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NOTE ON FINITE DIFFERENCE APPROXIMATIONS TO
BURGERS’ EQUATION*

H. AREFf AND P. K. DARIPA"

Abstract. Standard finite difference approximations to Burgers’ equation are considered from the point
of view of dynamical systems theory. Phase plane analyses for discretizations with a few grid points are
presented. These show the existence of initial conditions leading to spurious solutions with unlimited
amplitude growth due to nonconservation of kinetic energy by the nondissipative terms in the discretizations.
It is shown that such solutions may be found even for arbitrarily fine pointwise resolution, i.e., for arbitrarily
many grid points. On the other hand, an energy conserving discretization of the nondissipative terms removes
all spurious solutions of this kind. The results obtained seem to complement recent investigations of the
steady state problem.
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1. Introduction. We have been studying standard finite difference approximations
to Burgers’ equation [1] as part of an attempt to compare various numerical methods
for solving partial differential equations. Burgers’ equation is a valuable test case for
such studies since it is directly solvable by the Cole-Hopf [2], [3] transformation, and
numerically it is accessible by standard finite difference, finite element and spectral
methods. One may also formulate a "particle method" for Burgers’ equation by
appealing to the possibility of a pole decomposition [4] for this equation.

Our primary interest is in the dynamics of two-dimensional flow, particularly the
two-dimensional Euler equation and the representation of its solutions by an assembly
of point vortices [5]-[7]. The pole decomposition of Burgers’ equation can be seen as
an analogue of the vortex decomposition of two-dimensional incompressible hydrody-
namics formulated as a field theory for the stream function [7]. Hence, a comparison
of "standard" numerical techniques, such as finite differences, for Burgers’ equation
with the pole decomposition solutions suggests itself. As a preliminary to this a study
of the finite difference equations themselves was performed, and, since the ideas of
pole and vortex decomposition quickly lead to notions from dynamical systems theory,
the finite difference equations were considered from this point of view. There has
recently been much interest in using results from the theory of dynamical systems to
study in greater detail the nature of the instabilities to which numerical schemes are
susceptible [8], [9].

A standard finite difference approximation to Burgers’ equation consists of a set
of ordinary differential equations, one for the field value at each grid point, coupled
through quadratic interactions. As is well known, problems of precisely this format
may display chaotic solutions [10]. The Lorenz equations [11] are a case in point. If
such behavior occurs for a finite difference approximation to Burgers’ equation, it
must clearly come from the numerical scheme, since the continuum Burgers’ equation
is in some sense "integrable." (Burgers’ equation is dissipative, and so integrability is
not immediately defined. However, its pole decomposition equations can be imbedded
in an integrable Hamiltonian system, the Calogero-Moser system [4]. Taflin [12]
discusses the concept of integrability and Burgers’ equation.)

* Received by the editors August 5, 1982, and in revised form April 29, 1983. This research was
supported by the National Science Foundation under grant MEA 81-16910 to Brown University.

t Division of Engineering, Brown University, Providence, Rhode Island 02912.

856

D
ow

nl
oa

de
d 

05
/1

6/
14

 to
 1

65
.9

1.
11

3.
51

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FINITE DIFFERENCE APPROXIMATIONS TO BURGERS’ EQUATION 857

We must state right away that we did not find chaotic behavior for our standard
finite difference approximations to Burgers’ equation. However, the dynamical systems
point of view suggested that we look in detail at the "phase plane" for discretizations
with a small number of grid points. This was done for N 3, 4, 5 and 6, and we found
for N 4 that there exist initial states which grow in time beyond all bounds. Such
solutions are physically unacceptable. Moreover, we are able to show, by a rather
obvious argument, that for any N which is a multiple of 4 such initial states with
spurious long time behavior will exist. This result seems to complement recent work
on the steady Burgers’ equation [13], [14]. The result is unsettling because it shows
that even for arbitrarily fine pointwise spatial resolution the standard finite difference
approximation to Burgers’ equation can give physically unacceptable results for certain
initial conditions. A complete resolution of this "paradox" is not given. However, we
do show that if a slightly different finite difference approximation is employed, which
conserves the discretized kinetic energy, then no initial conditions can lead to the
above pathology of infinite amplitude growth.

We must emphasize that although our entire discussion centers on Burgers’
equation our objective is not to solve that equation numerically. Burgers’ equation is
trivial. However, as just mentioned, any finite difference approximation to the material
derivative of a field results in a system of ODEs with quadratic couplings. Thus, we
submit that the method of analysis exemplified here is of general applicability and
usefulness. (For a related discussion, involving the Fourier amplitude equations for
two-dimensional flow, see [15]).

2. Preliminaries. We are concerned with Burgers’ equation,

Ut 4- lglg Uxx,

for a real field, u u(x, t), and specifically consider the initial value problem:

u(x,O)=uo(X)

for periodic boundary conditions on an interval of length L:

u(x+L,t)=u(x,t).

To solve this problem numerically, we introduce the grid values u(t) u(kL/N, t)
for k 0,..., N-1, and discretize u and uu according to

Uxx (Uk+IWU-I--2U),

These expressions are accurate to O((x)), where x=L/N. Substituting into
Burgers’ equation we obtain a system of coupled ODEs of first order for the amplitudes
u. We may nondimensionalize these equations by setting

v(s u], =0,...,-.
The proposed discretization of Burgers’ equation then reads

(1)
ds v+ v_ + v+ + v_ 2v.
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858 H. AREF AND P. K. DARIPA

There is one ODE for each grid point amplitude Ok, k 0,. , N- 1, making a system
of N coupled equations in all. As noted previously, the couplings are quadratic. The
periodic boundary condition now means that Vk/zV Vk for all nondimensional times s.

The discretization (1) conserves momentum in the sense that

dtk
__o -s

Since the value of the momentum of the field may be altered at will by subjecting it
to a Galilean transformation, viz.

U(x, t)= u(x- ct, t)+ c,

we shall consistently assume that the total momentum vanishes. For the discrete system
we thus assume:

N--1

E v=0.
k=O

This restriction on the sum of the v will prove very convenient later.
Kinetic energy, on the other hand, is not conserved by the scheme (1), i.e.

dv

even if the dissipative (linear) terms are omitted. It may be shown that the kinetic
energy of the field u,

lloEi. dx,

satisfies the equation of motion

dt
-v dx

and thus decreases unless u is constant in x or 0. Hence solutions to the discretized
equations that make the energy increase indefinitely or solutions that are steady in
time but vary in x are not physically acceptable and must be classified as artifacts of
the numerical scheme. We shall meet with such solutions in the next section. In 4
we shall then trace the origin of these spurious solutions to the fact that scheme (1)
does not conserve kinetic energy in the nondissipative limit.

3. Case studies for small N. For N 2 we are led to consider the system

fo (Y-) Vl Vl) + Vl + Vl 2vo 2( Vl Vo),

t 2(Vo-/)1)

(where the dot signifies a derivative with respect to s) so that

t0- tl -4(v0- Vl).

Thus v0-vl decays exponentially and ince Vo and Vl sum to zero (total momentum
is assumed to vanish; see 2) we see that both v0 and Vl must decay to zero. This is
completely in accord with our expectations for the continuum equation.
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FINITE DIFFERENCE APPROXIMATIONS TO BURGERS’ EQUATION 859

For N 3 we get the more interesting system

It is not difficult to see that this system has the integral

I =-- VoVl v2 exp (9s)

(when Vo+ v + v2 =0). This integral immediately shows us that if the equations for
N 3 have a steady state solution, one of the amplitudes, say Vo, must vanish. But if
Vo 0, we have Vl =-v2-- v and the system reduces to

with steady states corresponding to v- 0 and v 6 and in general the solution

6v(O) exp (-3s)
v(s)

6- v(0)(1- exp (-3s))"

Figure 1 shows projections of several phase space trajectories, which reside in the
plane Vo + vl + v2 0, onto the (va, Vz)-plane. We see that for certain initial conditions

FIG. 1. Phase trajectories, projected onto the D1, v2)-plane for scheme (1) with N 3.
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860 H. AREF AND P. K. DARIPA

the trajectories depart to infinity due to the existence of saddle points at (0, 6,-6),
(-6, 0, 6) and (6,-6, 0).

For N 4 we must consider the system

We notice that

Hence

/)3/)1 -- /’)3/)1 (/)1 q- /)3) (/)2 "" /)0) 4 vl v3,

/)0/)2 + 30/)2 (/)0 -I-/)2)(/)1 +/)3)--4/)0/)2.

d
d-- vv2- vl v3) -4(VoV2- Vl v3)

and the system has the integral

J (VoV2- Vl v3) exp (4s).

We now observe that the full four-dimensional system has a discrete symmetry: The
constraint Vo =-v3 =- U, Vl =-v2 V will be preserved by the equations of motion.
The evolution of U, V is governed by

Let

x u+ Y=U-V.

Then the equations for U and V may be written as

with

oX’ oY

G(X, Y) -X2(1 +-14 Y)- 2 y2.

Several level curves of the potential G are shown in Fig. 2a and the (X, Y)-flow,
which arises as the family of trajectories orthogonal to the level curves, is shown in
Fig. 2b. Again we see spurious steady states and again they apparently give rise to
modes of evolution in which some discrete amplitudes grow indefinitely.
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FINITE DIFFERENCE APPROXIMATIONS TO BURGERS’ EQUATION 861

FIG. 2(a). The potential G(X, Y) pertaining to the analysis of scheme (1) with N =4. The separatrix
consists of the line Y =-4 and the parabola Y=-X + 4.

FIG. 2(b). The (X, Y)-flow pertaining to scheme (1) with N=4.

We conclude this section by observing that increasing N will not rule out the
existence of initial conditions leading to physically spurious solutions. This follows, for
example, if N 4n. The finite difference amplitude equations will then have a discrete
symmetry which consists in every fourth amplitude being the same, i.e., l.)k+ap "-Vk
where k =0, 1, 2, 3 and p =0, 1,..., n-1. Within the subspace singled out by this
symmetry, the system of ODEs reduces to n replicas of the N =4 system discussed
above. Now consider an initial condition with the repeated period-four symmetry in
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862 H. AREF AND P. K. DARIPA

the region that leads to indefinite growth. Such an initial condition can be found in
the form

(v0, , vv-1)=(a, b,-a,-b, a, b,-a,-b,..., a, b,-a,-b)

according to our analysis o the N-4 system above. Since the region in the
(v0, v,-v0,-Vl) subspace that leads to indefinite growth is obviously an open set (cf.
Fig. 2b), it must be possible to find initial conditions for the ull N 4n system of the
form

(Vo," V_l)=(a+el, b+e,-a+ea,-b+e4," .)

where e, e, e3, e4, etc. are different, i.e. initial conditions without the discrete, period
four symmetry, that still lead to indefinitely large amplitudes. We have tried several
such initial conditions and checked numerically that they indeed lead to unlimited
amplitude growth.

To see what this property of scheme (1) means in terms of the original variables
Uk we must refer to the definition of Vk in 2. Then we see that if Uk(O)--Fk,
k 0, 1, 2, 3, is a set of initial amplitudes that leads to indefinite growth for a discretiz-
ation with 4 grid points, Uk+4p(O nFk, k 0, 1, 2, 3, p 0, 1," , n- 1, will lead to
indefinite growth for a discretization with N- 4n grid points. We shall restate this
result in terms of the so-called cell Reynolds number in 5.

4. Remedy. Having described the pathologies of the scheme (1), we must now
prescribe a cure. We note that all the spurious solutions in 3 violate the requirement
that kinetic energy be dissipated. Indeed with diverging amplitudes the discretized
kinetic energy clearly tends to infinity. Hence, if a scheme that conserves energy (when
the dissipative terms are neglected) can be found, unbounded spurious solutions, such
as those found for scheme (1), should disappear. It is not difficult to find such a scheme"
We first recall that Burgers’ equation may be written in "conservation form"

u, + U )x

and this form can then be discretized. This leads to

(2) dye,= 1 v2_a) + + Vk- 2V,
ds -- v2+ Vk+

with the same rescalings as before. This scheme again conserves momentum but not
energy. Few-amplitude truncations of the system (2) can be shown to display spurious
solutions as in 3.

However, we now have two schemes and new schemes can be constructed by
forming convex combinations of them. In particular, we can ask whether some such
combination will conserve energy. Thus we add (1) and (2) with "weights" w and
1-w respectively and impose the condition that the combination conserve energy
(when the linear, dissipative terms are neglected). This turns out to determine w
uniquely (w =-) and the resulting scheme is [16]

dlk 1
(3)

ds 6
(/-)k+l /’)k-l) Ok+l -[’-/-)k-1 -"/)k) ""/)k+l "-/)k-1 2Ok.

Since it arose by linear (convex) combination of (1) and (2), scheme (3) clearly still
conserves momentum. Using the Cauchy-Schwarz inequality it is also easy to show
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FINITE DIFFERENCE APPROXIMATIONS TO BURGERS’ EQUATION 863

from (3) that

N-1 dvk< o
k=O

where the equal sign only holds if all Vk are identical (and hence zero).
We remark that it may sometimes be undesirable to have an energy-conserving

discretization (in the limit of zero viscosity) for physical reasons. For example, if the
objective is to track shock formation in an initial value calculation, energy conservation
may actually be an unwanted constraint [17, p. 252].

5. Concluding remarks. It is useful to state precisely what the remedy of 4 was.
Essentially it consisted in discretizing the factor u of UUx by (Vk/l + Vk-1 + Vk)/3 instead
of just by Vk (compare (3) to (1)). This kind of differencing to produce the value of
the field itself at a point, as opposed to the values of derivatives, arises frequently and
naturally in the finite element method. In fact, the discretization of the convective
derivative in (3) can be obtained using the finite element method with a basis of
piecewise linear functions.

It is worth reiterating that we have not found evidence of chaotic behavior. This
seems to be due to the absence of any free parameters in our discretized equations.
With the relative magnitude of linear and nonlinear terms that is forced upon us here,
the phase space flows seem to be dominated by sinks and saddles. We have not
attempted to insert a variable parameter into these equations in order to seek out
regimes of chaotic solutions since the physical significance of such an exercise seemed
unclear.

We may restate our results by saying that close to the origin even the "naive"
schemes (1) and (2) give qualitatively acceptable results. In fact, we can identify a
certain region, <-/)max(N) for k 0, 1,. , N-1, within which the discretization
behaves in a qualitatively correct way compared to the continuum equation. In terms
of the field amplitudes Uk and the spatial resolution Ax ( 2) this criterion takes the
form i.e. the cell Reynolds number, Re= (maxk]Uk[)Ax/V, must
be chosen less than some N-dependent upper bound. Clearly if /)max(N) tends to
infinity with increasing N, spurious solutions become less troublesome with increasing
resolution. However, we have just seen that for scheme (1), Vmax(4n) -< Vmax(4) (see
the argument given at the end of 3) and thus that /)max(N) does not increase
systematically in this case. In terms of the original variables Uk we must go to ever
larger amplitudes as N increases to encounter the spurious behavior. But for scheme
(1) spurious solutions can be found; for scheme (3), they cannot. We may mention in
conclusion that for cell Reynolds number less than 2 scheme (1) is usually found to
be adequate [13], [14].
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