is zero! and is negative forb
,bc . This is due to the change of sign of the total ima
Stokeslets leading to the so called ‘‘Stokeslets reversal’’ p
nomenon. Indeed, the reversal phenomenon has been no
in Stokes flow26 recently in the context of point force image
in a spherical container. The reversal of image Stokes
will change the direction of the force and arises mainly d
to the geometrical effect in the present case. This phen
enon can be eliminated in two ways viz.~i! by choosing the
liquid volume larger than the vapor volume, and~ii ! by plac-
ing the origin of the configuration at one of the centers of
spheres. These rules may perhaps have a general validit
arbitrary contact angle.

VI. CONCLUSION

Simple analytical solutions are obtained for the probl
of Stokes flow in and around a compound~hybrid! droplet
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suspended in nonuniform flow fields. By repeated appli
tion of sphere theorems, the solutions are found in singu
ity form for the droplet placed in axisymmetric extension
and paraboloidal flows. It is found that the dimensionle
viscosity ratioL and the dimensionless parameterb5b/a
~ratio of radii! strongly influence the flow field, the drag, an
the stresslet coefficient. The drag force in extensional flow
shown to be significantly dependent on the choice of
origin. If the origin is chosen at the center of the circle
intersection, then the drag vanishes at a critical valueb
5bc which depends onL. The reversal phenomenon is e
hibited whenb goes through those critical values. Two rul
are proposed for eliminating this reversal effect which m
perhaps have a general validity. The solutions for more co
plicated axisymmetric flows in the presence of a compou
droplet can be obtained in a similar fashion. Finally, t
configuration considered here is special because the
spheres share a common inverse point that admits ele
solutions. However, as evidenced from the present res
the typical features of the flow can be observed even with
limited constraintc25a21b2. Furthermore, the compariso
of streamlines for pure translation presented in Palaniap
and Kim16 and Vuong and Sadhal17 shows that the contac
angle does not influence significantly the flow fields in a
around the compound droplet. Therefore, the orthogona
constraint may not be excessively restrictive. The relaxat
of the this constraint will introduce contact angle as an
ditional parameter and in this case the problem may
solved by the use of conical functions in toroidal coord
nates. In such investigations, the solutions and the phys
quantities will contain infinite integrals involving compli
cated functions which have to be evaluated numerically.
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