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We consider a setup in a Hele-Shaw cell where a fluid of constant viscosity �l occupying a
near-half-plane pushes a fluid of constant viscosity ���l occupying a layer of length L which in
turn pushes another fluid of constant viscosity �r�� occupying the right half-plane. The fluid
upstream has a velocity U. Careful analysis of the dispersion relation arising from linear stability of
the three-layer Hele-Shaw flow problem leads to the following specific analytical results all of
which are strikingly independent of the length �L� of the middle layer: �i� a necessary and sufficient
condition for modal instability; �ii� a critical viscosity of the middle layer that gives the shortest
bandwidth of unstable waves; and �iii� a strict upper bound on the growth rate of instabilities,
meaning that this upper bound is never reached and hence this upper bound can be improved upon.
Results based on exact growth rates are presented which provides some insight into the instability
transfer mechanism between interfaces as the parameters of the problem are varied. Numerical
evidence that supports the effectiveness of the upper bound is also presented. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3021476�

I. INTRODUCTION

Studies in three-layer Hele-Shaw flows are of interest to
several industrial processes, enhanced oil recovery �EOR�
process is one of them, and also to our basic understanding
of hydrodynamic stability in multiphase flows. Hele-Shaw
models are simplifications of saturation models �models in-
volving Buckley–Leverett �see Ref. 1� equations� that are
closer to actual physics in porous media flows, but these
simpler models allow studies of certain aspects of physics in
isolation that are prevalent in porous media flows. For ex-
ample, saturation shocks �discontinuities in saturation� in
saturation models have across them different effective vis-
cosities and propagate with speed faster than the fluid speed
behind these shocks. On the other hand, discontinuities in
Hele-Shaw models based on Darcy’s law �see Eq. �1� and the
text following Eq. �1�� are of contact types, meaning that
these are material interfaces which travel in its normal direc-
tion at the same speed as the speed of fluids on either side of
these interfaces, though the fluids themselves may have dif-
ferent viscosities. Therefore, Hele-Shaw models allow one to
distinguish the viscosity effect from the influence of nonlin-
ear waves which would otherwise be present in saturation
models. It is also a step toward an ability to better understand
any flow complexity arising solely due to the presence of
saturation waves in saturation models. This has a bearing in
the development of effective and economical strategies for
controlling interfacial instabilities that play a critical role in
many industrial processes including EOR in porous media.

It is well known that in a two-layer Hele-Shaw flow
where a viscous fluid �with viscosity �r� such as oil is dis-
placed by another less viscous immiscible fluid �with viscos-
ity �l��r� such as water, the material interface separating
these two immiscible fluids of different viscosities suffers

from Saffman–Taylor �ST� instability2 with surface tension
playing an important role in mitigating growth rates of the
disturbances. For a review on this instability, see Refs. 3 and
4. An analogous instability in porous media has been studied
by Chouke et al.5 A straightforward extrapolation of this phe-
nomenon to a three-layer case in a Hele-Shaw cell suggests
that addition of a middle layer in an otherwise two-layer
Hele-Shaw flow can reduce the growth rates of instabilities
on the leading interface significantly provided �l����r

with � being the viscosity of the fluid in the middle layer.
The origin of this idea dates back to the early 1960s from the
basic work on ST instability and has since attracted much
attention, with most of the literature reviewed and system-
ized first by Shah and Schechter6 and then by several other
authors �see Refs. 7–9� in recent years.

Polymer augmented chemical flooding has been very
popular �e.g., see Refs. 7, 9, and 10� because the role of the
polymer is to increase the viscosity, reducing the mobility
ratio and hence allowing a greater volumetric swept effi-
ciency. In fact, one of the chemical EOR processes involves
injection of chemical agents such as polymer in water to
increase the viscosity of the displacing fluid so that the ST
instability of the interface is somewhat mitigated. Hence-
forth, such displacing fluid containing polymer will be called
polysolution. Since polymer is expensive, injection of
polysolution is usually followed by injection of pure water to
keep the cost low so that the recovery process is economi-
cally viable. Thus, this chemical EOR process involves a
three-layer flow. To take advantage of and better understand
this three-layer oil recovery process involving polymer flood,
there have been some numerical studies of Hele-Shaw
models11 as well as saturation models12 for this chemical
EOR process in porous media.

In Ref. 12 the above mentioned chemical EOR process
in porous media is modeled by a coupled system of elliptic
and hyperbolic equations which is then numerically solveda�Electronic mail: prabir.daripa@math.tamu.edu.
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using a front-tracking method. The numerical study there
exclusively focused on the effect of middle-layer viscosity
on �i� sweeping efficiency and improvement of oil recovery
in quarter-five-spot geometry and �ii� interfacial interactions
in a Hele-Shaw cell geometry. In spite of such studies and
available software that solves this specific EOR process by
polymer flooding, industrial use of this chemical EOR pro-
cess is less than that of other EOR processes because of
several factors some of which are �i� the cost involved in
using polymer agent for increasing viscosity, �ii� difficulty in
identifying most effective type of polymer solution due to
complicated rheological properties, �iii� dynamic absorption
of polymers and dynamic changes in the structures of poly-
mers during flow process which complicates the modeling
process, �iv� difficulty in obtaining accurate quantitative es-
timates as not all physical mechanisms involved are well
understood, and �v� lack of understanding of hydrodynamic
stability issues associated with three-layer flows.

Our interest here is in advancing our understanding of
hydrodynamic stability issues associated with three-layer
flows, some of which are listed below.

• Bandwidth of unstable waves: Whereas it is true that
the existence of unstable band determines instability, it
is the width of the band and the wave structures in it
that should help in devising instability control strategy.
For example, if the band is too wide then designing a
process that can inhibit growth of waves in this band
will likely be different from what it would be if the
band were too narrow. Also, the wavelengths of the
unstable waves matter in dictating the control strate-
gies. For example, if the disturbances in this unstable
band can be carefully avoided or considerably re-
duced, then onset of undesirable fingering phenom-
enon in the context of chemical EOR can be signifi-
cantly delayed which can be helpful to enhance oil
recovery. In fact, such measures are commonplace in a
related subject: transition to turbulence. To cite an ex-
ample, in-plane Poiseuille flow experiments show that
transition to turbulence occurs at Reynolds number of
the order of 1000 �see Ref. 13�, even though with con-
trol of disturbances the transition to turbulence can be
delayed to Reynolds number of the order of 105 �see
Ref. 14�. Therefore, from an instability control view-
point in chemical EOR it is important to know the
dependence of the unstable band �its width and the
waves it contains� on the parameters of the problem, in
particular, the viscosities of three fluids in three layers,
the interfacial surface tensions, and the length of the
middle layer so that one or more of these can be con-
trolled and exploited to reduce the growth rates of
leading interfacial instabilities which have direct bear-
ing on EOR.
As such the unstable band plays a much more funda-
mental role in its ability to qualitatively predict the
complexity of evolution of interfaces past the linear
stage. For example, if the unstable band is too narrow,
then only a few modes initially participate in describ-
ing the evolution of initial disturbance whereas if the

band is too broad, then more waves will do so, creat-
ing more waves through nonlinear interaction within a
short time. Thus it is very likely that interfacial geom-
etry, immediately past the linear stage, will be more
complex for broad unstable band than for a narrow
unstable band. The exact location of this unstable band
in the wave-number space has a role to play on the
nature of complexity of interfacial geometry. For ex-
ample, if the band is too broad with too many unstable
short waves, then the interface is likely to develop
fine-scale structures very quickly, whereas if the un-
stable waves are too long, then the interface is likely to
have large scale features. In any case, knowledge of
unstable band is important which has the potential to
allow design of effective instability control strategies
and to predict in a qualitative sense the extent of com-
plexity of interfacial evolution past the linear stage. In
particular, note the following.

• Upper bound of the growth rate: It is essentially the
growth rate of the most dangerous wave if the upper
bound is a good estimate of the growth rate. Control-
ling this, i.e., somehow reducing this growth rate by
some strategy, certainly allows control over interfacial
instability. However, design of such strategies first re-
quires determining the dependence of this maximal
growth rate on other parameters of the problem. In this
sense, the upper bound of the growth rate is an impor-
tant issue that needs careful estimation.

• Optimal �shortest� size of the middle layer: Intuition as
well as numerical studies �see Ref. 12� suggest that
incremental gain in stabilization of the leading inter-
face due to incremental increase �by some fixed
amount� in the size of the middle layer gradually de-
creases until such time that virtually no gain is ob-
tained by further increasing the size of the middle
layer. Thus, there is an optimal finite size of the middle
layer which will certainly depend on the other param-
eters of the problem. Knowledge of this optimal size
of the middle layer, even if it is based on linear theory,
can be very useful for instability control purposes as
well as in minimizing the cost of those chemical EOR
processes where the higher viscosity of the middle
layer is usually obtained by using polymer in water.

Since one of the reasons behind using polymer in these
three-layer chemical EOR processes is to stabilize the lead-
ing interface, it is natural to try to first understand these
stability issues associated with three-layer flows. Then, it
may be more beneficial for the development of even more
effective chemical EOR process than currently available. In
this paper, we present a simplified exact linearized stability
analysis of Hele-Shaw model equations and some numerical
calculations that provide some insight into these issues.

At this point, it is important to emphasize that results
based on linear theory can rarely predict ultimate nonlinear
evolution of fronts at late times. Rather, these results based
on linear theory allow hopes for designing effective strate-
gies to mitigate early-time growth of disturbances whose
evolution through subsequent nonlinear interactions can
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mitigate the extent of fingering phenomenon at late times.
For example, there is enough numerical evidence �see Ref.
12� that if the maximum rate of instability is reduced by
increasing viscosity behind the leading front, then ST dy-
namics does ultimately describe the front in the sense that
complexity of the interface and fingering effect are less se-
vere. In this sense, results based on linear theory are useful.

The three-layer setup �see Fig. 1� that is of interest for
these purposes has a fluid of constant viscosity �l which
pushes a fluid of constant viscosity ���l which in turn
pushes another fluid of constant viscosity �r��. Two ex-
treme layers are of infinite extent and the middle layer is of
length L. The fluid upstream has a velocity U. The surface
tension at the left interface is S and that at the right interface
is T. The left interface across which the fluid viscosities are
�l and � will be called trailing interface henceforth. Simi-
larly, the right interface separating the most viscous fluid
with viscosity �r and the middle layer with viscosity � will
be called leading interface henceforth. This rectilinear Hele-
Shaw flow with uniform velocity U and with two planar
interfaces is an exact solution of the underlying equations of
motion. Linearization of the governing equations and bound-
ary conditions about this basic flow leads to a nontrivial �due
to boundary conditions� eigenvalue problem for disturbances
which retains the interaction of interfacial disturbances. We
analytically and numerically analyze this eigenvalue problem
in this paper. The exact dispersion relation provides a con-
structive method for evaluating the growth rates of distur-
bances which we numerically analyze to gain insight into the
role of various parameters in reducing instability of the lead-
ing interface. As we will see, the dispersion relation is qua-
dratic in the growth rate � for each wave disturbance char-
acterized by wave number k. Thus for each k, we will have
two roots in general which we denote below as �+ and �−. In
this paper, we refer each pair �k ,�� as a mode.15 As a result,
for each wave k there are two independent modes �k ,�+�k��
and �k ,�−�k�� that differ in this paper �as we will see later�
by the interface they associate with as we have two inter-
faces. Below, we stick with this definition for a mode.

Right at the outset, we should mention the results ob-
tained and the issues addressed in this paper which are the
following.

�1� Using normal mode analysis, it is shown here that a
necessary and sufficient condition for instability of a
mode with wave number k is

k2 � min��� − �l�U/S,��r − ��U/T� .

Thus, note that this bandwidth of unstable waves is in-
dependent of the length L of the middle layer. We also
note that a necessary �but not sufficient� condition for a
mode to be unstable is

k2 � max��� − �l�U/S,��r − ��U/T� .

Indeed, if min�k1 ,k2��k�max�k1 ,k2�, one mode is
stable.

�2� We show the existence of a critical viscosity �cr,

�cr = �l +
S

S + T
��r − �l� = �r −

T

S + T
��r − �l� ,

of the middle layer that gives the shortest bandwidth kcr,
given by

kcr =� U

S + T
��r − �l� ,

of unstable modes, meaning that every mode with k
�kcr has corresponding �+�0 and �−�0. Both of these
are also independent of L. We discuss later the signifi-
cance of this critical viscosity.

�3� Eigenvalues �growth rates� are computed in parameter
space which are graphically displayed to provide an un-
derstanding of interfacial instability transfer mechanism
based on the principle of dominant eigenvalue.

�4� Analysis shows that gain in stabilization of the leading
interface drops exponentially with increasing L and
therefore most of the gain in stabilization is to be ex-
pected for small values of L as confirmed by results
from numerical experiments. Numerically, we show ex-
istence of an optimal choice of the length L of the
middle layer beyond which hardly any gain in stabiliza-
tion can be obtained for any given set of parameter val-
ues �, �r, �l, S, and T.

�5� Using a weak formulation of the underlying equation for
disturbance, we derive an upper bound �u given by

� � �u = max�2T

�r
�U��r − ��

3T
�3/2

,
2S

�l
�U�� − �l�

3S
�3/2	 ,

on the growth rate which is independent of the length L
of the middle layer. Since adding an intermediate layer
��l����r� in an otherwise two-layer flow should re-
duce maximal pure ST growth rate �sm based on viscosi-
ties �l and �r and a surface tension value equal to mini-
mum of S and T, this �sm is also an upper bound.
Therefore, an improved upper bound is minimum of
these two upper bounds: �u and �sm. Numerical results
are presented which compare these two upper bounds.

Much of the above studies on multilayer flows has pro-
vided a better understanding, though qualitative in nature, of
the effect of interfacial viscosity jumps but less so of the
effect of interfacial surface tensions even though interfacial
surface tensions play an important role. An interesting effect
of the surface tension in three-layer flows that will be exem-
plified later in this paper can be explained easily if we ne-
glect, for the sake of explanation, interfacial interactions and

FIG. 1. Three-layer fluid flow in a Hele-Shaw cell.
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allow two-layer ST results to hold at each of the interfaces.
Now, we assume that we continuously decrease the length of
the middle layer which has no effect within our crude ap-
proximation until the length of this middle layer becomes
infinitesimally small when this thin layer effectively acts as
one merged interface with an increase in effective viscosity
jump across it and also an increase in effective surface ten-
sion which now equals the sum of the two individual inter-
facial surface tensions �we emphasize that interfaces are dis-
tinct and infinitesimally close with middle-layer fluid still
present�. An increase in viscosity jump will try to increase
the growth rate whereas an increase in effective surface ten-
sion will try to reduce the growth rate. These competing
forces ultimately can either decrease or increase the growth
rate of the leading interface depending on the specific values
of various viscosities and surface tension parameters. It is
easy to see using the above arguments in reverse �i.e., thick-
ness of the layer increasing from almost zero thickness to
finite thickness�, that adding a middle layer having a viscos-
ity � with �l����r �see Fig. 1� need not necessarily sta-
bilize the flow, which is contrary to our conventional belief
in this context, unless the viscosity jump across the trailing
interface exceeds a surface tension dependent threshold.
Even though these remarks are based on gross simplifica-
tions as mentioned above where the interfacial growth rates
are completely decoupled, it will be shown here through ex-
act calculation within linear theory which retains the cou-
pling between the interfacial growth rates that the above re-
marks based on simplified arguments hold true.

Finally, let me stress right at the outset that the goal of
this paper, most broadly speaking, is to point out two major
features of this problem through precise and simple calcula-
tions that are physically interesting as well: �i� there are cer-
tain important stability characteristics that are independent of
the length of the middle layer which is counterintuitive. Fine
details on this are itemized above and more on this are em-
bedded in the text of the paper. �ii� There are some other
characteristics �such as maximal growth rate� that depend on
the length of the middle layer. These and some other results
derived in this paper through what may appear to be a rou-
tine calculation of a simple ordinary differential equation
with nonstandard boundary conditions are indeed new, inter-
esting, and physically appealing. We also would like to men-
tion that some aspects of this paper laid out in Sec. II are
very close to previous work in the literature, especially the
work of Gorell and Homsy11 and Daripa and Pasa.16

This paper is laid out as follows. In Sec. II, we present
relevant equations for three-layer Hele-Shaw flows, each
layer containing a fluid of constant viscosity. In Sec. III, we
obtain a band of unstable waves and a necessary and suffi-
cient condition for a wave to be unstable. We also derive a
quadratic equation in the growth rate whose roots give the
dispersion relation. Upper bounds on the growth rate of dis-
turbances are derived in Sec. IV. Finally, we conclude in
Sec. V.

II. THREE-LAYER HELE-SHAW FLOWS

The model we consider within Hele-Shaw approxima-
tion consists of three regions as shown in Fig. 1. Because of
averaging in the thin gap approximation �see below�, the
flow is two dimensional in the x-y plane. Therefore, the do-
main of interest is �ª �x ,y�=R2 �with a periodic extension
of the setup in the y direction�. Thus this two-dimensional
flow consists of a near-half-plane of water �leftmost region�
stretching to x→−�, similar to oil �rightmost region� stretch-
ing to x→�, with a middle layer of polysolution in between.
The polysolution in the middle layer of length L has a con-
stant viscosity � with �l����r, where �l and �r are con-
stant viscosities of the water and the oil phases, respectively.

The fluid upstream �i.e., as x→−�� has a velocity u
= �U ,0�. The relevant equations for this flow are then given
by

� · u = 0, �1a�

�p = − �u , �1b�

D�

Dt
= 0, �1c�

where p is the pressure, �= �� /�x ,� /�y�, D /Dt is the mate-
rial derivative, �=�l for the leftmost layer, and �=�r for the
rightmost layer. Equation �1a� is the continuity equation for
incompressible flow, Eq. �1b� is the Darcy law, and Eq. �1c�
is the advection equation for viscosity.11,17 There is a rich
history in fluid mechanics �see review articles of Saffman3

and Homsy4� to using Darcy’s law �Eq. �1b�� for modeling
Hele-Shaw flow within thin-gap approximation. In fact, Eq.
�1b� is obtained from averaging parabolic velocity profile in
between the plates. Thus u in the system of equations above
is a velocity to be understood in an average sense, and as a
result our model does not account for the effect of structure
of displacement in the gap between the plates. There is a
reasonably complete mathematical and engineering literature
on Darcy’s law in thin regions �see Ref. 18 for averaging of
creeping flow and Ref. 19 for averaging of the Navier–
Stokes system�. The derivation of Darcy’s law for a periodic
porous rigid medium using the homogenization theory is out-
lined in Ref. 20 �see Chap. 7, p. 129�. See also pages 161–
163 of Ref. 21. Regarding the effect of the structure of dis-
placement in the gap between the plates on the Hele-Shaw
model, see Ref. 22 for two-phase displacement and Ref. 23
for three-phase displacement. There it has been shown that in
a certain limit this Hele-Shaw problem is best modeled by a
hyperbolic equation with nonconvex flux function similar to
the saturation model for porous media flows. Lastly, we
should mention that there are other people who have tried to
model the EOR process with miscible equations.24 Toward
this end, we should cite Ref. 25.

The above system admits a simple basic solution,
namely, the whole fluid setup moves with speed U in the x
direction and two interfaces, namely, the one separating the
left layer from the middle layer and the other separating the
right layer from the middle layer, are planar, i.e., parallel to
the y axis. The pressure corresponding to this basic solution
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is obtained by integrating Eq. �1b�. In a frame moving with
velocity �U ,0�, the above system is stationary along with
two planar interfaces separating these three fluid layers. Here
and below, with slight abuse of notation, the same variable x
is used in the moving reference frame.

In linearized stability analysis by normal modes, distur-
bances in the moving reference frame are written in the form
�ũ , p̃�= �f�x� ,��x��e�iky+�t� and then inserted into the linear-
ized disturbance equations obtained from Eq. �1� and also
into the linearized dynamic and kinematic interfacial condi-
tions �see Ref. 16�. After some algebraic manipulation of the
resulting equations in f�x� and ��x�, we obtain the following
problem for the eigenfunction f:

fxx − k2f = 0, x � �− L,0� , �2a�

fx�0� = �	p + q�f�0�, fx�− L� = �	r + s�f�− L� , �2b�

where 	=1 /�, and p, q, r, and s are defined by

p = 
��r − ��Uk2 − Tk4�/�, q = − �rk/� � 0,

�3�
r = 
��l − ��Uk2 + Sk4�/�, s = �lk/� 
 0.

Note that

p 
 0 for k2 � k2
2 = ��r − ��U/T and

�4�
r � 0 for k2 � k1

2 = �� − �l�U/S .

III. DISPERSION RELATION AND ITS ANALYSIS

The general solution f�x�=A exp�−kx�+B exp�kx�
�where A and B are constants� of Eq. �2a� for the domain
−L�x�L is substituted in the boundary conditions in Eq.
�2b�, which leads to a matrix equation MX=0 for the un-
known constant vector X= �A ,B�. The matrix M is given by

M = �ekL���� + �l� + �� e−kL���− � + �l� + ��
��� − �r� + � ��− � − �r� + �

� , �5�

where

� =
�r

k
= Sk�k2 − k1

2� and � =
�p

k
= Tk�k2

2 − k2� . �6�

The solvability condition det�M�=0 for a nontrivial solution
then leads to the dispersion relation

a�2 + b� + c = 0, �7�

where the coefficients a, b, and c are given by

a = − ekL�� + �l��� + �r� + e−kL�� − �l��� − �r� � 0,

�8a�

c = ���ekL − e−kL� , �8b�

b = �ekL�� + �l� + e−kL�� − �l���

− �ekL�� + �r� + e−kL�� − �r��� . �9�

Below, we use for the roots of Eq. �7� the following nota-
tions:

�− = �− b + �b2 − 4ac�/2a and �+ = �− b − �b2 − 4ac�/2a .

�10�

Growth rates �− and �+, as will be shown later �see text after
Eq. �16��, are real.

The dispersion relations above are somewhat cumber-
some in terms of wave number k due to the nature of depen-
dencies of a, b, and c on k. A plot of these dispersion rela-
tions for some choices of parameter values is given in Fig. 2.
For all wave numbers k�0, �+��− in Fig. 2. However, for
some choices of parameter values these dispersion curves
can contact each other at a wave number but cannot cross
each other because �+−�−=−�b2−4ac /a cannot be negative
�see Eqs. �8a� and �10�� for any value of k. The fact that these
dispersion curves can contact each other for some values of
parameters is discussed in Secs. III A and III B.

A. Existence of a neutral wave

A wave having �+=�−=0 is referred to here as a neutral
wave. It is easy to see from Eqs. �6�–�9� that �−�k�=�+�k�
=0 if and only if k=0 or k=k1=k2. This establishes the ex-
istence of a nontrivial neutral wave k=k1=k2. This criterion
for the existence of a nontrivial neutral wave, upon using the
definitions of k1 and k2 from Eq. �4�, translates into

� − �l

�r − �
=

S

T
, �11�

which gives viscosity � of the middle-layer fluid in terms of
the extreme layer fluid viscosities and interfacial surface ten-
sions. Henceforth, we call this critical viscosity and denote
by �cr. Similarly, we call the wave number k=k1=k2 of the
neutral mode critical wave number and denote it by kcr. Thus

�cr = �l +
S

S + T
��r − �l� = �r −

T

S + T
��r − �l� �12�

and

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

wavenumber k

σ

µ = 4

σ
+

σ
−

FIG. 2. Dispersion relation: growth rates �− and �+ vs wave number k when
�=4��cr=6 �equivalently k2�=�6��k1�=�2�� for parameter values �l=2,
�=4, �r=10, T=S=U=1, L=1. Here �−�k1�=0 and �+�k2�=0 where k1 and

k2 are defined as k1=���−�l�U /S=�2 and k2=���r−��U /T=�6.
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kcr =� U

S + T
��r − �l� . �13�

Thus, �=�cr is an alternate form of the criterion for the
existence of a nontrivial neutral wave. This neutral wave has
wave number k=kcr. Plots of the dispersion relations for pa-
rameter values satisfying criterion �12� are shown in Fig. 3.
This figure shows that �−=�+=0 at k=kcr given by Eq. �13�.
It is important to emphasize that two dispersion curves in
this plot merely contact �and not cross� each other at �−

=�+=0. Below, the range of wave numbers for which at least
one of the two eigenvalues is positive is called the width of
the unstable band. Thus, in Fig. 3 the width of the unstable
band is kcr. It is worth noting that length L of the middle
layer has no effect either on the above criterion �12� or on the
wave number �13� of the neutral wave.

B. Existence of a nonneutral wave with �−=�+

In Sec. III A, we saw that two dispersion curves given
by Eq. �10� contact each other at �k ,��= �kcr ,0� when �
=�cr. A natural question in this context is whether there are
other choices of parameter values for which these two dis-
persion curves contact each other for a disturbance and if
they do, what are the wave number k��0 and corresponding
growth rate �� �=�−=�+�0� of the disturbance.

If min�k1 ,k2��k�max�k1 ,k2�, then it follows from Eq.
�6� that ���0 and hence c�0 from Eq. �8b�. Therefore the
radical b2−4ac of the quadratic Eq. �7� cannot be zero and
two roots �− and �+ cannot be equal regardless of the values
of L and other parameters. Then we conclude that if these
two dispersion curves contact each other at �k� ,���0�, then
either k��min�k1 ,k2� or k��max�k1 ,k2�. As a result, � and �
�see Eq. �6�� have opposite signs and hence b�0 and c�0
�see Eqs. �8b� and �9�� at k=k�. Therefore, the radical b2

−4ac can be zero at an admissible value of k=k� for some,
not every, choice of parameter values in which case �−�k��
=�+�k��=−b / �2a�. If 0�k��min�k1 ,k2�, then �−�k��
=�+�k���0 which follows from the fact that b�0 �see Eqs.

�6� and �9��. Similarly, if k��max�k1 ,k2�, then �−�k��
=�+�k���0. For some parameter values, it is conceivable
that the �−=�+ condition may lead to the condition k2�0
which would simply mean that these two dispersion curves
do not contact with each other at any value of k. For the
parameter values for which the study is conducted and dis-
cussed later, there is no such k� �see Sec. III E�.

C. Width of the unstable band

The range of wave numbers for which flows are unstable
is important for the purpose of control and understanding of
flows as we have discussed before in Sec. I. Figure 2 shows
that each of the two eigenvalues is zero at a wave number
distinct from the other one. A simple investigation of the
dispersion relation shows that if k=k1 or k=k2 then c=0, and
as a result �−�k1�=�+�k2�=0 if k2�k1 and �+�k1�=�−�k2�
=0 if k2�k1. If k2�min�k1

2 ,k2
2�, then b�0, c�0 from Eqs.

�6�, �8b�, and �9�. Therefore �−�+=c /a�0 and �−+�+

=−b /a�0, and hence both �− and �+ are positive for all
waves with k�min�k1 ,k2�. Similarly, it is easy to verify that
one of these two roots will be positive and the other one
negative for all waves in the band min�k1 ,k2��k
�max�k1 ,k2�. Putting together these facts �and keeping in
mind the notation k1 and k2 introduced in Eq. �4��, we con-
clude that at least one of these two eigenvalues is positive if
wave number k satisfies

k � max�k1,k2� = max���� − �l�U
S

,���r − ��U
T

	 .

�14�

Thus, this is a necessary �but not sufficient� condition for
instability of a mode with wave number k. In Fig. 3, k1 and
k2 are nontrivial zeros of the two eigenvalues. The right hand
side of the above equality is the width of the unstable waves
in wave number space. Note that this bandwidth of unstable
waves is also independent of the length L of the middle layer.
It also follows from our discussion in the previous paragraph
that a mode is unstable if the corresponding wave number k
satisfies

k � min�k1,k2� = min���� − �l�U
S

,���r − ��U
T

	 .

�15�

This is a necessary and sufficient condition for instability of
a mode with wave number k.

Two eigenvalues �− and �+ for each wave number k
essentially arise because of two interfaces. For a wave dis-
turbance with wave number k, these two eigenvalues corre-
spond to the growth rates of this wave disturbance on these
two interfaces, respectively. According to the principle of
most dominant eigenvalue, �+ corresponds to the growth rate
of the more unstable �or less stable� interface for wave dis-
turbance k since �+�k���−�k� in general �except when k
=kcr or k=k� which exists only for some of parameter values
as we have described above� and �− corresponds to the
growth rate of the less unstable �or more stable� interface.
Values of k1 and k2 at which two eigenvalues are zero, re-
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FIG. 3. Dispersion relation: growth rates �− and �− vs wave number k when
k1�=2�=k2�=2� for parameter values �l=2, �=6, �r=10, T=S=U=1,
L=1.
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spectively �see Fig. 2�, are the widths of unstable bands for
two interfaces. Since these are independent of length of the
middle layer, we can recover these values of k1 and k2 and
hence bandwidth of unstable waves �see Eq. �14�� by finding
these in the limit L→� when instability of each of these two
interfaces is described by the pure ST theory. It can easily be
verified. Also, in this limit, unstable bandwidths for these
two interfaces are equal to kcr if the middle-layer viscosity
happens to be �cr.

In summary, the length of the middle layer has no effect
on the width of unstable bands for two eigenvalues and these
can be determined a priori just by finding the bandwidth of
unstable waves for each of the two interfaces individually
based on the pure ST instability.

Moreover, the width of the unstable band is shortest �see
Fig. 3� and equal to kcr when fluid in the middle-layer has
viscosity �=�cr regardless of the length of the middle layer.
This has practical relevance: if one were to design the three-
layer system which is most stable overall, it will be this
viscosity �cr of the middle-layer fluid that one would choose.
Interestingly, one cannot control the size of the unstable band
by changing L. Then, how should one select the length L?

D. Length L of the middle layer and eigenvalues

It follows from Eqs. �8�–�10� that eigenvalues change
exponentially fast with increasing L and as L→�, two roots
�eigenvalues� of this equation reduce to individual ST growth
rates of two interfaces. Thus we recover the result that is
expected on physical ground. There is another asymptotic
limit, namely, L→0, when the length of the middle layer
approaches zero. In this limit, this three-layer problem re-
duces to the pure two-layer ST problem but with a twist: two
interfaces effectively act as one with effective surface ten-
sion T+S within the current mathematical framework. A
quick calculation shows that we recover this pure ST growth
rate exactly from Eqs. �8�–�10� by letting L→0 and carrying
out necessary algebraic manipulation. The manipulation re-
moves the viscosity � of the middle layer by cancellation
which it should for consistency because the middle layer
does not exist in this L→0 limit. The fact that in this limit,
the merged interface has surface tension higher than the in-
dividual one will be helpful in explaining the plots in the
next figure.

Below, �max is the maximum growth rate of the most
dangerous wave number defined as �max

=maxk��−�k� ,�+�k��=maxk��+�k�� �since �+��−�. Thus, it
is associated with the most unstable interface of the two for
the most dangerous wave. This interface could be either the
leading one or the trailing one depending on the viscosity of
the middle layer and the interfacial surface tension values.
Figure 4 shows plots of the maximum growth rate �max ver-
sus L for three values of the middle-layer viscosity � with
other parameters fixed at values mentioned in the caption of
this figure. This figure shows that when L=0, �max on all
three plots have the same value independent of � according
to our explanation in the previous paragraph. In fact, it is the
maximum growth rate based on the pure ST theory with
viscosity jump ��r−�l� and surface tension equal to S+T

across the merged interface. The plot corresponding to �
=4 shows the growth rate of the most dangerous wave and it
is associated with the leading interface which is the most
unstable among the two interfaces for the parameter values
used. For these values of �, we see that with increasing L the
growth rate falls off exponentially fast to a constant positive
value. Thus, the increase in L reduces the instability but does
not stabilize the leading interface. The plot corresponding to
�=6 is similar to �=4 but the most dangerous wave is now
associated with the trailing interface instead of the leading
interface. The plot corresponding to �=8 also shows the
maximum growth rate of the trailing interface which is the
most unstable of the two interfaces. As the length L of the
middle layer increases away from zero, two competing ef-
fects come into play immediately for this trailing interface:
instability enhancing effect of a decrease in surface tension
from �S+T� to S and instability suppressing effect due to a
decrease in viscosity jump from ��r−�l�=8 to ��−�l�=6
across this interface �see caption of Fig. 4�. Overall, the re-
sult is an increase in growth rate with L of this trailing inter-
face which settles down exponentially fast with L to the in-
dividual ST growth rate of this trailing interface. We see in
the plot for �=6 the exact opposite. In summary, most of the
stabilization of the leading interface for �=4 is gained ex-
ponentially fast with L and thus with small length of the
middle layer. It is of the order O�1� for most studies done in
this context as seen in related figures. This is desirable in the
context of EOR processes since it helps to keep the cost of
such processes low.

E. Interfacial instability transfer mechanism

As � exceeds �l, k1 �see Eq. �4�� becomes positive and
as a result long waves in the range �0,k1� on the less unstable
trailing interface becomes unstable �i.e., �−�0 ∀k� �0,k1��,
though the same waves are more unstable on the leading
interface. As the viscosity of the middle layer gradually in-
creases toward that of the rightmost layer, the initially less
unstable trailing interface �meaning all wave disturbances on
the trailing interface have less growth rates than on the lead-
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FIG. 4. Plots of �max vs L for three values of �=4,6 ,8 with all other
parameters remaining same: �l=2, �r=10, T=S=U=1.
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ing interface� eventually becomes more unstable in compari-
son to the leading interface �assuming both interfaces have
equal surface tensions�. For a disturbance of any specific
wave number k, the most unstable interface which can be
either the leading or the trailing one depending on the pa-
rameter values is characterized in an approximate sense by
principle of dominating eigenvalue, i.e., by �+ since �+

��−. This approximate analysis sheds light on the physics of
instability transfer mechanism between the two interfaces.
More importantly, it will suggest a new paradigm for inter-
facial instability control.

We first remark on the connection between the widths of
unstable bands on two interfaces. Since k1 as defined in Eq.
�4� is a monotonically increasing function of � and depends
on surface tension S of the trailing interface, k1 is a measure
of the width of the unstable band of waves for the trailing
interface as we expect it to be more and more unstable with
the viscosity � of the middle layer continuously increasing
within the range �l����r. However, since �−�k1�=0 if
and only if ���cr �equivalently k1�kcr� and �+�k1�=0 if
and only if ���cr �equivalently k1�kcr�, the growth rate of
interfacial disturbances on the trailing interface is given by
�− when ���cr and by �+ when ���cr provided these
dispersion curves for �− and �+ do not contact each other for
any � except when �=�cr. Similarly, since k2 is a monotoni-
cally decreasing function of �, k2 is a measure of the width
of unstable band of waves for the leading interface as we
expect increasing � to suppress the growth of instabilities on
the leading interface. However, since �+�k2�=0 if and only if
���cr �equivalently kcr�k2� and �−�k2�=0 if and only if
���cr �equivalently kcr�k2�, the growth rate of interfacial
disturbances on the leading interface is given by �+ when
���cr and by �− when ���cr provided these dispersion
curves for �− and �+ do not contact each other for any �
except when �=�cr. These instability transfer scenarios will
be more involved in case the dispersion curves contact each
other for some other values of �. We do not discuss this here
because for the case study we have done and discuss below,
the length of the middle layer is 1 and numerical evidence
suggests that for this and other parameter values used for
plots in Figs. 5 and 6, the dispersion curves do not contact
each other except when �=�cr.

Figures 5 and 6 show plots of �− and �+ for values of
�� ��l ,�cr� and �� ��cr ,�r�, respectively, with �r=10, S
=T=U=1, and L=1 kept fixed. Corresponding to these val-
ues, �cr=6 and kcr=2. Figure 5 shows that the number of
unstable modes for �− gradually increases from zero to kcr

and that for �+ decreases to kcr as the viscosity � of the
middle layer gradually increases from �l to �cr which should
enhance the instability of the trailing interface but reduce the
instability of the leading interface. Therefore, for �l��
��cr, �− and k1 can be thought of as a measure of the
growth rate of the less unstable trailing interface and number
of unstable modes on this interface, respectively. Similarly,
�+ and k2 �recall that �+�k2�=0�, respectively, measure the
growth rate of the more unstable leading interface and the
number of unstable modes on this interface. Figure 6 shows
that the number of unstable modes for �− now gradually
decreases from kcr and that for �+ increases from kcr as the

viscosity � of the middle layer gradually increases from �cr.
This should make the trailing interface even more unstable
and leading interface less unstable. Therefore, for ���cr, �−

and k2 ��−�k2�=0� now measure, respectively, the growth
rate of the less unstable leading interface and the number of
unstable modes on this interface, whereas �+ and k1, respec-
tively, now measure the growth rate of the more unstable
trailing interface and the number of unstable modes on this
interface. Thus, we see how the pairs ��− ,k1� and ��+ ,k2�
interchange their roles on the two interfaces depending on
whether the middle-layer viscosity is less than or greater than
the critical viscosity �cr.

We also find from plots in these figures that the most
dangerous wave number km and corresponding growth rate
�max�=�+,max� are decreasing functions of � �see Fig. 5� until
each of these reaches a minimum for some value �=�m and
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FIG. 5. Dispersion relation: growth rates �− and �+ vs wave number k for
five values �2, 3, 4, 5, 6� of � when �l=2, �r=10, T=S=U=1, L=1. Here
�−�k1�=0 and �+�k2�=0 where k1 and k2 are defined as k1=���−�l�U /S

and k2=���r−��U /T. For these data, �cr=6, kcr=2 �see Eqs. �12� and �13��.
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thereafter for ���m, both km and �max are increasing func-
tions of � �see Fig. 6�. In these figures, we see that �m is less
than but close to the critical viscosity �cr ��cr=6 in these
figures�. Thus �max��� attains its minimum at a value �
=�m which is less than �cr.

IV. UPPER BOUNDS ON THE GROWTH RATE

In Sec. V of Ref. 26 an absolute upper bound on the
growth rate for the setup considered in Sec. II was briefly
alluded to. Absolute and modal upper bounds in the presence
of other effects were later considered in Refs. 27 and 28. In
particular, an absolute upper bound in the case when the
middle layer has viscosity gradient was derived in Ref. 27.
By setting the viscosity gradient zero in this bound, the ab-
solute upper bound given in Ref. 26 is recovered. In a
sequel28 to these papers, we have addressed the effect of
diffusion on this upper bound. A modal upper bound derived
in Ref. 28 reduces for the case of zero diffusion to the abso-
lute upper bound given in Ref. 27.

It is important to emphasize here that the absolute upper
bound alluded to in Ref. 26 and recovered from results re-
ported in Refs. 27 and 28 as discussed above is in the form
of a nonstrict inequality. This inequality there appears in a
form that needs further qualification because the bound is
reached in one sense �trivial case of no disturbance� but not
in another sense �i.e., for a nontrivial disturbance�. Since this
qualification has a bearing on an attempt �see Sec. IV B� to
improve upon this bound for a nontrivial disturbance, it is
imperative that we first present in short a derivation of the
absolute upper bound in a strict inequality form so that it is
clear why that bound is not reached in practice for a distur-
bance. We do this next realizing that some degree of overlap
of some of the material below with material published in
Ref. 26 is unavoidable. Then we argue in the Sec. IV B that
this upper bound can be improved if physical considerations
are also taken into account. In Sec. IV B we provide such a
new upper bound in this way which may be reachable in
practice for some values of parameters. This new improved
upper bound could not be arrived at solely based on the
procedure briefly highlighted below from Refs. 26–28. Nu-
merical evidence in support of this improved upper bound is
then provided in this section.

A. A strict upper bound on the growth rate

Following the procedure mentioned in Refs. 26–28 the
equation governing problem �2� is first multiplied by f , then
integrated over the interval �−L ,0� using the boundary con-
ditions of the problem defined in Eq. �2�. This gives after
simple rearrangement

	�pf2�0� − rf2�− L�� = �
−L

0

fx
2dx + k2�

−L

0

f2dx + sf2�− L�

− qf2�0� . �16�

From this we can write the growth rate � as

� =
1

	
=

pf2�0� − rf2�− L�
−L

0 fx
2dx + k2−L

0 f2dx + sf2�− L� − qf2�0�
. �17�

Above we have assumed f and 	 to be real which is justified
for the following reason. If, instead of multiplying Eq. �2� by
f , we had multiplied by complex conjugate f� of f and pro-
ceeded, then in Eq. �16� we would have �f �2 instead of f2 and
�fx�2 instead of fx

2 from which it follows that 	 must be real.
Since the solution f of the problem defined by Eqs. �2�–�4�
for real 	 is real, it then follows that f and 	 are real.

Using the definitions of p, q, r, and s from Eq. �3� in Eq.
�17� one finds that ��0 for 0�k�min�k1 ,k2� when both
p�0 and r�0 �see Eq. �4��. For these unstable modes, fol-
lowing inequality results from Eq. �17� after dropping two
positive integrals from the denominators of Eq. �17�:

� �
pf2�0� − rf2�− L�

− qf2�0� + sf2�− L�
. �18�

This is a strict inequality for unstable modes. All inequalities
below that result from this are thus strict inequalities. From
this it then follows �see Ref. 27 for details� that

� � max�a

c
,
b

d
	 = max�� p

− q
�,�− r

s
�	 , �19�

which is a modal upper bound since it depends on the wave
number k. Using the definitions given in Eq. �4�, the maxi-
mum values of �p /−q� and �−r /s� are found over range de-
fined in inequality �15� of unstable modes and we arrive at

max
k
� p

− q
� =

2T

�r
�U��r − ��

3T
�3/2

,

�20�

max
k
�− r

s
� =

2S

�l
�U�� − �l�

3S
�3/2

.

Thus we obtain a strict absolute upper bound �u given by

� � �u = max�2T

�r
�U��r − ��

3T
�3/2

,
2S

�l
�U�� − �l�

3S
�3/2	 ,

�21�

which is independent of the length L of the middle layer.
Because of this strict nature of this absolute upper bound,
this upper bound in practice cannot be reached. This leaves
room for improving upon this upper bound. Motivated by
this and inspired by physical intuition, we propose in Sec.
IV B an improved absolute upper bound and validate this
using numerical calculation. Before moving onto Sec. IV B,
we want to re-emphasize here implications of the above re-
sult because of their importance even though some of these
have been partly stressed elsewhere �see Ref. 27�.

The first and the second terms in inequality �21� for the
bound are NOT individual ST growth rates of two interfaces.
Two functions of � in formula �21� correspond to individual
ST growth rates of two interfaces, each modified by a con-
stant. The fact that each of these terms in Eq. �21� is different
from its individual ST growth rate is due to the interfacial
interactions already built into the linear model through the
boundary conditions �see the problem defined in Eq. �2��.
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Therefore, perhaps it is appropriate to attribute the first and
second terms in Eq. �21� as strict absolute upper bounds on
the “effective” growth rates of disturbances on leading and
trailing interfaces, respectively. Thus, this upper bound equa-
tion �21� identifies that the growth rates of disturbances in
the combined three-layer setup are smaller than the larger of
the two upper bounds on effective growth rates of two inter-
acting interfaces each of which exceeds its own individual
ST growth rate.

We can recover well-known results on short wave insta-
bility in the absence of surface tensions and on two-layer
flows from our results presented above for three-layer flows.
For example, if the general solution to Eq. �2a� is used for
f�x� in Eq. �17�, then one finds after simple algebraic ma-
nipulation that when S=T=0, �=O�k� for large k as
expected.

The three-layer problem reduces to the pure two-layer
ST problem when S→0 and �=�l. From Eq. �21�, an
absolute upper bound denoted by �su for this case is then
given by

� � �su =
2T

�r
�U��r − �l�

3T
�3/2

, �22�

which is not less than the maximum growth rate �sm given
by

�sm =
2T

�l + �r
�U��r − �l�

3T
�3/2

�23�

for the pure two-layer ST case as it should be for consis-
tency. Note that the case of T→0 and �=�r also gives the
pure two-layer ST setup when Eqs. �22� and �23� both hold
with T in these formulas replaced by surface tension S.

There is another limit, namely, L→0 �i.e., length of the
middle layer approaches zero�, when this problem also re-
duces to the pure two-layer ST problem. However, in this
limit two interfaces effectively act as one with effective sur-
face tension T+S. Then the maximum ST growth rate for this
case is given by Eq. �23� with T in there replaced by T+S.
Note that this is also bounded by the upper bound given
above in Eq. �21�. In fact, it is easy to recover this pure ST
growth rate exactly from Eq. �7� by setting only L=0 and
carrying out very easy algebraic manipulation. The manipu-
lation removes the viscosity � by cancellation which it
should for consistency because the middle layer does not
exist in this L→0 limit.

B. An improved absolute upper bound �̂u
on the growth rate

Since the purpose of using a middle layer is to reduce
the maximal ST growth rate of the interface that is pushing
the most viscous fluid, the maximal ST growth rate should
also be an upper bound with the following qualification: this
maximal ST growth rate which we denote below by �̂sm

should be based on viscosities of extreme layer fluids and the
lowest interfacial surface tension coefficient of the two inter-
faces since the growth rate is inversely proportional to the
surface tension. Thus,

�̂sm =
2 min�T,S�

�l + �r
� U��r − �l�

3 min�T,S��
3/2

. �24�

There is no reason why the upper bound �u obtained above
cannot exceed �̂sm. Therefore, we conclude that an improved
upper bound �̂u is given by

� � �̂u = min
�u,�̂sm� , �25�

where �� ��l ,�r�. Note that for these values of �, this is a
strict inequality, meaning that this upper bound is not
achieved in practice for �l����r. The next plot shows
merits of this new bound. Plots of �max=maxk��−�k� ,�+�k��,
�u and �̂sm against � are shown in Fig. 7 for several values
of L with other parameters fixed as spelled out in the caption
of the figure. These plots show that there are windows in �
where �̂sm is a better upper bound than �u and elsewhere �u

is a better upper bound than �̂sm. Similar plots using either
�r or S or T as an independent variable instead of � also
show that the bound �̂u given by Eq. �25� is an improvement
over �u given by Eq. �21�. Such plots are not shown for the
sake of conciseness. While previewing this figure, one
should recall that �u and �̂sm do not depend on the length L
of the middle layer whereas �max does, but it does so mildly
in the sense that �max converges very rapidly with increasing
L due to its exponential-type dependence on L. The value of
� at which the slope of the graph of �u��� suddenly changes
can be found from Eq. �21� by equating the two functions
involved in this formula.

V. CONCLUSIONS

Hydrodynamic stability of planar interfaces in a three-
layer immiscible fluid flow within Hele-Shaw approximation
is considered here. A fluid of constant viscosity �l pushes a
fluid of constant viscosity ���l which in turn pushes an-
other fluid of constant viscosity �r��. The fluid upstream
has a velocity U. The surface tension coefficients at trailing
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�left� and leading �right� interfaces are taken to be S and T,
respectively. We have obtained the following results based
on linear theory and principle of dominant eigenvalue.

• A necessary and sufficient condition for instability
of a mode with wave number k is k
�min����−�l�U /S ,���r−��U /T�. Notice that this
result provides a way to control the number of un-
stable modes by properly adjusting one or more pa-
rameters, namely, the viscosities �, �l, and �r and
surface tension coefficients S and T. By reducing such
number of unstable modes that participate initially in
nonlinear evolution of interfaces, one can perhaps de-
lay the onset of complexities in highly nonlinear re-
gime and perhaps stabilize the flow more than other-
wise possible.

• The width kcr of the unstable band is shortest when
�=�cr, where �cr is given by Eq. �12� and kcr is given
by Eq. �13�. Both of these are independent of the
length L of the middle layer.

• A new upper bound �̂u given by Eq. �25� on the
growth rate is derived. The maximum growth rate is
always less than this bound �see strict inequality in Eq.
�25��. This bound in practice is never reached and
hence there is a scope of further improving upon this
bound. This bound is independent of the length L of
the middle layer and is an improvement over earlier
result. Numerical results are provided which shows
that �̂u given by Eq. �25� is an improved upper bound
over �u given by Eq. �21�.

• Numerically and theoretically we have shown that the
gain in stabilization of the leading interface is expo-
nentially fast in the thickness of the middle layer. We
have numerically explored the dependence of the ex-
tent of stabilization of the leading interface on the
length of the middle layer and the viscosities of fluids
in the three layers.

• When the viscosity of the middle layer is very close to
the fluid it is pushing, most of the gain in stabilization
of the leading interface is obtained for infinitesimally
small values of L due to surface tension effect of two
interfaces.

• A case study when the interfaces are close to each
other is carried out to shed light on the instability
transfer mechanism for this particular case. This needs
a thorough and careful study in various parameter
spaces due to the nature of complexity and dependence
of this mechanism on various parameters of the prob-
lem. This is a topic of future study.
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