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Motivated by a need to improve the performance of chemical enhanced oil recov-
ery (EOR) processes, we investigate dispersive effects on the linear stability of
three-layer porous media flow models of EOR for two different types of interfaces:
permeable and impermeable interfaces. Results presented are relevant for the design
of smarter interfaces in the available parameter space of capillary number, Peclet
number, longitudinal and transverse dispersion, and the viscous profile of the middle
layer. The stabilization capacity of each of these two interfaces is explored numer-
ically and conditions for complete dispersive stabilization are identified for each of
these two types of interfaces. Key results obtained are (i) three-layer porous media
flows with permeable interfaces can be almost completely stabilized by diffusion if
the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also
be almost completely stabilized for short time, but become more unstable at later
times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes
short waves more than long waves which leads to a “turning point” Peclet number
at which short and long waves have the same growth rate, and (iv) mechanical
dispersion further stabilizes flows with permeable interfaces but in some cases has
a destabilizing effect for flows with impermeable interfaces, which is a surprising
result. These results are then used to give a comparison of the two types of interfaces.
It is found that for most values of the flow parameters, permeable interfaces suppress
flow instability more than impermeable interfaces. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961162]

I. INTRODUCTION

Developments in the last five decades have made it clear that in displacement processes in
which a viscous fluid such as water displaces a more viscous fluid such as oil, the mobility jump
across an interface between two such fluids renders the interface unstable to hydro-dynamical
perturbations. The ensuing fingering and side-branching instabilities are now generally viewed as
some of the primary causes of early breakthrough resulting in poor displacement efficiency of
secondary oil recovery. This creates the need for the stabilization of such displacement processes
which can be achieved by reducing the growth rates of unstable waves. It is now a well established
fact from basic stability results (see Ref. 16) that this requires reducing the mobility contrast be-
tween the displaced fluid (oil) and the displacing fluid by increasing the viscosity of the displacing
fluid. This is done using polymer in water and using the resulting aqueous phase (to be called
polysolution henceforth) as a displacing fluid instead of water. Flooding the reservoir first using
such a polysolution phase and then followed by water has become a traditionally accepted solution
to the stabilization problem. This method of flooding, called “polymer flooding,” is one of the
chemical Enhanced Oil Recovery (EOR) methods. Polymer flooding has been studied extensively in
the laboratory, tested widely in the field, and mathematically modeled, analyzed, and simulated (see
Refs. 11, 19, and 21).

The literature on the practice of polymer flooding is vast. In general, polymer-flooding as
discussed above has three layers (or regions) of these phases (oil, polysolution, and water) to
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begin with. The three layers are perpendicular to the mean flow direction with the extreme layer
fluids having constant viscosity. A good prototype model of this polymer flooding process (see
Ref. 4), which is accessible to analysis to gain physical insight into various processes, has been the
three-layer Hele-Shaw model (see Ref. 5). The polymer concentration in the polysolution can have
a profile, and the concentration profile commonly chosen for maximum stabilization is a monotonic
one so that the instability of the system is shouldered equally, roughly speaking, between the three
entities: two individually unstable interfaces and an unstable middle layer (see Ref. 8). It is known
from this work that this configuration is the optimal one in the sense that any other configuration
would make the flow more unstable with the exception of some in which the flow is approximately
equally unstable. However, in practice, any specific profile of polymer concentration injected with
the displacing fluid is certainly difficult to maintain as it flows due to various factors including the
unsteady nature of the flow, adsorption, and diffusion of polymer from the polysolution phase to the
adjacent water phase displacing the middle layer of polysolution. Because of these reasons, even an
originally injected profile of uniform concentration of polymer will develop some non-uniformity.
This non-uniformity in concentration induces species (polymer) diffusion within the polysolution
phase itself. Therefore, it is important to study the effect of species diffusion within the middle layer
on the stability of the flow.

Recently, the effect of such diffusion within the polysolution phase on the flow instability
has been studied (see Refs. 14 and 15) using linear stability analysis and assuming the phases
are immiscible and interfaces are impermeable to polymer meaning no diffusion of polymer from
the polysolution phase into the adjacent water phase. This is not unrealistic since in practice one
can use an infinitesimally thin layer of spacer fluid of non-aqueous phase liquid (NAPL) between
these two phases. Alternatively, one can use simply an NAPL phase instead of the water phase to
displace the polysolution phase (see Figure 1). Linear stability analysis of this flow model leads
to an eigenvalue problem (see Ref. 14), the analysis of which using classical techniques of partial
differential equations provides an upper bound on the growth rate. To make the analysis possible,
one of the boundary conditions in the eigenvalue problem is somewhat compromised in Ref. 14. The
upper bound result there provides an indication that diffusion is stabilizing but not with complete
conviction due to some inherent shortcomings in the argument (see Ref. 14) used there. Because
that study on the effect of diffusion on the stability of porous media flows is not conclusive enough
and does not include (mechanical) dispersive effects that could potentially affect the stability of
porous media flows as well, we undertake a complete and detailed study of the diffusive and
(mechanical) dispersive effects in this work. For purposes below, dispersion means the combined
effect of diffusion and mechanical dispersion, unless mentioned otherwise to mean only mechanical
dispersion.

The effect of dispersion on the linear stability of Hele-Shaw and porous media flows has been
studied for the cases of single-fluid flow and miscible flow.18,20,24,25,27,32,34 However, to the best of
the authors’ knowledge, there has not been much study of mechanical dispersion for immiscible
Hele-Shaw and porous media flows. Dispersion acts within the middle, variable-concentration layer.
Since dispersion has been found to have an effect on stability for a single phase flow,32 it can have an
effect on the stability of immiscible flow which we explore in this paper.

FIG. 1. Impermeable interfaces: Zero Neumann boundary condition for concentration of polymer at the interfaces.
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Throughout the previous studies on dispersion in porous media and Hele-Shaw flows, several
different velocity-dependent models of dispersion have been used. In an early study of miscible
flow, Tan and Homsy27 used a model for dispersion that was derived by Perkins and Johnston23

for a packed bed of particles. They found that for a step concentration profile, very large longitu-
dinal dispersion (in comparison to transverse dispersion) increases the growth rate while very large
transverse dispersion decreases the growth rate. A different model, which comes from adapting
the seminal works of Taylor29,30 and Aris,1 was used by Wooding,32 Homsy, and Zimmerman,34

Petitjeans et al.,24 and Maes et al.20 This Taylor-Aris model only has dispersion in the longitu-
dinal direction and it depends quadratically on velocity. However, Petitjeans et al.24 found that the
Taylor-Aris model does not match experimental data for certain parameter ranges. This is due to
the fact that the Taylor-Aris model is based on an assumption of Poiseuille flow, which is a bad
assumption for flows with large viscous gradients. Due to this fact, several investigators have used a
model for dispersion in porous media flow set forth by Bear.2 This model has been used in stability
studies of miscible flows by Yortsos and Zeybek,33 Riaz et al.,25 and Ghesmat and Azaiez.18 This
model is also popular in recent (non-stability) works on dispersion in porous media.17 Therefore, we
employ this model here (see Section V).

Thus we undertake a detailed linear stability study numerically to investigate the effects of
diffusion and mechanical dispersion on the stability of the three-layer porous media flow model of
EOR for two types of interfaces, namely impermeable and permeable. In particular, through this
study we are looking for answers to some questions of fundamental physics which also have a
bearing on chemical EOR. Some of these are as follows. Are diffusion and/or mechanical disper-
sion stabilizing in the available parameter space? Can mild diffusion and/or mechanical dispersion
have a large stabilization effect? How does diffusion and/or dispersion individually affect an other-
wise optimal viscous profile? Is complete stabilization possible by diffusion and/or dispersion? We
address these and many other relevant stability issues for each of the two types of interfaces in an
effort to also find which one of these two interfaces is more desirable and when. Answers to these
and many other important stability related questions are answered in Section VII on conclusions
which are supported by numerical evidence presented in Sections IV and V.

This paper is laid out as follows. In Section II, we first recall the mathematical model which
incorporates diffusion only, followed by linear stability analysis when the interfaces are imperme-
able (Section II A) as well as when the interfaces are permeable (Section II B). The associated
eigenvalue problems for both of these cases are summarized there. In Section III, we reformulate
the eigenvalue problems in two variables into 4th order eigenvalue problems which are convenient
for numerical computation. The numerical method to solve these eigenvalue problems is briefly
described in the Appendix. In Section IV, numerical results are presented, discussed, and critically
analyzed which address the above mentioned issues related to diffusion. The effect of mechan-
ical dispersion is taken up in Section V including presentation and discussion of the numerical
results which address the dispersive effects mentioned above. We summarize succinctly the re-
sults on diffusive (without mechanical dispersion) and dispersive effects in Section VI. Finally we
conclude in Section VII. For the reader’s convenience, we include a list of symbols and relations in
Nomenclature.

II. PRELIMINARIES

We consider two-dimensional fluid flows in a three-layer homogeneous porous media (see
Figure 2) within Hele-Shaw model meaning the interfaces are treated as immiscible and Darcy’s law
is allowed to hold as in flows in a Hele-Shaw cell. In the leftmost layer, −∞ < x ≤ −L, the fluid has
a constant viscosity µl. The rightmost layer extends from x = 0 up to x = ∞ and is characterized by
constant viscosity µr . The middle layer is of length L and contains a fluid of variable viscosity µ(x)
such that µl ≤ µ(x) ≤ µr . The fluid in this middle layer is immiscible with the fluids in the other
two layers. For the purpose of application to EOR by chemical flooding, this fluid may be taken to
be a polysolution (an aqueous phase containing polymer) having a concentration profile of polymer.
The right interface, separating the middle and the right-most fluid layers, has an interfacial tension
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FIG. 2. Polymer flooding.

T0, and the left interface, separating the middle and the left-most fluid layers, has an interfacial
tension T1. The fluid upstream at x = −∞ has a velocity (U,0). The governing equations are the
continuity equation, Darcy’s law, and, assuming no mechanical dispersion, an advection-diffusion
equation for the concentration of polymer,

∇ · u = 0, (1)

∇ p = − µ
K

u, (2)

∂c
∂t
+ u · ∇c = D0△c, (3)

where ∇ = ( ∂
∂x
, ∂
∂y

), △ is the Laplacian in the plane, c is the concentration of polymer in the middle
layer, K is the permeability, and D0, the diffusion coefficient, is a constant. For Hele-Shaw flows,
K = b2/12 where b is the width of the gap between the plates.

Both interfaces are governed by both kinematic and dynamic boundary conditions. However,
we consider two different conditions for the concentration of polymer at the interfaces. First, we
will consider a no-flux boundary condition at the interfaces, which is appropriate if the interfaces
are impermeable (see Fig. 1). Then, we will consider Dirichlet boundary conditions in which the
concentration of polymer is held constant at each interface (see Fig. 3). Such an interface would
necessarily need to be permeable, allowing the proper amount of polymer to flow through each
interface to keep the concentration fixed. For simplicity, we will henceforth refer to these interface
conditions as permeable and impermeable even though the term permeable in itself does not imply
that the concentration of polymer is fixed at each interface.

A. Impermeable interfaces

First, we develop the stability equations for the case of no-flux boundary conditions. The above
systems (1)-(3) admits a simple basic solution, namely the whole fluid set-up moving with speed
U in the x direction and the two interfaces, namely the one separating the left layer from the
middle-layer and the other separating the right layer from the middle-layer, are planar, i.e., parallel
to the y-axis. The concentration profile in the middle layer is taken to be a function of x only and
satisfies Equation (3). The pressure corresponding to this basic solution is obtained by integrating
(2). In a frame moving with velocity (U,0), the set-up corresponding to the above basic solution
is stationary along with two planar interfaces separating these three fluid layers. Here and below,

FIG. 3. Dirichlet permeable interfaces: Concentration of polymer at each of the two interfaces in the middle layer is held
fixed.
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with slight abuse of notation, the same variable x is used to refer to the x–coordinate in the moving
reference frame. This is also necessary in order to preserve continuity of notation used in Refs. 12
and 13 which facilitates comparison of results obtained in this paper (which has diffusion) with
those in Ref. 13 (which has no diffusion).

We scale the variables by the characteristic length L and the characteristic velocity U. Addi-
tionally, we scale the viscosity by the viscosity, µr , of the leading fluid. With a slight abuse of
notation, below we use the same notations for dimensionless variables as for dimensional variables.
The dimensionless system in the moving frame is

∇ · u = 0,

∇p = − µ

K∗
u − µ

K∗
î,

∂c
∂t
+ u · ∇c =

1
Pe
△ c,

∂η

∂t
= u · n̂,

[p] = − 1
Ca

T
T0
(∇ · n̂),

∂c
∂n
= 0,




(4)

with interfaces at x = −1 and x = 0 where Pe = UL/D0, Ca = Uµr/T0, K∗ = K/L2, x = η(y, t) is
the position of an interface, T is the interfacial tension at the interface, [p] denotes the jump in
pressure across the interface, n̂ is the normal vector to the interfaces, and ∂/∂n is the normal
derivative across the interface. Equations (4)1 through (4)3 hold in −1 < x < 0 and (4)4 through
(4)6 hold at each of the two interfaces with interfacial tension T = T0 at x = 0 and T = T1 at
x = −1.

The basic solution to (4) is (u = 0, v = 0,p0(x, t),c0(x, t)), where p0(x, t) is obtained by integrat-
ing (4)2. The interfaces remain planar at x = −1 and x = 0. We take the initial condition for the
concentration profile, c0(x,0), to be a linear function. This is for easy comparison with the case
of Dirichlet boundary conditions, as will be evident later (see Section II B). For t > 0, the basic
concentration profile is governed by the following problem:

∂c0

∂t
=

1
Pe

∂2c0

∂x2 ,

∂c0

∂x
= 0, x = −1,0.




Through separation of variables, the solution to this equation can be written as

c0(x, t) = a0 +

∞
n=1

ancos(nπx)e− 1
Pe n

2π2t, (5)

where the coefficients an come from expanding the initial condition in terms of a cosine series

c0(x,0) = a0 +

∞
n=1

ancos(nπx).

The viscosity µ inside the middle layer is a function of concentration. We denote µ0 = µ(c0). We
perturb this basic solution by (u,v,p,c). We decompose the disturbances into Fourier modes in the
y-direction and write them as

(u,v,p,c) = ( f (x, t),ψ(x, t), φ(x, t),h(x, t)) ei k y. (6)

Using this ansatz in Equations (4)1–(4)3,

− ∂

∂x

(
µ0
∂ f
∂x

)
+ k2µ0 f = −k2 dµ0

dc
h, (7)
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and

∂h
∂t
= −∂c0

∂x
f +

1
Pe

(
∂2h
∂x2 − k2h

)
. (8)

We now investigate the boundary conditions of the eigenvalue problem given by (7) and (8).
Consider a planar interface at x = x0 that is perturbed by η(y, t). Using the boundary condition (4)4,
linearizing about the disturbances, and using the ansatz (6)

∂η
∂t
= f (x0, t)ei k y. (9)

Using the linearized form of the boundary condition (4)5 and the ansatz (6)

−
µ+0(x0, t)

k2

∂ f +(x0, t)
∂x

ei k y +
µ−0(x0, t)

k2

∂ f −(x0, t)
∂x

ei k y −
�
µ+0(x0, t) − µ−0(x0, t)� η = K∗

Ca
T
T0

ηy y,

(10)

where the superscripts “+” and “−” denote the limits from the left and the right, respectively. We
first investigate this interface condition at x0 = −1. Integrating (9), we have η = A(t)ei k y where

dA
dt
= f (−1, t). (11)

Using (11) in (10) and taking into account the far-field boundary condition at x = −∞,

µ+0(−1, t)∂ f +(−1, t)
∂x

= µlk
dA
dt
− E1A(t), (12)

where

E1 = k2 �µ+0(−1, t) − µl� − k4 K∗

Ca
T1

T0
. (13)

For the interface condition at x0 = 0, we integrate (9) and get η = B(t)ei k y, where

dB
dt
= f (0, t). (14)

Using (14) in (10),

− µ−0(0, t)
∂ f −(0, t)
∂x

= µrk
dB
dt
− E0B(t), (15)

where

E0 = k2 (µr − µ(0)) − k4 K∗

Ca
. (16)

If the interfaces are impermeable, there is a no flux condition for the concentration of polymer
at the interfaces. Recall that this is given by

∂c
∂n
= 0, x = x0 + η.

Using the ansatz (6) and the expression for η at each interface and linearizing with respect to the
disturbances,

∂h(−1, t)
∂x

= −A(t)∂
2c0(−1, t)
∂x2 ,

∂h(0, t)
∂x

= −B(t)∂
2c0(0, t)
∂x2 .




(17)
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Collecting Equations (7), (8), (12), (15), and (17), the system of equations for impermeable
interfaces is

− ∂

∂x

(
µ
∂ f
∂x

)
+ k2µ f = −k2 dµ

dc
h, x ∈ (−1,0),

∂h
∂t
= − ∂c

∂x
f +

1
Pe

(
∂2h
∂x2 − k2h

)
, x ∈ (−1,0),

µ(−1, t)∂ f (−1, t)
∂x

= µlk
dA
dt
− E1A(t),

−µ(0, t)∂ f (0, t)
∂x

= µrk
dB
dt
− E0B(t),

∂h(−1, t)
∂x

= −A(t)∂
2c(−1, t)
∂x2 ,

∂h(0, t)
∂x

= −B(t)∂
2c(0, t)
∂x2 .




(18)

Note that Equations (18)1 and (18)2 depend on time through µ and c. We have dropped the
subscript “0” from µ and c, and we have dropped all superscripts.

If at some fixed time t, there is a number σ(t) such that the functions h(x, t), A(t), and B(t)
satisfy

∂h(x, t)
∂t

= σ(t)h(x, t),
dA
dt
= σ(t)A(t),

dB
dt
= σ(t)B(t),




(19)

then by plugging (19) into (18), ( f ,h,σ) is a solution to the following eigenvalue problem:

− ∂

∂x

(
µ
∂ f
∂x

)
+ k2µ f = −k2 dµ

dc
h, x ∈ (−1,0),

− ∂c
∂x

f +
1
Pe

(
∂2h
∂x2 − k2h

)
= σh, x ∈ (−1,0),

µ(−1, t)∂ f (−1, t)
∂x

=

(
µlk −

E1

σ

)
f (−1, t),

−µ(0, t)∂ f (0, t)
∂x

=

(
µrk − E0

σ

)
f (0, t),

∂h(−1, t)
∂x

= − 1
σ

∂2c(−1, t)
∂x2 f (−1, t),

∂h(0, t)
∂x

= − 1
σ

∂2c(0, t)
∂x2 f (0, t).




(20)

Therefore, the eigenvalues of system (20) are the time-dependent growth rates of the disturbances
for our problem.

B. Permeable interfaces

We now consider the case in which the concentration of polymer is fixed at each interface. This
condition is given by

c = bi, i = 1,2, (21)

where bi is a constant for each interface. The main difference between this case and the previous
one is that this boundary condition admits a basic solution which is steady. In particular, the fluid
moves with speed U in the positive x direction, the fluid interfaces are planar, and the concentration
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of polymer is a linear function. In this case, the analysis above holds for Equations (20)1–(20)4.
However, Equations (20)5 and (20)6 no longer hold. The corresponding boundary conditions using
Equation (21) at each interface are

h(−1) = a
σ

f (−1)
h(0) = a

σ
f (0)



, (22)

where a = b2 − b1.
The eigenvalue problem that governs the stability for fixed concentration on the boundaries is

then given by

− d
dx

(
µ

df
dx

)
+ k2µ f = −k2 dµ

dc
h, x ∈ (−1,0),

−a f +
1
Pe

(
d2h
dx2 − k2h

)
= σh, x ∈ (−1,0),

µ(−1)df
dx

(−1) =
(
µl k − E1

σ

)
f (−1),

−µ(0)df
dx

(0) =
(
µr k − E0

σ

)
f (0),

h(−1) = a
σ

f (−1)
h(0) = a

σ
f (0).




(23)

Note that in this case, the function µ does not depend on time because the basic solution is steady.
Therefore, the system is autonomous and the eigenvalue σ does not depend on time. Taking into
consideration Equation (19), the disturbances will grow exponentially proportional to eσt.

III. FOURTH ORDER EIGENVALUE PROBLEM

It is often convenient, both numerically and analytically, to eliminate the function h from the
system (20) or (23) and consider a single equation for the function f . This equation depends on
the relationship between the viscosity µ and the concentration of polymer c. We assume that µ
is a linear function of c, which is reasonable to assume for small c. This assumption was made
implicitly in Refs. 14 and 15, but we make this dependence explicit here. We do this process for
both sets of boundary conditions.

A. Impermeable interfaces

We start by considering the case of no-flux boundary conditions. Solving Equation (20)1 for h,

h =
1

k2 dµ
dc

(
µ
∂2 f
∂x2 +

∂µ

∂x
∂ f
∂x
− k2µ f

)
. (24)

Plugging (24) into (20)2 and denoting λ = 1/σ, we arrive at the fourth order eigenvalue problem

Pe
(
µ
∂2 f
∂x2 +

∂µ

∂x
∂ f
∂x
− k2µ f

)
= λ


µ
∂4 f
∂x4 + 3

∂µ

∂x
∂3 f
∂x3 +

(
3
∂2µ

∂x2 − 2k2µ

)
∂2 f
∂x2 +

(
∂3µ

∂x3 − 3k2∂µ

∂x

)
∂ f
∂x

− k2
(
∂2µ

∂x2 + Pe
∂µ

∂x
− k2µ

)
f

. (25)
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Note that in the limit Pe → ∞, this becomes

µ
∂2 f
∂x2 +

∂µ

∂x
∂ f
∂x
− k2µ f = −λk2∂µ

∂x
f . (26)

This is the non-dimensional form of the equation derived in the absence of diffusion in Ref. 4.
Four boundary conditions are necessary for this fourth-order eigenvalue problem. Two of them

are (20)3 and (20)4. The other two come from (20)5 and (20)6. Using expression (24) in the boundary
condition (20)5,

µ(−1)∂
3 f
∂x3 (−1) + 2

∂µ

∂x
(−1)∂

2 f
∂x2 (−1) +

(
∂2µ

∂x2 (−1) − k2µ(−1)
)
∂ f
∂x

(−1) − k2∂µ

∂x
(−1) f (−1)

= −λk2∂
2µ

∂x2 (−1) f (−1). (27)

Likewise, using expression (24) in the boundary condition (20)6, we get

µ(0)∂
3 f
∂x3 (0) + 2

∂µ

∂x
(0)∂

2 f
∂x2 (0) +

(
∂2µ

∂x2 (0) − k2µ(0)
)
∂ f
∂x

(0) − k2∂µ

∂x
(0) f (0) = −λk2∂

2µ

∂x2 (0) f (0).
(28)

Collecting Equations (25), (20)3, (20)4, (27), and (28),

Pe
(
µ
∂2 f
∂x2 +

∂µ

∂x
∂ f
∂x
− k2µ f

)
= λ


µ
∂4 f
∂x4 + 3

∂µ

∂x
∂3 f
∂x3 +

(
3
∂2µ

∂x2 − 2k2µ

)
∂2 f
∂x2 +

(
∂3µ

∂x3 − 3k2∂µ

∂x

)
∂ f
∂x

− k2
(
∂2µ

∂x2 + Pe
∂µ

∂x
− k2µ

)
f

,

µ(−1)∂ f
∂x

(−1) = (µl k − λE1) f (−1),

−µ(0)∂ f
∂x

(0) = (µr k − λE0) f (0),

µ(−1)∂
3 f
∂x3 (−1) + 2

∂µ

∂x
(−1)∂

2 f
∂x2 (−1) +

(
∂2µ

∂x2 (−1) − k2µ(−1)
)
∂ f
∂x

(−1)

− k2∂µ

∂x
(−1) f (−1) = −λk2∂

2µ

∂x2 (−1) f (−1),

µ(0)∂
3 f
∂x3 (0) + 2

∂µ

∂x
(0)∂

2 f
∂x2 (0) +

(
∂2µ

∂x2 (0) − k2µ(0)
)
∂ f
∂x

(0)

− k2∂µ

∂x
(0) f (0) = −λk2∂

2µ

∂x2 (0) f (0).




(29)

B. Permeable interfaces

For fixed concentration of polymer at the interfaces, there are two major changes from the pre-
vious case. The first change is the last two boundary conditions, (29)4 and (29)5. The corresponding
boundary conditions are found by using expression (24) in the equations given by (23)5 and (23)6.
This gives

µ(−1)d2 f
dx2 (−1) =


k2µ(−1) −

dµ
dx

µ(−1) (µl k − λE1) + λk2 dµ
dx


f (−1) (30)
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and

µ(0)d2 f
dx2 (0) =


k2µ(0) +

dµ
dx

µ(0) (µr k − λE0) + λk2 dµ
dx


f (0). (31)

The second change from the previous case is that the function µ(x) is linear, since we assumed
µ is a linear function of c and the basic concentration profile is linear. Therefore, all higher deriv-
atives of µ in Equation (29) are zero. Therefore, the eigenvalue problem which governs the growth
rate of disturbances is

Pe
(
µ

d2 f
dx2 +

dµ
dx

df
dx
− k2µ f

)
= λ


µ

d4 f
dx4 + 3

dµ
dx

d3 f
dx3 − 2k2µ

d2 f
dx2 − 3k2 dµ

dx
df
dx
− k2

(
Pe

dµ
dx
− k2µ

)
f

,

µ(−1)df
dx

(−1) = (µl k − λE1) f (−1),

−µ(0)df
dx

(0) = (µr k − λE0) f (0),

µ(−1)d2 f
dx2 (−1) =


k2µ(−1) −

dµ
dx

µ(−1) (µl k − λE1) + λk2 dµ
dx


f (−1),

µ(0)d2 f
dx2 (0) =


k2µ(0) +

dµ
dx

µ(0) (µr k − λE0) + λk2 dµ
dx


f (0).




(32)

IV. RESULTS AND DISCUSSION

In order to investigate the stabilizing effect of diffusion, computations are performed with
various values of parameters which can be found in various figure captions below. For certain
parameters, their values are kept fixed in all simulations. These are µl = 0.2, µr = 1, Ca = 10−3,
K∗ = 10−4, and T1/T0 = 1. Computations have also been performed with other values of these
parameters but the conclusions that follow remain unchanged. In Secs. IV A and IV B, σmax re-
fers to the maximum growth rate over all wavenumbers, k. All computations are done using a
pseudo-spectral method. Details of the numerical method as well as some results related to its
validation can be found in the Appendix.

A. The case of fixed concentration on the interfaces (permeable interfaces)

First, we consider the numerical results obtained using the condition of fixed concentration of
polymer on the interfaces. We start with this case because the results are simpler to explore due to
the time independence of the eigenvalue problem. In keeping with the assumptions of Refs. 14 and
15, we assume that µ is a linear function of c, which is reasonable in the dilute regime. We have
also considered the case in which µ depends exponentially on c, as is done in Refs. 27 and 28, but
have found that the general trends and conclusions remain the same. Therefore, we only present the
results for a linear relationship between viscosity and concentration of polymer. Since µ is a linear
function of c and the basic concentration profile is a linear function of x, µ is also a linear function
of x.

System (32) is solved for the eigenvalues λ. The eigenvalues are then inverted to find σ = 1/λ.
The values of σ computed in this case could be complex, but we are interested only in the real part,
σR, which measures the growth rate of disturbances. Below, all references to growth rate mean the
real part σR of σ and these are denoted by σ itself, with slight abuse of notation. Note that for
each wavenumber k, there are an infinite number of eigenvalues and therefore an infinite number of
values of σ. For the purpose of linear stability analysis, we are mainly concerned with the largest
value of σR for each wavenumber. Therefore, all figures below include only plots of the largest
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FIG. 4. The case of permeable interfaces (with diffusion only): The maximum growth rate σmax versus 1/Pe for: (a)
µ(−1)= 0.408 and µ(0)= 0.552; (b) µ(−1)= 0.36 and µ(0)= 0.68; and (c) µ(−1)= 0.28 and µ(0)= 0.92. The “*” marker
(red online) indicates the value of σmax in the absence of diffusion. The corresponding viscous profiles are shown above each
plot.

σR for each k. σmax below in the narrative or figures means the maximum value of σR with the
maximum taken over all eigenvalues and all wavenumbers. Also, we refer to small values of Peclet
number Pe (large values of the diffusion coefficient D0) as strong diffusion and large values of Pe
(small values of D0) as mild diffusion.

The maximum growth rate σmax(µ(x),Pe) depends on the viscous profile µ(x) as well as
on the Peclet number Pe. The linear viscous profile is characterized by two parameters, µ(0)
and µ(−1), with the restriction µl ≤ µ(−1) ≤ µ(0) ≤ µr . Keeping these two parameters fixed at
values µ(−1) = 0.408 and µ(0) = 0.552, corresponding to the infinite Peclet number (zero diffusion)
optimal profile (see Figure 9) having σmax = 0.360 39, σmax is computed for different finite values of
Pe. Figure 4(a) shows the plot of σmax versus 1/Pe with the viscous profile above it. From this figure
we conclude that the effect of the diffusive stabilization is monotonic. However, the decrease in σmax

is gradual in this case.
In order to see a more dramatic effect from diffusion, we consider viscous profiles with larger

gradients. Figure 4(b) shows the plot of σmax versus 1/Pe for µ(−1) = 0.36 and µ(0) = 0.68, and
Figure 4(c) shows the plot of σmax versus 1/Pe for an even steeper viscous profile with µ(−1) = 0.28
and µ(0) = 0.92. The “∗” (red online) on the y-axis in Figure 4(c) denotes the value of σmax in the
absence of diffusion. Note that the decrease in σmax as the strength of diffusion increases is much
greater for larger viscous gradients. In fact, the flow is almost stable for Pe < 35 when µ(−1) = 0.28
and µ(0) = 0.92.

One thing to note is that the plots in Figures 4(b) and 4(c) each have a point at which the
slope of the curve is discontinuous. We will refer to this point as the turning point. In Figure 4(b),
the turning point is subtle, but is found inside the (blue online) circle. For Figure 4(c), it occurs
when σmax nears zero. We now investigate the turning point in order to shed light on the physical
processes at play. Notice from the viscous profiles that in these two cases the jumps in viscosity at
the interfaces are smaller than in Figure 4(a), but the slope of the viscous profiles has increased. The
first of these phenomena works to stabilize the flow while the second works to destabilize it.

To understand the contributions of the instability of the interfaces due to jumps in viscosity and
the instability of the middle layer due to a viscous gradient in the layer, we consider three different
sets of values for µ(−1) and µ(0) when there is no diffusion (i.e., Pe = ∞). Figure 5 shows plots of
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FIG. 5. The case of permeable interfaces (with diffusion only): The maximum value of the growth rate σ for each
wavenumber k is plotted versus k for several different values of µ(−1) and µ(0) when Pe=∞. The plot (a) shows
µ(−1)= µ(0)= 0.5040. Plot (b) uses µ(−1)= 0.408 and µ(0)= 0.552. Plot (c) uses µ(−1)= 0.36 and µ(0)= 0.68. The dotted
lines represent the limit of σ as k → ∞.

the maximum value of σ versus wavenumber k. Plot 5(a) uses the values µ(−1) = µ(0) = 0.5040.
Therefore, the middle layer has constant viscosity and all of the instability comes from the inter-
faces. The viscosity jumps destabilize the flow while the interfacial tension stabilizes short waves.
Plot 5(b) uses µ(−1) = 0.408 and µ(0) = 0.552, which correspond to the values in Figure 4(a). The
viscosity jumps are similar to those found in the constant viscosity case in Figure 5(a), but there is
now instability within the middle layer due to the viscous gradient in the layer. As we can see in
Figure 5(b), there is still a peak near k = 1, but, in contrast to Figure 5(a), the short waves are not
stable. In fact, as the wavenumber k increases to infinity, the value of σ in Figure 5(b) asymptoti-
cally approaches the dotted line. The new short wave behavior can be attributed to the middle layer
instability. Finally, we consider plot 5(c), which uses the values µ(−1) = 0.36 and µ(0) = 0.68,
corresponding to Figure 4(b). Like in Figures 5(a) and 5(b), there is a local maximum near k = 1
which can be attributed to the instability of the interfaces. However, this is small compared to the
short wave instability which comes from the middle layer. Because the viscosity increases more
rapidly in the middle layer, the instability due to the middle layer is largest in this case.

When diffusion is added to the system, the growth rate decreases. However, the decrease is
more pronounced for short waves, due to the fact that the diffusion affects only the middle layer
and not the interfaces. This effect is clearly illustrated by Figures 6 and 7. Figure 6 shows plots of
the maximum value of σ versus k when µ(−1) = 0.408 and µ(0) = 0.552 for three different values
of Pe. Recall that the plot for this viscous profile with Pe = ∞ is given in Figure 5(b). Notice in
Figure 5(b) that the large k limit is approximately equal to the peak near k = 1 (which is due to
the interfacial instability). This balance is the reason this is the optimal viscous profile for Pe = ∞.
Figure 6(a) uses Pe = 1000. Note that the peak near k = 1 remains and has only been slightly
decreased. However, the short waves have now been stabilized by diffusion, adding a second
maximum in the dispersion curve at a larger value of k. This behavior continues for Figures 6(b)
and 6(c) which correspond to Pe = 100 and Pe = 10, respectively. The stabilization from diffusion is
drastic for short waves, but mild for long waves.

This behavior shows why the case where the viscous profile is steeper is stabilized much more
drastically by diffusion than when the profile is less steep. Figure 7 shows plots of the maximum
value of σ versus k for the same three values of Pe but for a steeper profile with µ(−1) = 0.36 and
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FIG. 6. The case of permeable interfaces (with diffusion only): The maximum value of the growth rate σ for each
wavenumber k is plotted versus k for µ(−1)= 0.408 and µ(0)= 0.552 and for several different values of Pe. Recall that
µl = 0.2 and µr = 1.

µ(0) = 0.68. Recall from Figure 5(c) that the short wave instability of the middle layer dominates
in the absence of diffusion. However, the addition of diffusion, even mild diffusion, stabilizes short
enough waves, as we see in Figure 7(a) when Pe = 1000. Here, there is a second local maximum
near k = 9 and this maximum value is already much smaller than the large k limit for Pe = ∞ (given
by the dotted line in Figure 5(c)). From Figures 7(b) and 7(c), we see that as Pe decreases, the
short waves become more stabilized until the local maximum that occurs due to the interfacial insta-
bility (long waves) overtakes the local maximum due to the middle layer instability (short waves).
Figure 7(c), which uses Pe = 10, shows the case when the interfacial instability dominates. This
maximum is much smaller than the one in Figure 6(c) because the viscous jumps at the interfaces
are much smaller in this case.

The last issue to address with regard to this example is the turning point in the plot of
Figure 4(b). The turning point represents the point at which the diffusion has stabilized the middle
layer so that the two local maxima are the same. For the case µ(−1) = 0.36 and µ(0) = 0.68 (the
data used in Figure 4(b)), this occurs when Pe = 161. We plot the maximum value of σ versus k for
this value of Pe in Figure 8.

The behavior that we have seen to this point shows that diffusion stabilizes flows with highly
unstable middle layers more than it stabilizes flows with highly unstable interfaces. Therefore,
we expect that for larger diffusion, it would be advantageous to have flows that have a larger
viscous gradient in order to minimize the instability of the interfaces. This is what we show
next.

For any specific choice of Pe, σmax is computed for all possible values of µ(−1) and µ(0), which
characterize linear viscous profiles of the middle layer. The square grid mesh in Figure 9 (this is a
color plot online) shows the maximum growth rate σmax corresponding to µ(−1) and µ(0) for four
values of the Peclet number Pe. The value of σmax for each cell can be read from the color bar
according to the color of the grid cell. The coordinates of each cell give the values µ(0) and µ(−1).

FIG. 7. The case of permeable interfaces (with diffusion only). The maximum value of the growth rate σ for each
wavenumber k is plotted versus k for µ(−1)= 0.36 and µ(0)= 0.68 and for several different values of Pe. Recall that µl = 0.2
and µr = 1. This figure is similar to Figure 6 but with a different viscous profile.
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FIG. 8. The case of permeable interfaces (with diffusion only): The maximum value of the growth rate σ for each
wavenumber k is plotted versus k when µ(−1)= 0.36 and µ(0)= 0.68 and Pe= 161.

The plot corresponding to Pe = ∞ shows that the optimal viscous profile in this case (recall that
this is µ(−1) = 0.408 and µ(0) = 0.552) has a relatively small viscous gradient in the middle layer.
However, as diffusion increases, the optimal profile has a larger viscous gradient. For Pe = 10, the
optimal profile has no viscous jump at the interfaces and the flow is almost completely stabilized by
strong diffusion.

FIG. 9. The case of permeable interfaces (with diffusion only): The maximum growth rate σmax versus µ(−1) and µ(0) for
some different Peclet numbers. The other parameter values are µl = 0.2, µr = 1, Ca = 10−3, K ∗= 10−4, and T1/T0= 1.
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FIG. 10. The case of permeable interfaces (with diffusion only): (a) The maximum growth rate σmax versus 1/Pe for optimal
profiles. (b) The slope µ(0)− µ(−1) of the optimal viscous profile versus 1/Pe. The other parameter values are µl = 0.2,
µr = 1, Ca = 10−3, K ∗= 10−4, and T1/T0= 1.

Using data from these simulations, the optimal profile for which the σmax takes its minimum
value is found for several values of Pe. Figure 10(a) shows the plot of σmax versus 1/Pe for the
optimal profiles. Compare this plot with Figures 4(a)–4(c). Notice that choosing the optimal profile
for a given value of Pe greatly increases the stabilizing effect of diffusion.

As mentioned above, as the diffusion increases, the slope of the optimal viscous profile also
increases. To see this dependence, we plot the slope of the optimal viscous profile (given by
µ(0) − µ(−1)) versus 1/Pe in Figure 10(b). Note that, in general, the optimal viscous profile be-
comes more steep as the strength of diffusion increases. There is a small region in Figure 10(b)
near 1/Pe = 0.015 in which the slope of the viscous profile does not increase monotonically with
the strength of diffusion. This goes against our expectations and we currently have no physical
explanation. Also note that since µ(0) < µr = 1 and 0.2 = µl < µ(−1), the maximum value of the
slope is 0.8. When 1/Pe > 0.04, the optimal viscous profile takes on this value.

In order to determine the optimal viscous profile above, the value of σmax has been found for
all possible linear viscous profiles. In the absence of diffusion, some principles have been formed
for determining the optimal viscous profile without an exhaustive search.8,7,10,22 In Refs. 8 and 10,
selection principles for optimal viscous profiles are determined through a numerical study for three
and four layer flows, respectively. In Ref. 7, a simple and fast method for choosing the optimal
viscous profile is given based on upper bounds on the growth rate. In Ref. 22, a class of optimal
viscous profiles is determined analytically under some additional assumptions. No similar results
exist for determining the optimal viscous profile a priori in the present case. This is an open
problem.

Regarding stability of three-layer immiscible flow to infinitesimally small perturbations, several
interesting and useful inferences can be drawn from Figures 4(a)–4(c), 9, 10(a), and 10(b) such
as (i) increasing the strength of diffusion increases the stabilization for the same viscous profile
which may be considered by some as a classic result; (ii) significantly enhanced stabilization can
be achieved by a proper choice of viscous profile without changing the Peclet number (compare
Figures 4(a) and 10(a)); (iii) even very mild diffusion can drastically stabilize an otherwise unstable
flow provided the viscous profile is carefully chosen. In Figure 10(a), we see that σmax ≈ 0.05 when
1/Pe ≈ 0.017 for the optimal viscous profile, an approximate seven-fold decrease from the same
for the zero diffusion case resulting in a seven-fold gain in stabilization; (iv) there exists a range of
viscous profiles for which the flow is almost completely stable, even for modest values of Peclet
number (see the blue region in the bottom right corner of Figure 9 with Pe = 10); (v) at 1/Pe = 0.04
(see Figure 10(a)), σmax ≈ 0 suggesting that the flow is neutrally stable to infinitesimal perturbations
with a large enough value of diffusion and the corresponding optimal viscous profile. However, the
flow could still be unstable to finite amplitude perturbations.
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B. The case of no-flux through the interfaces (impermeable interfaces)

Next, we consider the growth rate when the interfaces are impermeable. Recall that for imper-
meable interfaces, the viscous profile of the middle layer depends on time. We use a quasi-static
approximation, i.e., we consider the stability with time t frozen at different time levels.

We start by investigating the effect of diffusion at time t = 0. In order to compare with the
previous results, we consider an initially linear concentration profile. Since viscosity depends line-
arly on concentration, µ(x) is also a linear function. In Figure 11(a), we plot σmax versus 1/Pe for
three different linear viscous profiles. Plots of the viscous profiles are found in Figure 11(b). The
solid line in Figure 11(b) corresponds to a viscous profile with µ(−1) = 0.408 and µ(0) = 0.552. In
the absence of diffusion, this is the optimal viscous profile and was used in Figure 4(a). Although
difficult to see from the scale of Figure 11(a), σmax is a very slowly decreasing function of 1/Pe.
Therefore, increasing the strength of diffusion has a very mild stabilizing effect. However, just as in
Sec. IV A, diffusion has a dramatic effect for viscous profiles which have a large gradient and small
viscous jumps at the interface. For example, the dotted line corresponds to a linear viscous profile
with µ(−1) = 0.28 and µ(0) = 0.92. Here, σmax = 2.271 49 in the absence of diffusion, but σmax is
much smaller for even mild diffusion. The dashed line corresponds to a viscous profile with almost
no jumps at the interfaces (µ(−1) = 0.2008 and µ(0) = 0.9992). For large enough diffusion, σmax is
almost zero.

As was done in the case of permeable interfaces, the optimal viscous profile for different values
of Pe can be explored for time t = 0 in the case of impermeable interfaces. In Figure 12, the optimal
linear viscous profiles are found for Pe = 1000, Pe = 100, and Pe = 10 by computing σmax for all
possible linear viscous profiles. Similar to the case of permeable interfaces, the optimal viscous
profile is steeper when Pe is smaller. This is seen in Figure 12 by the fact that the minimal value of
σmax moves down and to the right as Pe is decreased. Note from the scale of σmax in these plots that
the value of σmax for the optimal viscous profile when Pe = 10 is significantly smaller than the value
of σmax for the optimal viscous profile when Pe = 1000 or Pe = 100 which further demonstrates the
strong stabilizing effect of diffusion.

Next, we consider the effect of diffusion over time. In order to simplify the results, we consider
an initially linear viscous profile with µ(−1) = 0.28 and µ(0) = 0.92. As time elapses, the basic
concentration profile evolves according to Equation (4)3. Since the viscosity depends linearly on
the concentration, the viscous profile evolves accordingly. As is the case when t = 0, increasing
the strength of diffusion results in a reduction in the growth rate for mild diffusion. However,

FIG. 11. The case of impermeable interfaces (with diffusion only): Plot (a) shows σmax versus 1/Pe for three different viscous
profiles at t = 0. The three profiles are plotted in (b). The solid line corresponds to a linear viscous profile with µ(−1)= 0.408
and µ(0)= 0.552. The dotted line corresponds to a linear viscous profile with µ(−1)= 0.28 and µ(0)= 0.92. The dashed line
corresponds to a linear viscous profile with µ(−1)= 0.2008 and µ(0)= 0.9992. Other parameter values are µl = 0.2, µr = 1,
Ca = 10−3, K ∗= 10−4, and T1/T0= 1.
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FIG. 12. The case of impermeable interfaces (with diffusion only): The maximum growth rate σmax versus µ(−1) and µ(0)
for some different Peclet numbers. The other parameter values are µl = 0.2, µr = 1, Ca = 10−3, K ∗= 10−4, and T1/T0= 1.
This is a color figure.

in the presence of diffusion, the long-time limit of the initial concentration profile is a constant
concentration profile, which leads to large viscous jumps at the interfaces. When diffusion is strong,
the concentration approaches this limit more quickly. These competing effects result in a more
complicated picture of the effect of diffusion at later times. In Figure 13(a), σmax is plotted versus
1/Pe for four different times. The beginning part of the dotted curve corresponding to t = 0 is a
repeat of the dotted curve found in Figure 11(a). In that case, σmax is a strictly decreasing function
of 1/Pe, meaning that an increase in diffusion always makes the flow less unstable. However, for
all other times, σmax is a decreasing function when 1/Pe is small, but then σmax achieves a global
minimum for some value of Pe and thereafter σmax becomes an increasing function of 1/Pe with
a finite asymptotic limit. The optimal value of Pe, that is, the one which minimizes σmax, is an
increasing function of time. Based on the minimums of the curves in Figure 13(a), the optimal value
of Pe is 11.72 when t = 0.5, 16.92 when t = 1, and 28.82 when t = 2. The resulting viscous profiles
obtained from using these optimal choices of Pe at each of the corresponding times are plotted in
Figure 13(b). So, for example, the solid curve is obtained by plotting the basic concentration profile
at time t = 0.5 when Pe = 11.72. Although the strength of diffusion decreases for later times, the
viscous profile is still less steep for later times.

Finally, we focus on one specific value of Pe and investigate the behavior of σmax over time.
We will again consider a basic concentration profile which is initially linear and results in an
initial viscous profile with µ(−1) = 0.28 and µ(0) = 0.92. We use Pe = 10. Figure 14(a) shows σmax

plotted as a function of time. Recall that in the absence of diffusion, the maximum growth rate is

FIG. 13. The case of impermeable interfaces (with diffusion only): (a) A plot of σmax versus 1/Pe at four different times.
The initial viscous profile is linear with µ(−1)= 0.28 and µ(0)= 0.92. Notice that for t > 0, there is a particular value of
Pe which minimizes σmax. (b) Plots of the viscous profiles obtained at time t = 0.25 with Pe= 6.1074, at time t = 0.5 with
Pe= 10.2352, and at time t = 1 with Pe= 18.6946. These values of Pe are the ones which minimize σmax at their respective
times in (a).
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FIG. 14. The case of impermeable interfaces (with diffusion only): Plot (a) shows σmax versus time. We use an initially linear
viscous profile with µ(−1)= 0.28 and µ(0)= 0.92 and Pe= 10. The t → ∞ limit is shown by the dotted line (red online). The
evolution of the viscous profile from time t = 0 to time t = 1 is shown in plot (b).

given by the symbol “*” (red online) in Figure 4(c) (the value of which is σmax = 2.271 49). Clearly,
diffusion has a large stabilizing effect. Figure 14(b) shows how the viscous profile evolves from time
t = 0 to t = 1. Notice that as time increases, so do the jumps in viscosity at the interfaces, since
µl = 0.2 and µr = 1. That leads to the increase in σmax that we see in Figure 14(a). In the limit
t → ∞, the viscous profile becomes constant. Since no polymer leaves the middle layer of fluid, this
constant viscous profile is µ(x) = 0.6. The constant viscosity case is well-studied (see Refs. 4–6 and
9), and the maximum growth rate using these parameters is σmax = 0.4103. This limiting value is
shown by the dotted line in Figure 14(a).

C. Comparison of permeable and impermeable interfaces

We now recap the numerical results of Sections IV A and IV B with a comparison of the two
types of interfaces. The main similarity between an impermeable and a permeable interface is that
diffusion has a stabilizing effect and the effect is greater for steeper viscous profiles. This can be
seen in Figures 4 and 11. However, there are some major differences between the two types of inter-
faces. In particular, the basic flow is time-independent for permeable interfaces but time-dependent
for impermeable interfaces. Because of the time-dependent basic state for impermeable interfaces,
increasing diffusion does not necessarily maximize stabilization at later times (see Figure 13(a)).
This stands in contrast to the case of permeable interfaces in which increasing diffusion always
enhances stability (see Figure 4).

In order to provide further comparison, we provide the dispersion relations for permeable and
impermeable interfaces at four different Peclet numbers in Figure 15. In order to have a direct
comparison, we consider the same initial viscous profile - a linear profile with µ(−1) = 0.36 and
µ(0) = 0.68—at all four Peclet numbers and for both types of interfaces. The viscous profile re-
mains the same for the case of permeable interfaces but changes with time for the case of imper-
meable interfaces. Therefore, the growth rate is considered at three different times for impermeable
interfaces. When Pe = ∞ (zero diffusion case), these two cases coincide and the dispersion rela-
tion is given by the top left figure. The dotted (red) line is the limiting value of σ as k → ∞.
Notice several features: (i) for each type of interface, higher values of diffusion are more stabi-
lizing globally as measured by σmax and also locally or modally, i.e., for each wavenumber k.
This is not surprising! (ii) The stabilizing effect of diffusion on the flow is greater with perme-
able interfaces than with impermeable interfaces. In particular, we see that the stabilizing effect
is more pronounced with permeable interfaces for long waves. However, impermeable interfaces
(see plots for Pe = 100 in Figure 15) can be more effective in suppressing the instability of short
waves at later times because the initially linear viscous profile becomes less steep as time passes.
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FIG. 15. A comparison of the cases of permeable and impermeable interfaces (with diffusion only): The maximum value
of the growth rate σ for each wavenumber k is plotted versus k for µ(−1)= 0.36 and µ(0)= 0.68 and for several different
values of Pe. Recall µl = 0.2 and µr = 1. The dotted line in the top left plot represents the limit of σ as k → ∞.

Therefore, permeable interfaces are more effective for stronger diffusion or viscous profiles that
are not very steep while impermeable interfaces are more effective for a steep profile and mild
diffusion.

V. DISPERSION

In order to include the effect of mechanical dispersion, we replace the dimensional equation (3)
with

∂c
∂t
+ u · ∇c = ∇ · (D∇c) , (33)

where D is the dispersion tensor. Note that if D is equal to D0I, this reduces to the pure diffusion
case, namely to Equation (3). However, we now consider the case in which D has different compo-
nents in the longitudinal and transverse directions, each of which depend on the velocity. These are
denoted by DL(u) and DT(u), respectively. Then the tensor D can be written as34

D =
1

u2 + v2
*
,

u −v
v u

+
-
*
,

DL(u) 0
0 DT(u)

+
-
*
,

u v

−v u
+
-

= DT(u)I + (DL(u) − DT(u)) uuT

∥u∥2 , (34)

where DL(u) and DT(u) will be defined later (see Equation (38)). In order to be consistent with
the previous analysis which is done with no mechanical dispersion (see Section II), we consider a
moving frame with velocity U in the positive x direction. We scale our equations using L as the
characteristic length and U as the characteristic velocity. With a slight abuse of notation, below we
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use the same notations for dimensionless variables as for dimensional variables. The dimensionless
equation in the moving frame is

∂c
∂t
+ u · ∇c =

∂

∂x

(
DT(u)
UL

∂c
∂x
+

(
DL(u)
UL

− DT(u)
UL

)
1

(u + 1)2 + v2

(
(u + 1)2 ∂c

∂x
+ (u + 1)v ∂c

∂ y

))
+

∂

∂ y

(
DT(u)
UL

∂c
∂ y
+

(
DL(u)
UL

− DT(u)
UL

)
1

(u + 1)2 + v2

(
(u + 1)v ∂c

∂x
+ v2 ∂c

∂ y

))
. (35)

The basic solution is for all the fluid to move in the positive x direction with velocity U. Therefore,
in the moving frame, the velocity is (u, v) = (0,0). If we require that the basic concentration profile
c0(x, t) be independent of y , then from Equation (35),

∂c0

∂t
=

1
Pe∗

∂2co
∂x2 , (36)

where Pe∗ = (UL)/DL(U,0). We perturb the basic solution (u = 0, v = 0,c0) by (u,v,c). Plugging
into Equation (35) and linearizing with respect to the disturbances,

∂c
∂t
+ u ∂c0

∂x
=

1
Pe∗

(
∂2c
∂x2 + ϵ

∂2c
∂ y2

)
+

∂

∂x


u
L
∂DL(U,0)

∂u
∂c0

∂x
+
v
L
∂DL(U,0)

∂v

∂c0

∂x


+

1
Pe∗

(1 − ϵ) ∂v
∂ y

∂c0

∂x
, (37)

where ϵ = DT(U,0)/DL(U,0).
The above equation holds for any expression for DL and DT as long as they depend on the

velocity. Therefore, it can be easily used with any of the available models for dispersion in the
literature. Here, we use a common model for porous media, which is used in Ghesmat and Azaiez18

and Ferreira et al.17 The dispersion is given by

DL(u) = D0 + aL∥u∥, DT(u) = D0 + aT ∥u∥. (38)

Using (38) in (37),

∂c
∂t
+ u ∂c0

∂x
=

1
Pe∗

(
∂2c
∂x2 + ϵ

∂2c
∂ y2

)
+

∂

∂x


γ
∂c0

∂x
u

+

1
Pe∗

(1 − ϵ) ∂v
∂ y

∂c0

∂x
, (39)

where γ = aL/L is a measure of the strength of longitudinal dispersion. Using the ansatz (6) for the
disturbances, Equation (39) becomes

∂h
∂t
= −∂c0

∂x
f +

1
Pe∗

(
∂2h
∂x2 − ϵk2h

)
+ γ

∂2c0

∂x2 f + γ
∂c0

∂x
∂ f
∂x
− 1

Pe∗
(1 − ϵ)∂c0

∂x
∂ f
∂x

. (40)

Therefore, with impermeable interfaces and dispersion, the eigenvalue problem which governs the
growth of disturbances is (20) with (20)2 replaced by

− ∂c0

∂x
f +

1
Pe∗

(
∂2h
∂x2 − ϵk2h

)
+ γ

∂2c0

∂x2 f + γ
∂c0

∂x
∂ f
∂x
− 1

Pe∗
(1 − ϵ)∂c0

∂x
∂ f
∂x
= σh. (41)

For the case of permeable interfaces, recall that the basic concentration profile is time independent
and also linear with respect to x. Therefore, the eigenvalue problem for permeable interfaces is (23)
with (23)2 replaced by

− a f +
1

Pe∗

(
d2h
dx2 − ϵk2h

)
+ aγ

df
dx
− a

Pe∗
(1 − ϵ)df

dx
= σh. (42)

A. Fourth order eigenvalue problem

In order to get a single, fourth-order eigenvalue problem that accounts for dispersion, we use
Equation (24) in Equation (41) for impermeable interfaces and in Equation (42) for permeable
interfaces. For impermeable interfaces,
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λ


µ
∂4 f
∂x4 + 3

∂µ

∂x
∂3 f
∂x3 +

(
3
∂2µ

∂x2 − k2(1 + ϵ)µ
)
∂2 f
∂x2 +

(
∂3µ

∂x3 + (Pe∗ γ − 3)k2∂µ

∂x

)
∂ f
∂x

− k2
(
(1 − Pe∗ γ)∂

2µ

∂x2 + Pe∗
∂µ

∂x
− ϵk2µ

)
f

= Pe∗

(
µ
∂2 f
∂x2 +

∂µ

∂x
∂ f
∂x
− k2µ f

)
,

where γ = aL/L which is a measure of longitudinal mechanical dispersion. When aL = aT (i.e.,
when ϵ = 1), mechanical dispersion is isotropic.

For permeable interfaces, µ is a linear function of x so all higher order derivatives of µ are zero.
Therefore, the fourth-order eigenvalue problem is

λ


µ
∂4 f
∂x4 + 3

∂µ

∂x
∂3 f
∂x3 − k2(1 + ϵ)µ∂

2 f
∂x2 + (Pe∗ γ − 3)k2∂µ

∂x
∂ f
∂x
− k2

(
Pe∗

∂µ

∂x
− ϵk2µ

)
f


= Pe∗
(
µ
∂2 f
∂x2 +

∂µ

∂x
∂ f
∂x
− k2µ f

)
.

B. Numerical results: Permeable interfaces

We now consider some numerical results with the dispersion model introduced above. To
understand some of these results, it is important to understand the relationship between Pe and Pe∗.
Notice that Equations (41) and (42) are similar to Equations (20)2 and (23)2 but with Pe replaced by
Pe∗. These two quantities are related in the following way:

Pe∗ =
Pe

1 + Pe γ
and Pe =

Pe∗

1 − Pe∗ γ
.

The other two relevant parameters in this study are γ = aL/L, which is the strength of longitudinal
dispersion, and ϵ = DT(U,0)/DL(U,0), which is the ratio of transverse to longitudinal dispersion.
When ϵ = 1, the dispersion is isotropic and γ gives the strength of dispersion in both the longitu-
dinal and transverse directions. If ϵ = 1 and γ = 0, then there is no mechanical dispersion and the
problem reduces to the one studied in Section IV.

We start by considering the case of permeable interfaces. In Figure 16 we consider a linear
viscous profile with µ(−1) = 0.36 and µ(0) = 0.68, and we plot σmax versus 1/Pe to compare the
cases of diffusion (with no mechanical dispersion) and dispersion. For the dispersion case, we use
ϵ = 1 (isotropic dispersion) and γ = 0.01 (which corresponds to very small mechanical dispersion).
Notice that dispersion has a stabilizing effect and that this effect is especially strong when diffusion
is mild. This is because when Pe is very large, Pe∗ ≈ 1/γ. Therefore, as 1/Pe → 0 and the effect of
diffusion is lost, 1/Pe∗ → γ and the terms in the equation that are multiplied by 1/Pe∗ still have an
effect on stability.

FIG. 16. The case of permeable interfaces: A plot of σmax versus 1/Pe. The solid line is for the case of diffusion only (see
Section IV) and the dotted line includes dispersion. The viscous profile has µ(−1)= 0.36 and µ(0)= 0.68. The dispersion
curve uses ϵ = 1 (isotropic dispersion) and γ = 0.01. Recall that γ = aL/L and ϵ =DT (U,0)/DL(U,0).
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FIG. 17. The case of permeable interfaces (with dispersion): Plot (a) shows σmax versus 1/Pe for different values of
ϵ when γ = 0.01. Plot (b) shows σmax versus 1/Pe when aT = 0 and aL/L = 0.01 (solid line) and when aL = 0 and
aT/L = 0.01 (dotted line). Both plots use a linear viscous profile with µ(−1)= 0.36 and µ(0)= 0.68. Recall that γ = aL/L

and ϵ =DT (U,0)/DL(U,0).

Next, we consider the respective roles of transverse and longitudinal dispersion. In Figure 17
we again plot σmax versus 1/Pe but this time for different amounts of transverse and longitudinal
dispersion. In Figure 17(a), the strength of the longitudinal dispersion pointwise is held constant at
γ = 0.01 while the ratio of transverse to longitudinal dispersion, ϵ , is varied. When diffusion is mild
(i.e., 1/Pe is small), the flow becomes more stable with increasing ϵ , i.e., with increasing transverse
dispersion, but for strong diffusion, the trend is reversed. Recall from Section IV that short waves
dominate the instability when diffusion is mild while long waves dominate the instability when
diffusion is strong (see Figure 7). Increasing the strength of transverse dispersion has the effect
of stabilizing short waves but has a destabilizing effect on long waves. Therefore, increasing the
strength of transverse dispersion is stabilizing in the regime where short wave instability dominates
(mild diffusion) and destabilizing when long wave instability dominates (strong diffusion). This
point is illustrated by Figure 18. In Figure 18(a), the dispersion relations are plotted for Pe = 1000
and for the same three values of ϵ that were considered in Figure 17(a). When Pe = 1000, ϵ = 0.2 is
the most unstable because the shorter waves (k ≈ 6) are most unstable. Figure 18(b) is the same plot
but with Pe = 50. In this case, since longer waves are the most unstable (k = 1), ϵ = 5 is the most
unstable.

FIG. 18. The case of permeable interfaces (with dispersion): Plots of σ versus k for different values of ϵ when (a) Pe= 1000
and (b) Pe= 50. In both cases, γ = 0.01, µ(−1)= 0.36, and µ(0)= 0.68. Recall that γ = aL/L and ϵ =DT (U,0)/DL(U,0).
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FIG. 19. The case of permeable interfaces (with dispersion): Plots of σ versus k when there is only longitudinal dispersion
(solid line) and only transverse dispersion (dotted line). The Peclet numbers are (a) Pe= 1000 and (b) Pe= 100. In both cases
µ(−1)= 0.36 and µ(0)= 0.68.

In Figure 17(b), we consider the extreme cases of zero longitudinal dispersion but non-zero
transverse dispersion (aL = 0,aT/L = 0.01) and zero transverse dispersion but non-zero longitu-
dinal dispersion (aT = 0,aL/L = 0.01). In each case, γ and ϵ are chosen so that aT/L = 0.01 or
aL/L = 0.01 as mentioned above. For most values of Pe within the range plotted, the presence of
only longitudinal dispersion is more stabilizing than the presence of only transverse dispersion. The
exception occurs only for very mild diffusion. This is because, as discussed above, longitudinal
dispersion has a more stabilizing effect on long waves and transverse dispersion has a more stabi-
lizing effect on short waves. For this particular choice of viscous profile, the long waves are most
unstable except for very mild diffusion. Therefore, longitudinal dispersion is more stabilizing for
all but this extreme case. This point about long and short waves can again be illustrated by looking
at the dispersion relations for several different values of Pe. In Figure 19, these dispersion relations
are plotted for Pe = 1000 and Pe = 100. In both cases, longitudinal dispersion (solid line) is more
stabilizing for long waves and transverse dispersion (dotted line) is more stabilizing for short waves.

C. Numerical results: Impermeable interfaces

We now turn our attention to the effect of dispersion when the interfaces are impermeable. In
order to provide an easy comparison with permeable interfaces, we consider the stability at time
t = 0 with a linear viscous profile that has µ(−1) = 0.28 and µ(0) = 0.92. In Figure 20, we plot σmax

FIG. 20. The case of impermeable interfaces: A plot of σmax versus 1/Pe. The solid line is for the case of pure diffusion
(see Section IV) and the dotted line includes dispersion. The viscous profile at t = 0 has µ(−1)= 0.28 and µ(0)= 0.92. The
dispersion curve uses ϵ = 1 (isotropic dispersion) and γ = 0.01. Recall that γ = aL/L and ϵ =DT (U,0)/DL(U,0).
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FIG. 21. The case of impermeable interfaces: Plots of σ versus k with diffusion only (solid line) and with isotropic dispersion
(dotted line). The Peclet numbers are (a) Pe= 100 and (b) Pe= 50. In both cases, the initial viscous profile is linear with
µ(−1)= 0.28 and µ(0)= 0.92.

versus 1/Pe for the case where there is only diffusion and also when there is dispersion. We use the
same amount of dispersion in both the longitudinal and transverse directions (ϵ = 1 and γ = 0.01).
For mild diffusion, the flow is more stable when there is dispersion. However for strong diffusion,
dispersion has a destabilizing effect. As in Sec. V B, the difference can be attributed to short and
long wave behavior. When diffusion is mild, the short wave behavior dominates the instability and
when diffusion is strong, the long wave behavior dominates. Dispersion has the effect of stabilizing
short waves and destabilizing long waves. This point is illustrated in Figure 21 in which we plot
σ versus k for two different values of Pe. In both cases, the dispersion stabilizes short waves and
destabilizes long waves. However, when Pe = 100, the maximum value of σ occurs for shorter
waves and when Pe = 50 the maximum value of σ occurs for longer waves.

Finally, we consider the relative effects of longitudinal and transverse dispersion when the
interfaces are impermeable. We consider a linear viscous profile with µ(−1) = 0.28 and µ(0) = 0.92
in Figure 22. In Figure 22(a), the strength of the longitudinal dispersion is held constant at γ = 0.01
and the relative strength of the transverse dispersion is changed. Increasing transverse dispersion
has a stabilizing effect. In Figure 22(b), we consider the cases with only longitudinal dispersion
and only transverse dispersion, respectively. For flows with impermeable interfaces, having only
transverse dispersion is more stabilizing.

FIG. 22. The case of impermeable interfaces (with dispersion): Plot (a) shows σmax versus 1/Pe for different values of ϵ when
γ = 0.01. Plot (b) shows σmax versus 1/Pe when aT = 0 and aL/L = 0.01 (solid line) and when aL = 0 and aT/L = 0.01
(dotted line). Recall that γ = aL/L and ϵ =DT (U,0)/DL(U,0).
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D. Comparison of dispersion for permeable and impermeable interfaces

In Sections V B and V C, dispersion is found to have a very different effect for the two types
of interfaces considered. For permeable interfaces, dispersion is stabilizing (see Figure 16) for all
values of diffusion. This is also true for other viscous profiles which we do not show here because
of space constraints. The stabilizing effect, as can be seen from this figure, is more dramatic for the
case of mild diffusion but less so when diffusion is strong. For impermeable interfaces, dispersion
can be stabilizing or destabilizing (see Figure 20) depending on the viscous profile and the strength
of diffusion. The figure shows that dispersion is stabilizing for mild diffusion and destabilizing for
strong diffusion.

Figure 21 shows a typical case in which dispersion is stabilizing for milder diffusion (cor-
responding to Pe = 100) but destabilizing for stronger diffusion (corresponding to Pe = 50). This
behavior usually holds for other initial viscous profiles as well. Several observations can be made
from Figure 21 about the stabilizing effect of dispersion with impermeable interfaces. Dispersion
is stabilizing for short waves and destabilizing for long waves. The crossover from destabilizing
to stabilizing in Fourier space takes place at a wave number which increases with the strength of
diffusion (i.e., with decreasing Peclet number). In general, the short wave instability dominates
when dispersion is stabilizing (see Figure 21(a)) and the long wave instability dominates when
dispersion is destabilizing (see Figure 21(b)).

The two types of interfaces also behave differently with respect to longitudinal and trans-
verse dispersion. For permeable interfaces, changing the strength of transverse dispersion while
keeping longitudinal dispersion fixed can be stabilizing or destabilizing depending on the strength
of diffusion (see Figure 17(a)). For impermeable interfaces, increasing the strength of transverse
dispersion while keeping longitudinal dispersion fixed is always stabilizing (see Figure 22(a)). The
two types of interfaces also exhibit different behavior in the extreme cases in which there is only
longitudinal dispersion or only transverse dispersion. For permeable interfaces, the flow is more
stable with only transverse dispersion for mild diffusion, but flows with only longitudinal dispersion
are more stable for strong diffusion (see Figure 17(b)). For impermeable interfaces, flows with only
transverse dispersion are always more stable than the ones with only longitudinal dispersion (see
Figure 22(b)).

In order to have a more direct comparison of the stability of the flow with dispersion and each
type of interface, the maximum value of σ versus k is plotted for permeable interfaces and for
impermeable interfaces at three different times and for two different Peclet numbers (Figure 23).
The viscous profile is initially linear with µ(−1) = 0.36 and µ(0) = 0.68. We use ϵ = 1 (isotropic
dispersion) and γ = 0.01. For both values of Pe, the flow becomes more stable as time increases for

FIG. 23. A comparison of the cases of permeable and impermeable interfaces (with isotropic dispersion; ϵ = 1 and γ = 0.01):
The maximum value of the growth rate σ for each wavenumber k is plotted versus k for µ(−1)= 0.36 and µ(0)= 0.68 (at
t = 0 for impermeable interfaces) and for several different values of Pe. Recall µl = 0.2 and µr = 1.
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impermeable interfaces. This is due to the fact that the viscous profile is becoming less steep. How-
ever, flows with permeable interfaces are more stable than those with impermeable interfaces at all
times. Recall from Figure 15 that in the absence of mechanical dispersion, permeable interfaces are
more stable for strong diffusion. When dispersion is present, permeable interfaces gain an advantage
for even milder diffusion (compare the top right of Figures 15 and 23(a) where Pe = 1000).

VI. SUMMARY

The work presented here is of fundamental interest to basic fluid mechanics of multi-layer
flows and has direct relevance to many industrial processes including enhanced oil recovery. In this
work, the effect of diffusion and mechanical dispersion of polymer on the stability of multi-layer
porous media flows for two different boundary conditions, corresponding to permeable and imper-
meable interfaces, is investigated. The linear stability equations are derived and the numerical
results are presented and critically analyzed. In particular, for each of the two types of interfaces
numerical data are used to determine the dependence of the absolute growth rate (flow instability)
and of the dynamics of local (modal) instabilities on diffusion and mechanical dispersion. Some
parameters, such as the capillary number and the ratio of interfacial tensions, remain fixed for all
simulations (recall Ca = 10−3, K∗ = 10−4, T1/T0 = 1). Although these parameters have an effect on
stability, the main goal of this study is to explore the effects of molecular diffusion and mechanical
dispersion on flow stability. All of the qualitative trends and conclusions which are discussed appear
to remain unchanged for different values of these parameters. These results have bearing on the
design of “smart” interfaces that will be most stabilizing to flow and thus most desirable in cases
where it matters such as in enhanced oil recovery.

We first look at the behavior of the growth rate, σ, when the concentration of polymer is held
fixed at the interfaces (permeable interfaces). We obtain the following results: (i) diffusion is stabi-
lizing, that is, it decreases the growth rate (see Figure 4); (ii) diffusion favors steeper viscous profiles
(see also Figure 4); (iii) diffusion stabilizes short waves more than long waves (see Figure 7). For
viscous profiles (see the top of Figure 4(b)) that are dominated by short wave instability in the
absence of diffusion (see Figure 5(c)), there is a turning point (see Figure 4(b)). The short (long)
wave instability dominates for diffusion that is milder (stronger) than that corresponding to the
turning point; (iv) mild diffusion can lead to almost complete stability of the flow provided an
optimal viscous profile is chosen (see Figure 10(a)). The optimal profile is typically more steep
when diffusion is stronger (see Figure 10(b)).

We then proceed to numerically study the growth rate when there is no flux of polymer through
the interfaces (impermeable interfaces). In contrast to the case of permeable interfaces, the viscous
profile is time-dependent and tends toward a constant viscosity middle layer. Diffusion again has
a stabilizing effect (see Figure 11(a)). Unless diffusion is very mild, increasing the strength of
diffusion is not optimal for later times since it causes the viscous profile to approach its constant
limit more quickly. For any given time t > 0, there is some optimal Peclet number that minimizes
the maximum value of the growth rate (see Figure 13(a)).

Next, we provide a comparison of the stability for permeable and impermeable interfaces (see
Figure 15). Increasing the strength of diffusion has a much more drastic stabilizing effect when
the interfaces are permeable than when they are impermeable. However, if diffusion is mild and
the viscous profile is steep, impermeable interfaces offer an advantage because the profile becomes
less steep with time which reduces the instability due to the viscous gradient in the middle layer.
Therefore, permeable interfaces provide greater stability when diffusion is relatively strong or when
the viscous profile is not very steep, but impermeable interfaces are more stable for mild diffusion
and steep viscous profiles.

We then investigate the effect of dispersion on the stability of the flow. For permeable inter-
faces, dispersion has a stabilizing effect (see Figure 16). However, this effect is dependent on the
relative strength of longitudinal dispersion and transverse dispersion. Strong longitudinal (trans-
verse) dispersion has the effect of stabilizing long (short) waves. Therefore, longitudinal (trans-
verse) dispersion has a greater stabilizing effect for flows in which the long (short) wave instability
dominates (see Figure 19).
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When the interfaces are impermeable, dispersion is stabilizing for short waves and destabilizing
for long waves (see Figure 21). Therefore, dispersion is not always stabilizing (see Figure 20). In
contrast to permeable interfaces, transverse dispersion is more stabilizing than longitudinal disper-
sion for any value of Pe (see Figure 22(b)).

We then compare the effect of dispersion for the two types of interfaces by considering
isotropic dispersion for each with the same initial viscous profile. Permeable interfaces are found to
be more stabilizing, in some cases significantly more stabilizing, than impermeable interfaces, even
for cases of mild diffusion (see Figure 23).

VII. CONCLUSION

There are several key findings of this paper which can be used to suppress the instability of
three-layer porous media flows in applications like enhanced oil recovery. First, diffusion of poly-
mer in the middle layer triggered by infinitesimal instabilities has a stabilizing effect on the flow for
both permeable and impermeable interfaces. In general, this stabilizing effect is greater when the
interfaces are permeable. In fact, when the interfaces are permeable the flow is almost completely
stabilized by mild diffusion if the optimal viscous profile is chosen. This optimal viscous profile
is steeper when diffusion is stronger. When the interfaces are impermeable the stabilization due to
diffusion is not as much as in the permeable case. This is partly due to the fact that the viscous
profile is time-dependent in this case and strong diffusion causes the viscous profile to more quickly
approach its constant viscosity limit. Diffusion does not affect waves of all wavelengths the same.
In general, diffusion stabilizes short waves more so than long waves. This leads to a “turning point”
Peclet number (where short and long waves have the same growth rates) in the graphs of σmax versus
1/Pe (see Figures 4 and 11). When diffusion is milder than that at the turning point, short waves are
more unstable and when diffusion is stronger than the turning point, long waves are more unstable.

Mechanical dispersion also has an effect on the stability of the flow. When the interfaces are
permeable, dispersion stabilizes the flow. This effect, coupled with the strong stabilizing effect
of diffusion, leads to very nearly stable flows for permeable interfaces. When the interfaces are
impermeable, dispersion is sometimes stabilizing and sometimes destabilizing, which is a surprising
result (see Figure 20). This depends on whether long or short waves are most unstable, which
depends on both the strength of diffusion and the viscous profile.

For most realistic values of the parameters, flows with permeable interfaces are more stable
than the corresponding flows with impermeable interfaces. If, in addition to designing the proper
interfaces, the fluid in the middle layer has an optimal viscous profile and the strengths of diffusion
and dispersion are not very mild, three layer porous media flows can be completely stabilized,
even though less viscous fluids are driving more viscous fluids. Capillary number and the ratio of
interfacial tensions have little effect on the key results.
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NOMENCLATURE

Symbols

µ = viscosity
µl = viscosity of the fluid in the leftmost layer
µr = viscosity of the fluid in the rightmost layer
µ(−1) = viscosity of the middle layer fluid at the trailing interface
µ(0) = viscosity of the middle layer fluid at the leading interface
T = interfacial tension.
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T0 = interfacial tension at the leading interface
T1 = interfacial tension at the trailing interface
u = velocity
p = pressure
K = permeability
c = concentration of polymer
D0 = diffusion coefficient
K∗ = dimensionless permeability
Pe = Peclet number
Ca = capillary number.
k = wavenumber of disturbance
σ = growth rate of disturbance
λ = 1/σ
DL = longitudinal component of the dispersion tensor
DT = transverse component of the dispersion tensor

Relations

K∗ = K
L2

Pe = UL
D0

Ca =
Uµr
T0

Pe∗ = UL
DL(U,0)

DL(u) = D0 + aL∥u∥
DT(u) = D0 + aT ∥u∥
ϵ =

DT (U,0)
DL(U,0)

γ =
aL
L

APPENDIX: NUMERICAL METHOD

Throughout Secs. IV, V B, and V C, the eigenvalues of (29) and (32) and the corresponding
equations with mechanical dispersion are computed numerically. The precise nature of the spectra
of these operators is an open problem and worthy of future analytical study. In this section, we
describe the pseudo-spectral Chebyshev method used to solve the eigenvalue problems, followed by
a finite difference method used to verify the results and some verification results.

1. Pseudo-spectral Chebyshev method

In order to numerically compute the eigenvalues, we use a pseudo-spectral method. We first
describe the method and then its application to our specific problem. For a more detailed treatment
and proofs of convergence rates, see Refs. 3 and 31.

Let Tn(y) denote the nth Chebyshev polynomial, which can be defined in terms of trigono-
metric functions as

Tn(y) = cos(ncos−1(y)), y ∈ [−1,1]. (A1)

The Chebyshev polynomials satisfy the orthogonality condition 1

−1

Tn(y)Tm(y)
1 − y2

dy = Cnδnm, (A2)

where C0 = π and Cn =
π
2 for n , 0. Additionally, the Chebyshev polynomials form a complete

set with respect to the weight function w(y) = 1√
1−y2

. Therefore, for any f ∈ L2
w([−1,1]), we may

expand f as
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f (y) =
∞
n=0

anTn(y), an =
1
√

Cn

 1

−1

f (y)Tn(y)
1 − y2

dy. (A3)

In order to use this expansion to solve our eigenvalue problem, we approximate the solution as the
finite sum of the first N + 1 Chebyshev polynomials

f (y) ≈
N
n=0

anTn(y). (A4)

In order to optimize the rate of convergence, we evaluate these at the extremal values of the
Chebyshev polynomials (the Gauss-Chebyshev-Lobatto points), which are given by

y j = cos
(

jπ
N

)
, j = 0, . . . ,N. (A5)

Using these points, Tn(y j) = cos
(
n jπ
N

)
. In order to solve an eigenvalue problem, we also need an

expansion for the derivatives of f . We write the kth derivative of f as

f (k)(y) =
N
n=0

anT
(k)
n (y). (A6)

Using the change of variables y = cos(θ) and (A1), we get Tn(y) = cos(nθ). Therefore

T ′n(y) = n sin(nθ)
sin(θ) . (A7)

Using some trigonometric identities in (A7), we arrive at the recurrence relation

T ′n(y) = 2nTn−1(y) +
( n

n − 2

)
T ′n−2(y).

In general, for k ≥ 1, the kth derivative satisfies the recurrence relation

T (k)
0 (y) = 0, T (k)

1 (y) = T (k−1)
0 (y), T (k)

n (y) = 2nT (k−1)
n−1 (y) +

( n
n − 2

)
T (k)
n−2(y). (A8)

We may use this relation to build differentiation matrices in the following way. Let a = {a0, . . . ,aN}T
where the ai’s are the coefficients from (A4). Let D0 be an (N + 1) × (N + 1) matrix such that the
entry in row i and column j is given by

(D0)i, j = Tj−1(yi−1). (A9)

Then D0a = f where f = { f (y0), f (y1), . . . , f (yN)}T . We denote the kth differentiation matrix by
Dk. Using (A8), we can recursively build Dk from Dk−1 using

(Dk)i, j = T (k)
j−1(yi−1) =




0, j = 1,
(Dk−1)i, j−1, j = 2,

2( j − 1)(Dk−1)i, j−1 +

(
j − 1
j − 3

)
(Dk)i, j−2, 3 ≤ j ≤ N + 1.

(A10)

Then, for any k ≥ 0, Dka = fk where fk = { f (k)(y0), f (k)(y1), . . . , f (k)(yN)}T . For an explicit example
of a MATLAB program that builds these matrices, see Schmid and Henningson,26 pp. 491-492.

With these matrices, we can solve the eigenvalue problems (29) and (32) (and the equivalent
problems with dispersion). Here, we only describe the method for (29) since it is easily adaptable to
the other system of equations. Recall Equation (29)1,

Pe
�
µ f xx + µx f x − k2µ f

�

= λ
�
µ f4x + 3µx f3x + (3µxx − 2k2µ) f xx + (µ3x − 3k2µx) f x − k2(µxx + Peµx − k2µ) f

	
,

x ∈ (−1,0).
Note that the Gauss-Chebyshev-Lobatto points are in the interval [−1,1]. We map these points
to the interval [−1,0] using the affine map x = 1

2 (y − 1). Therefore, our collocation points are
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xi =
1
2 (yi − 1). Additionally, since d

dx
= 2 d

dy
, we let Dx

k = 2kDk. We require that Equation (29)1

holds at each collocation point, xi, which gives a system of N + 1 equations. Let V(n) for n =
0,1,2,3 be the matrices defined by

(V(n))i, j =



µ(n)(xi−1), j = i,
0, otherwise.

(A11)

Then the ith entry of the vector V(n)Dx
ka is µ(n)(xi−1) f (k)(xi−1). Therefore, the condition that (29)1

holds for each xi is given by the matrix equation

Pe
(
V(0)Dx

2a + V(1)Dx
1a − k2V(0)Dx

0a
)

= λ
(
V(0)Dx

4a + 3V(1)Dx
3a + (3V(2) − 2k2V(0))Dx

2a + (V(3) − 3k2V(1))Dx
1a

−k2(V(2) + PeV(1) − k2V(0))Dx
0a

)
.

(A12)

Let A = Pe
�
V(0)Dx

2 + V(1)Dx
1 − k2V(0)Dx

0
�

and B = V(0)Dx
4 + 3V(1)Dx

3 + (3V(2) − 2k2V(0))Dx
2 + (V(3) −

3k2V(1))Dx
1 − k2(V(2) + PeV(1) − k2V(0))Dx

0. Then we have the generalized eigenvalue problem Aa =
λBa. However, we must also enforce the boundary conditions. As in Schmid and Henningson,26

p. 489 we use the first, second, second to last, and last rows of our matrices to do it. The boundary
conditions of (29) can be rewritten as

µ(0) f x(0) + µr k f (0) = λE0 f (0),
µ(0) f xxx(0) + 2µx(0) f xx(0) + �µxx(0) − k2µ(0)� f x(0) − k2µx(0) f (0) = −λk2µxx(0) f (0),
µ(−1) f xxx(−1) + 2µx(−1) f xx(−1) + �µxx(−1) − k2µ(−1)� f x(−1) − k2µx(−1) f (−1)
= −λk2µxx(−1) f (−1),
µ(−1) f x(−1) − µl k f (−1) = −λE1 f (−1).

Therefore, we use

(A)1, j = µ(0)(Dx
1)1, j + µrk(Dx

0)1, j,
(B)1, j = E0(Dx

0)1, j,
(A)2, j = µ(0)(Dx

3)1, j + 2µx(0)(Dx
2)1, j +

�
µxx(0) − k2µ(0)� (Dx

1)1, j − k2µx(0)(Dx
0)1, j,

(B)2, j = −k2µxx(0)(Dx
0)1, j,

(A)N, j = µ(−1)(Dx
3)N+1, j + 2µx(−1)(Dx

2)N+1, j +
�
µxx(−1) − k2µ(−1)� (Dx

1)N+1, j

− k2µx(−1)(Dx
0)N+1, j,

(B)N, j = −k2µxx(−1)(Dx
0)N+1, j,

(A)N+1, j = µ(−1)(Dx
1)N+1, j − µlk(Dx

0)N+1, j,

(B)N+1, j = −E1(Dx
0)N+1, j .

We solve the generalized eigenvalue problem using MATLAB’s “eig” command.

2. Finite difference method

In order to validate the pseudo-spectral Chebyshev method described above, we give a finite
difference method which can be used to solve the eigenvalue problems. Here, we provide the
method for the Equation (32) (permeable interfaces without mechanical dispersion) and use it for a
comparison with the pseudo-spectral method in Subsection 3 of the Appendix.

We can rewrite Equation (32)1 in terms of σ = 1/λ as

µ

Pe
d4 f
dx4 +

3
Pe

dµ
dx

d3 f
dx3 +

(
− 2

Pe
k2µ − σµ

)
d2 f
dx2 +

(
−σ dµ

dx
− 3

Pe
k2 dµ

dx

)
df
dx

+

((
σ +

k2

Pe

)
k2µ − k2 dµ

dx

)
f (x) = 0. (A13)
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The four boundary conditions for f in terms of σ are

µ(−1)df
dx

(−1) =
(
µl k − E1

σ

)
f (−1),

−µ(0)df
dx

(0) =
(
µr k − E0

σ

)
f (0),

µ(−1)d2 f
dx2 (−1) =




k2µ(−1) −
dµ
dx

µ(−1)
(
µl k − E1

σ

)
+

k2

σ

dµ
dx




f (−1),

µ(0)d2 f
dx2 (0) =




k2µ(0) +
dµ
dx

µ(0)
(
µr k − E0

σ

)
+

k2

σ

dµ
dx




f (0).




(A14)

The stability problem is then defined by (A13) and (A14). This problem is discretized over the
domain (−1,0) using N + 1 uniformly spaced nodes with uniform step size d = 1/N . Therefore,
the discretization points are given by xi = −1 + i/d for i = 0, . . . ,N . We use first order accurate
approximation for the end point derivatives and second order approximation for the interior point
derivatives, namely,




df
dx

(−1) = f (x1) − f (x0)
d

,
df
dx

(0) = f (xN) − f (xN−1)
d

,

d2 f
dx2 (−1) = f (x2) − 2 f (x1) + f (x0)

d2 ,
d2 f
dx2 (0) =

f (xN) − 2 f (xN−1) + f (xN−2)
d2 ,

df
dx

(xi) = f (xi+1) − f (xi−1)
2d

, i = 2, . . . ,N − 2,

d2 f
dx2 (xi) = f (xi+1) − 2 f (xi) + f (xi−1)

d2 , i = 2, . . . ,N − 2,

d3 f
dx3 (xi) = f (xi+2) − 2 f (xi+1) + 2 f (xi−1) − f (xi−2)

2d3 , i = 2, . . . ,N − 2,

d4 f
dx4 (xi) = f (xi+2) − 4 f (xi+1) + 6 f (xi) − 4 f (xi−1) + f (xi−2)

d4 i = 2, . . . ,N − 2.

Equation (A13) is discretized using these formulas and after some algebraic manipulation yields

1
Pe

(
µ(xi)

d4 −
3

2d3

dµ
dx

)
f (xi−2)

+


−4µ(xi)

d4Pe
+

3
d3Pe

dµ
dx
−

(
σ +

2k2

Pe

)
µ(xi)

d2 +

(
σ +

3k2

Pe

) dµ
dx

2d




f (xi−1)

+


6µ(xi)
d4Pe

+ 2
(
σ +

2k2

Pe

)
µ(xi)

d2 + (σ +
k2

Pe
)k2µ(xi) − k2 dµ

dx


f (xi)

+


−4µ(xi)

d4Pe
− 3

d3Pe
dµ
dx
−

(
σ +

2k2

Pe

)
µ(xi)

d2 −
(
σ +

3k2

Pe

) dµ
dx

2d




f (xi+1)

+
1
Pe

(
µ(xi)

d4 +
3

2d3

dµ
dx

)
f (xi+2) = 0.

Using the finite difference approximations in the boundary conditions given in Equations (A14)
leads to
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f (x1) − f (x0)
d

=
1

µ(−1) (µlk −
E1

σ
) f (x0),

f (xN) − f (xN−1)
d

= − 1
µ(0) (µrk − E0

σ
) f (xN),

f (x2) − 2 f (x1) + f (x0)
d2 =

1
µ(−1)




k2µ(−1) −
dµ
dx

µ(−1)
(
µl k − E1

σ

)
+

k2

σ

dµ
dx




f (x0),

f (xN) − 2 f (xN−1) + f (xN−2)
d2 =

1
µ(0)




k2µ(0) +
dµ
dx

µ(0)
(
µr k − E0

σ

)
+

k2

σ

dµ
dx




f (xN),

which are rewritten as




(
µl

µ(−1) k +
1
d

)
σ − E1

µ(−1)


f (x0) − σd f (x1) = 0,

−σ
d

f (xN−1) +
(

µr
µ(0) k +

1
d

)
σ − E0

µ(0)


f (xN) = 0,



σ *
,

1
d2 − k2 +

dµ
dx

µ(−1)
µlk
µ(−1)

+
-
− µx
µ(−1)

E1

µ(−1) − k2
dµ
dx

µ(−1)



f (x0) − 2σ
d2 f (x1) + σ

d2 f (x2) = 0,

σ

d2 f (xN−2) − 2σ
d2 f (xN−1) +



σ *
,

1
d2 − k2 −

dµ
dx

µ(0)
µrk
µ(0)

+
-
+

µx
µ(0)

E0

µ(0) + k2
dµ
dx

µ(0)



f (xN) = 0.

Using these finite difference approximations, the discrete analog of the problem defined by (A13)
and (A14) is given by the following system of algebraic equations:

Af = 0, (A15)

where f is the vector with entries f (x0), f (x1), f (x2), . . . , f (xN) and A is a square matrix whose
entries, now denoted by Ai j, i, j = 1,2, . . . , (N + 1), are given by

A11 =

(
µl

µ(−1) k +
1
d

)
σ − E1

µ(−1) , A12 = −
σ

d
,

A21 = σ *
,

1
d2 − k2 +

dµ
dx

µ(−1)
µlk
µ(−1)

+
-
− µx
µ(−1)

E1

µ(−1) − k2
dµ
dx

µ(−1) , A22 = −
2σ
d2 , A23 =

σ

d2 ,

Ai, i−2 =
1
Pe

(
µ(xi)

d4 −
3

2d3

dµ
dx

)
,

Ai, i−1 = −
4µ(xi)
d4Pe

+
3

d3Pe
dµ
dx
−

(
σ +

2k2

Pe

)
µ(xi)

d2 +

(
σ +

3k2

Pe

) dµ
dx

2d
,

Ai, i =
6µ(xi)
d4Pe

+ 2
(
σ +

2k2

Pe

)
µ(xi)

d2 + (σ +
k2

Pe
)k2µ(xi) − k2 dµ

dx
,

Ai, i+1 = −
4µ(xi)
d4Pe

− 3
d3Pe

dµ
dx
−

(
σ +

2k2

Pe

)
µ(xi)

d2 −
(
σ +

3k2

Pe

) dµ
dx

2d
,

Ai, i+2 =
1
Pe

(
µ(xi)

d4 +
3

2d3

dµ
dx

)
, ∀i ∈ [3,N − 1],

AN,N−1 =
σ

d2 , AN,N = −
2σ
d2 , AN,N+1 = σ *

,

1
d2 − k2 −

dµ
dx

µ(0)
µrk
µ(0)

+
-
+

µx
µ(0)

E0

µ(0) + k2
dµ
dx

µ(0) ,

AN+1,N = −
σ

d
, AN+1,N+1 =

(
µr
µ(0) k +

1
d

)
σ − E0

µ(0) .

3. Validation of the numerical method

Both the pseudo-spectral Chebyshev method and the finite difference method described above
have been implemented in order to compare the results, and it was found that the methods agree.
A typical plot of the maximum value of σ versus the wavenumber k is given in Figure 24 for
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FIG. 24. A comparison of the convergence of the two numerical methods: (a) Finite difference and (b) pseudo-spectral
Chebyshev. The maximum value of the growth rate σ for each wavenumber k is plotted versus k for permeable interfaces
and diffusion only. The parameter values are the same as Figure 7(a) (Pe= 1000, Ca = 10−3, K ∗= 10−4, T1/T0= 1, µl = 0.2,
µ(−1)= 0.36, µ(0)= 0.68, µr = 1).

each method for several different values of N , the number of grid points. These calculations are
for permeable interfaces with the parameters values the same as those for Figure 7(a) (Pe = 1000,
Ca = 10−3, K∗ = 10−4, T1/T0 = 1, µl = 0.2, µ(−1) = 0.36, µ(0) = 0.68, µr = 1). There are two
important points to note. First, both methods converge as the grid is refined and they converge to
the same values. Second, the pseudo-spectral Chebyshev method converges much more quickly (the
three curves corresponding to 10, 20, and 30 grid points are indistinguishable). The pseudo-spectral
Chebyshev method has been used for Sec. IV because of the fast convergence of the method and
also because the run time is much shorter.

The method can be further validated by only accepting eigenvalues if they are found for more
than one value of N.3 In all cases considered in this paper, the eigenvalues that are agreed upon by
different mesh sizes are real-valued. Of particular importance to this study is the fact that the value
of σ with the largest real part is always real-valued and agreed upon by all possible mesh sizes.
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