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In the past pointed bubbles have been obtained numerically in the presence of surface tension. 
In this paper it is proven that if such pointed bubbles do exist in the presence of surface tension, 
then the singularity at the corner must be an irregular singular point. The generality and 
significance of the result are discussed. 

In this work, we characterize the singularity at the tip 
of an unphysical pointed bubble in the presence of surface 
tension. These bubbles have been recently obtained by 
Vanden-Broeck’ in numerical calculations. There are two 
primary motivations for characterizing this singularity. 
The first comes from the fact that construction of proper 
numerical methods in the presence of singularities may 
require the knowledge of the nature of these singularities. 
Even then, the numerical issues can be very delicate and 
may require very careful handling in the construction of 
numerical methods. The second comes from the fact that it 
has direct relevance to similar problems of pattern selec- 
tion in the presence of surface tension (see concluding re- 
marks). In the present context, these physical patterns are 
round bubbles. The determination of these round bubbles 
involves solving a nonlinear eigenvalue problem as in 
Vanden-Broeck’ with the angle at the apex of the bubble as 
one of the free parameters. One solves this eigenvalue prob- 
lem numerically to find the apex angle as a function of the 
speed of the bubbles for a fixed value of surface tension. 
The spectrum of round bubbles is found to be discrete and 
contained in a continuous family of bubbles. This contin- 
uous family of bubbles contains sets of a continuous family 
of pointed bubbles with the round bubbles separating these 
continuous families of pointed bubbles.’ 

The physical situation here consists of an infinitely 
long symmetric bubble rising at a constant velocity U in a 
two-dimensional channel of width h (see Fig. 1) .’ The 
interior angle at the tip of the bubble is denoted by 8,. The 
flow exterior to the bubble is considered inviscid and in- 
compressible. The flow is characterized by its Froude num- 
ber F and the Weber number W  

F=U/@, W-p U2h/T . (1) 

Here g is the gravitational acceleration, T is the surface 
tension, and p is the density of the fluid. The Froude num- 
ber F refers to the dimensionless speed of the bubble. The 
principal issue has been the speed of the bubble. This prob- 
lem is usually solved in a moving reference frame attached 
to the bubble. 

Theoretically this problem has been intractable due to 
severe nonlinearities in the interface condition. There are 
no existence or uniqueness theorems for this problem. 
Birkhoff and Carter3 were the first to formulate and solve 
this problem numerically with zero surface tension. They 
considered only the existence of a unique round bubble and 
numerically obtained an approximate solution with 

FzO.23. This is consistent with experimental results of 
Collins4 with small surface tension. Birkhoff and Carter 
encountered difficulties with their numerical method on 
this problem and their numerical results were not very 
consistent. They attributed these difficulties to the presence 
of singularities at the tails of the bubble. Garabedian’ sub- 
sequently applied asymptotic methods to this problem and 
provided analytical evidence that the solution is not 
unique. He suggested the existence of a continuous family 
of round bubbles for F <F, where F,zO.23. Subsequently 
Vanden-Broeck6 solved this problem using a numerical 
method similar to that of Birkhoff and Carter.3 He ob- 
tained the following results: smooth bubbles for F <F,, 
cusped for F > F,, and pointed with 13,= 120” for F=F,, 
where F,=O.357 75. His results contain the results of 
Garabedian.’ In obtaining these results, Vanden-Broeck 
put special effort in representing the solutions near the tip 
of the bubble where singularities may appear. For nonzero 
surface tension, this problem was also solved by 
Vanden-Broeck’ numerically. In fact, his computation 
shows that surface tension makes the problem more singu- 
lar. He finds that surface tension makes the round zero 
surface tension bubbles pointed except for a discrete set of 
velocities. Obviously, the source of these unphysical bub- 
bles in the presence of surface tension is either in the equa- 
tions or in their discrete analogs used for computations. 
The purpose here is to explain the origin of this nonphys- 
ical behavior from a theoretical standpoint. 

At this point it is worthwhile to classify these singu- 
larities at the tip. When the problem is formulated in the 
circle plane, 1 u I< 1, an apex angle of 6, corresponds to an 
analytic function g(a) having a singularity of order 
y= 0Jrr at a=i [see Eq. (4) below]. This analytic function 
f(a) then admits the following representation near this 
singularity: 

gb)=(l+ovxa). (2) 

The singularity is termed regular if f(a) is analytic there, 
otherwise the singularity is termed irregular. Identification 
of the nature of these singularities may be useful in devis- 
ing appropriate numerical methods which can handle such 
singularities effectively. 

In the case of zero surface tension, it can be shown that 
a corner with 120” interior angle is admissible and that 
such a comer is probably not a regular singular point. 
Support for the complicated nature of the singularity at 
such a corner is based on the analysis of Grant’ at the crest 
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FIG. 1. (a) The physical region: bubble is rising upward in the fluid with 
speed U. The diameter of the tube is A. (b) The complex u plane. 

of the Stokes wave. In the case of nonzero surface tension, 
there is no theoretical proof of the possibility and the nature 
of such a corner. In this article we prove that if such 
pointed bubbles do exist in the presence of surface tension, 
then the singularity at the corner must be an irregular 
singular point in the sense described above. Without any 
loss of generality, nature of the singularity is explored in an 
auxiliary circle 1 c I< 1, since asymptotic and numerical re- 
sults on this problem have been obtained in this plane. 

The plane potential flow past the symmetric bubble can 
be described in terms of a complex velocity c=u -iv. 
Henceforth we assume that all variables have been made 
dimensionless by use of (h/U) and h as normalizing con- 
stants for time and length dimensions, respectively. Since 
we have assumed the fluid to be inviscid and incompress- 

c ible, the complex velocity c is an analytic function of the 
complex potential w=$+i+ in the infinite strip O<t,& 1. 
This strip is the potential plane image of the flow conflg- 
uration in the tube. Here the slit $= l/2, a> 0, is the 
image of the interface+ and the lines $=O, $= 1 are the 
walls of the tube. Here 4 and 9 denote, respectively, the 
potential and streamfunctions. The conformal mapping 

(3) 

maps the bubble surface onto the upper semicircle o=eicr, 
a~[O,rr], the walls on the real axis, and the flow domain 
onto the interior of the upper semicircle [see Fig. l(b)]. 
The image of the tip of the bubble is a=i (i.e., a =?r/2 on 
I o] = 1) and that of the tail of the bubble is (T= F 1. At the 
tip of the bubble 

c~(l+d)r, as cr-bi, (4) 

where r=&$/r and O<y<l. Let p=a-?r/2 so that p=O 
refers to the tip singularity. From the nature of the singu- 
larity in Eq. (4)) it follows that 

q=O@“) and 8= - (rr/2) +0(P), P-*0. (5) 
The interface condition is given by the Bernoulli equation 

4”- (2/F2) x- [2K(x)/W] =const, (6) 
where K, the curvature, is considered positive when tra- 
versing the bubble surface leaves the bubble interior on the 
left side of the interface. After differentiation, the equation 
above reduces to 

1 uu,), 
WCjpa- w -=0, on o=eia, O<a<:, (7) 

where we have used K=&aS, with s parametrizing the 
surface of the bubble. It is easy to see that z4=z,=q-‘eie 
and from Eq. ( 3 ) , &= -cot a/?r on the unit circle. There- 
fore it follows that 

za=z&= -(cot a/z-q) eie, O<a<rr. (8) 

Using Eq. (8) and the variable j?=a-r/2 in EQ. (7), we 
have the following interface condition: 

gqB= --$ 
( 1 

tanPc0s8+~(~qe~c0tP)B, o<fl<;. 

(9) 

We will show by contradiction that the singularity at 
the tip of a pointed bubble (0 < y < 1) in the presence of 
surface tension is an irregular singular point. Suppose that 
the tip of the pointed bubble with 0 < y < 1 is a regular 
singular point. Then the following series expansions hold 
on I cl = 1 in the neighborhood of the tip (p=O) 

4=PY(al+a2B+a,P2+---), (10) 

e=-(Y~/2)+bla+b2B2+.... (11) 
Substituting Eqs. ( 10) and ( 11) in Eq. (9), one obtains 

.(p3~-1~~~+~~P+~~2+~~P3~l~ 

=[A [~s(~)d,8+dg’+00]] 

I 
P2Y + w ~e~P-2-tefi-1+e3+OW) 1 , I 

where co, ci ,..., dl, dz ,..., ei, e2 ,... are the coefficients. (More 
precise forms of this equation can be obtained using the 
complete series expression for the complex velocity ed7 in 
terms of a.) 

Some remarks are in order. The origin of the terms 
within the first curly bracket in Eq. (12) is kinetic energy. 
Similarly the terms within the second and third curly 
brackets correspond to potential energy and surface ten- 
sion, respectively. All of these forces are nonzero away 
from the stagnation points on the interface. Since the 
power series in 0 for the potential energy contains only 
integer powers of P and all three energy terms must be 
nonzero, similar terms with integer powers must also ap- 
pear in the power series originating from kinetic energy 
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and surface tension. This implies that y must be such that 
both 2y and 3y are either zero or positive integers. The 
allowable values for y are then 0 and 1 which correspond 
to a cusped and a round bubble, respectively. This contra- 
dicts our assumption that 0 < y < 1. Thus we have proven 
that the singularity at the tip of the pointed bubble must be 
an irregular singular point. 

It should be emphasized that our proof does nof imply 
that the tip of the round or cusped bubbles, if these bubbles 
exist, is a regular singular point. For the case of zero sur- 
face tension ( W= CO ), we obtain the familiar result: y= 1, 
2/3, and 0, even though this does not imply that the tip is 
a regular singular point for these values of y. Although the 
nature of the singularities for these cases is not known, it 
should be pointed out that by matching coefficients of like 
orders in fi in Eq. ( 12), infinitely many conditions relating 
local properties of the flow variables at these singularities 
can be generated, and these conditions should hold if these 
singularities were regular. They will serve at least as nec- 
essary conditions for the singularity to be regular and may 
provide useful if these singularities were irregular. How- 
ever, in practice, one truncates the system and thus has 
only a finite number of these conditions. Therefore, at best 
there can be strong computational evidence that a singular 
point is regular. 

At this point we may restate our main result by saying 
that a necessary condition for nonphysical (pointed) bubbles 
to be allowable solutions of the governing equations is that 
the tip must be an irregular singular point [Le.. the function 
f(a) in Eq. (2) is not analytic/. This condition, together with 
numerically generated pointed bubbles by 
Vanden-Broeck,’ provides strong evidence that the tip is an 
irregular singular point. In closing, we comment on the 
generality of our result and on how it sheds light on this 
problem. 

It is useful to note that the origin of the irregular na- 
ture of the singularity can be traced in the presence of two 
distinct types of terms in the nonlinear boundary condition 
(9) : one type containing terms with 8 only (no q) and the 
other type containing polynomials in q and/or 8, with the 
qualification that ln q and 6 are complex conjugate to each 
other. The assumption of regularity of the corner singular- 
ity in the sense of Eq. (2) then generates two different 
types of series from the above two terms: one containing 
integer powers and other containing noninteger powers in 
a suitable variable. Equating like power terms from these 
series then does not allow the corner singularity (i.e., non- 
integer values of y here), suggesting that the behavior of 
the comer singularity, if it exists, is not compatible with 
the form (2). 

It is worth mentioning the generality of our result by 
pointing out the similarity of this problem with the related 
Saffman-Taylor problem. Similar to the present problem, 
the pointed fingers have also been obtained in the presence 
of surface tension when the boundary condition about the 
included angle at the apex of the flnger is relaxed from the 
equations being so1ved.s (We do not discuss the Saffman- 
Taylor problem in detail here. Some specifics of this related 
problem which are relevant to the present issue can be 

found in McLean and Saffmang and also in 
Vanden-Broeck.‘) The nonlinearity in the boundary con- 
dition [see Eq. ( 19) in McLean and Saffman9 or Eq. (2) in 
Vanden-Broeck*] for the Saffman-Taylor problem is 
weaker than the same [Eq. (9)] for the bubble problem due 
to the simplicity of the pressure-velocity relation (equiva- 
lent to the Darcy’s Law in porous media) for the Saffman- 
Taylor problem. However, these boundary conditions are 
similar in the types of terms they contain: terms with 8 
only (no q) and the others containing q and/or 8. Since 
this pattern is the main source of our result discussed 
above, it follows that a similar formulation and analysis of 
the Saffman-Taylor problem would reveal that the comer 
singularity of the pointed fingers in the case of nonzero 
surface tension is also irregular. 

Finally, we should explain as to why our approach 
sheds some insight on this problem. To explain this, it is 
useful to restate precisely what the problem was. Essen- 
tially it was the numerical evidence of nonphysical 
(pointed) bubbles’ in the presence of surface tension which 
were, otherwise, absent in the case of zero surface tension 
( Vanden-Broeck6). This seemingly odd behavior may 
seem to suggest at first that the nonphysical bubbles are 
possibly spurious, i.e., not allowable solutions of the equa- 
tions. However, this would be the case if f(a) in Eq. (2) 
were analytic as suggested by the main result of our anal- 
ysis. Therefore the nonphysical behavior described above 
can be resolved by the nonanalyticity of f(o) in Eq. (2), 
i.e., by the irregular nature of the singularity at the pointed 
tip. Singularities of a similar nature have been obtained in 
the past at the crest of a finite amplitude Stokes wave 
(Grant7). In conclusion, we may mention that there are 
similar problems such as cavitating flows 
(Vanden-Broeck”) where singularities (infinite curva- 
ture) are known to appear in the presence of surface 
tension. 
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