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Abstract Hydrodynamic instability in immiscible porous media flows in the presence
of capillarity is investigated here. The analysis and arguments presented here show that
the slowdown of instabilities due to capillarity is usually very rapid which makes the flow
almost, but not entirely, stable. The profiles of the stable and unstable waves in the far-field
are characterized using a novel but very simple approach.
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1 Introduction

The dynamics and stability of immiscible fluid–fluid displacements in porous media is a
subject of considerable interest, both from a fundamental point of view as a dynamical non-
equilibrium process and from a technological point of view in industrial and environmental
problems, such as oil recovery, irrigation, and filtration. This is particularly true in the context
of enhancement of oil recovery from underground reservoirs. Such an enhanced oil recovery
typically involves displacement of in-situ oleic phase by continuous injection of another
fluid phase which may be immiscible (like water injection) or miscible (like CO2 or solvent
injection) to the former. Stability considerations partly affect the degree of effectiveness of
these methods (see Craig 1971; Daripa et al. 1988; Stalkup 1989). There are aspects related to
the properties of porous medium matrix (as opposed to physical phenomena such as viscous
fingering) which can be controlled to enhance oil recovery in some types of reservoirs. For
example, in Al-Hadhrami and Blunt (2001) wettability of the matrix is controlled thermally
to improve oil recovery in fractured reservoirs. To this end, it is worth citing the book of
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Lake (1989) in which role of viscous instabilities on enhanced oil recovery is discussed in a
practical way.

Such porous media flows enjoy some similarities with flows in a Hele-Shaw cell: in
particular, one of the governing equations in both flows is Darcy’s law according to which
the average fluid velocity is proportional to the pressure gradient. In Hele-Shaw flows, the
proportionality constant depends on the square of the thickness of the cell whereas in porous
media flows, this constant is characterized by a global index, K , known as the permeability
of the medium.

The planar material interface between two immiscible viscous fluids in a Hele-Shaw cell
is well known to be unstable when a less viscous fluid pushes a more viscous fluid (Saffman
and Taylor 1958) at a constant speed. The linear stability analysis shows that all modes are
unstable in the absence of surface tension. Interfacial surface tension stabilizes the short waves
without smearing the interface but the interface essentially remains unstable due to unstable
long waves. This viscosity-driven instability is known as the Saffman–Taylor instability.
Since early nineteen fifties (Chouke et al. 1959; Saffman and Taylor 1958), there has been
a considerable study on this instability with and without surface tension effect on the planar
interface. The review article of Saffman (1986) is worth mentioning in this connection.

An analogous problem arises in porous media flows of two immiscible fluids. In a porous
medium, there is a complex network of tiny pores embedded in a solid matrix, i.e., the
reservoir rock. The distribution of various fluids in the reservoir rock is greatly influenced
by capillary forces during all recovery phases. On a microscopic scale, capillary forces are
important in determining the amount of trapped or residual oil during displacement process.
This makes capillary pressure one of the most basic rock–fluid characteristics in multi-phase
flow, just as porosity and permeability are the most basic properties in single-phase flow.
Although the capillary pressure in most hydrocarbon rocks may not be large, knowledge of
the effects of capillary forces is extremely important for understanding fluid displacement in
these rocks (Longeron et al. 1989). During displacement process of these fluids through these
pores in reservoir rocks, many of these pores, if not all, contain both the immiscible phases
with infinitesimal size interfaces between these fluids. Thus, there are usually many interfaces
which are disjoint and disordered at microscopic level. At a macroscopic continuum level,
this flow can be modeled by allowing the possibility of both the phases to co-exist at every
pore. This model is truly a two-phase model, known as the saturation model which clearly
differs from the Hele-Shaw model, which is essentially a one-phase model since fluids do not
mix either at microscopic or macroscopic description. The saturation model, as opposed to
Hele-Shaw model, includes one more equation called Buckley-Leverett equation and is
widely used in modeling of immiscible flows in porous medium. Extensive literature is avail-
able on Hele-Shaw and saturation models (see (Daripa et al. 1988; Pearson 1977; Yortsos
and Hickernell 1989)).

For simplicity, consider that the porous medium is initially saturated with one viscous fluid
(e.g. oil). When another less viscous fluid (e.g. water) is injected in the medium, a saturation
front develops across which there is a finite jump in saturation (saturation is a macroscopic
concept defined as the fraction of water in water–oil mixture in the porous matrix) in the
absence of capillary pressure. Unlike the material interface in Hele-Shaw flows, this saturation
front is a shock wave and moves through the fluid ahead with rarefaction waves behind the
shock front for a non-convex flux function. It is well known that this saturation front is also
linearly unstable to all modes of perturbation. In the presence of capillary pressure which
relates the pressures in two fluid phases (Dullien 1992) and is a decreasing function of the
wetting phase (water here) saturation, the structure of the saturation equation changes from
hyperbolic to parabolic. Physically, what this means is that capillary pressure smears out
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Stability in Porous Media 3

the sharp saturation front and thus a uniformly moving sharp saturation front is no more a
possible steady state solution of the underlying equations. Instead, governing equations admit
a uniformly moving smooth traveling wave as a solution whose structure depends crucially
on the relation between capillary pressure and saturation. Capillary pressure is a non-linear
function of saturation (see Lord et al. 1997) which makes the governing parabolic equations
highly non-linear. This complicates even the linear stability analysis of such simple basic
solutions. This article is about several issues related to the problem of linear stability of such
traveling wave solutions arising in porous media due to capillary pressure.

On physical ground, it is easy to see that the capillary pressure has a stabilizing influence
on an otherwise unstable flow in at least two different ways: (i) effect of capillary pressure
in immiscible porous media flows is similar to the effect of surface tension in Hele-Shaw
flows of two immiscible fluids in stabilizing the short waves; (ii) due to smooth saturation
profile of the basic solution, mobility changes gradually (in space) from that of oil to that of
water which has a drastic stabilizing influence on otherwise unstable waves as is well known
in the context of single layer Hele-Shaw flows with smoothly varying viscosity profile (see
Daripa and Hwang Submitted). The stabilizing effect of variable viscosity (mobility) has
been addressed in the literature (e.g., see Pearson 1977; Jerauld et al. 1984; Huang et al.
1984). Such two-prong stabilizing influence of capillary pressure is desirable, specially in the
context of enhancing oil recovery (see Daripa et al. 1988). However, conditions under which
such capillary slowdown of instability can be enhanced are desirable in many applications.
Such conditions, if they exist, may not be easy to find. One of the goals in this article is
to find such conditions, if any and in the process investigate the control of instabilities by
capillarity. In order to do so, we revisit the problem of capillary slowdown of instabilities in
immiscible porous media flows. It should be mentioned here that slowing down instabilities
implies that it slows down the development of fingers that result at late times. It is in this
sense, the “slowdown of the viscous fingering” is synonymous with the “slowdown of growth
of instabilities” for the purpose of this article.

In this article, we consider the saturation model in the presence of capillary pressure and
study linear stability of traveling wave solutions. This problem has been studied by Yortsos
and Hickernell (1989). Our approach here extends and simplify the analysis given there.
Additionally, here we provide characterization of the almost stable modes. The results and
approach here complement that of Yortsos and Hickernell (1989) in several respects which
are as follows.

• First of all, we should stress the simplicity of the approach presented here which allows
some characterization of profiles of stable and unstable modes.

• In Yortsos and Hickernell (1989), the stability analysis freezes the saturation-dependent
coefficients in the stability equations at the values for the basic solution. In our study here,
we do not freeze the coefficients. We have two new terms in the general stability system
(37)–(38). The terms that contain the derivatives with respect to S of the coefficients
a, b, c, and the derivatives with respect to x of the basic solution were not considered by
Yortsos and Hickernell (1989) in their analysis.

• In Yortsos and Hickernell (1989), the linear stability analysis involves derivation of a
differential relation between s and p (the amplitudes of the perturbations of water
saturation and oil pressure), and a subsequent estimate of the Green’s function of this
differential “operator.” Our approach here does not require such a differential relation
between s and p. In our approach, the system of equations for s and p appears as
only one equation containing s due to some manipulation which simplifies the stabil-
ity analysis.
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• In Yortsos and Hickernell (1989), dispersion relation predicts the possibility of a most
dangerous wave number for which the wave could be unstable provided initial amplitude
of the wave disturbance has a local maximum far upstream in the frame moving with the
traveling wave. Our result predicts that the traveling wave solution is always stable to
not only short waves but also to a large class of modal perturbations having same local
property as above but far downstream.

The layout of the article is as follows. In Sect. 2, we describe the saturation model and its
traveling wave solutions. In Sect. 3, capillary slowdown of instabilities is shown using linear
stability analysis and arguments leading to profile characterization of stable and unstable
modes. Finally, we conclude in Sect. 4.

2 Preliminaries

2.1 The Saturation Model

An infinite homogeneous porous medium is considered in the plane. The medium is saturated
with two immiscible phases: water and oil. The pertinent equations for this porous media
flow, called saturation model here as opposed to the Hele-Shaw model, are Buckley-Leverett
equation, Darcy’s law, and incompressibility condition. These are given by

φ ∂Si/∂τ + ∇·vi = 0, (1)

vi = −K λi ∇ Pi , (2)

Po − Pw = Pc, So + Sw = 1. (3)

We consider that phase densities and porosity are constant. Then following “incompress-
ibility condition” results from (1) to (3)2.

∇·vT = 0. (4)

In Eqs. 1–4, τ refers to time, the subscriptsw and o denote displacing (water) and displaced
(oil) phases, respectively, and φ denotes the porosity of the porous medium which will be
taken to be a constant. Time is denoted by τ and ∇ is the gradient operator. The function λi ,
known as the mobility of phase i , is defined asλi = ki/µi , and the total velocity vT = vo+vw.
The variables Si , vi , ki , µi are, respectively, saturation (volume fraction of the pore space
occupied by phase i), fluid velocity, relative permeability, and viscosity of the phase i . The
pressure in the phase i is Pi , and ‘K ’ in (2) stands for the porous medium permeability (also
known as the rock permeability).

The capillary pressure Pc in (3) is a basic parameter in the study of porous media flows
containing two or more immiscible fluid phases. It relates the pressures in two fluid phases
(Dullien 1992).

It is an increasing function of the non-wetting phase saturation or, alternately, a decreasing
function of the wetting phase (water here) saturation. Two-phase flow models of subsurface
transport often require constitutive relationship of capillary pressure as a function of saturation
(Lord et al. 1997). Leverett defined a reduced capillary function containing parameters such
as permeability, porosity, contact angle, surface tension, and used for correlating capillary
pressure data (Dullien 1992). For modeling and correlation purposes the capillary pressure
is usually described by a dimensionless so called Leverett-J function:
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J (Sw) = Pc(Sw)

γow

√
K

φ
, (5)

where γow is the interfacial tension between the two phases. The relation (5) can be arrived
at through dimensional consideration (see Stegemeier 1977). More elaborate descriptions on
the capillary pressure and various constitutive relations of capillary pressure can be found
elsewhere (Collins 1959; Dias and Payatakes 1986a,b; Heiba et al. 1982, 1983; Payatakes
1982).

Below, we use notations S = Sw, P = Po (pressure in the displaced phase (oil)) and the
following coefficients:

a(S) = K λT (S) > 0, c(S) = Kλ0(S) > 0, b(S) = Kλw(S)
dPc(S)

dS
< 0, (6)

where λT (S) = λo(S) + λw(S) is the total mobility function of saturation S. The Eqs. 1–4
yield the following system.

φ
∂S

∂τ
+ ∇· (c(S)∇ P) = 0, (7)

∇· (a(S)∇ P − b(S)∇S) = 0. (8)

Summing Darcy’s law (2) for each phase and using the definition (3)1 for capillary pressure
and that of total velocity (vT = vo + vw) gives

vw = vT fw + c(S) fw(S)P
′
c(S)∇S, (9)

where P ′
c(S) refers to the derivative of Pc(S) with respect to S, and the function fw(S) is

defined as

fw(S) = λw(S)

λT (S)
. (10)

Note that this function is equal to the ratio vw/vT in the absence of capillary pressure. Since
this ratio of velocity is usually called fractional flow function (also flux function), below we
use this same name for the above function fw(S). Now, it follows from (1) and (9) that

φ
∂S

∂τ
+ ∇· (vT fw + c(S) fw(S)P

′
c(S)∇S

) = 0. (11)

Above Eq. 11 is equivalent to the system (7)–(8), but does not involve pressure P .
Next, we discuss basic solutions (traveling waves) of the above equation whose stability

to arbitrary two-dimensional perturbations is studied using (7)–(8) in Sect. 3.

2.2 Traveling Waves

We are interested in smooth traveling wave solutions of (11) having profile (Fig. 2)

S(x, y, τ ) =
{

Sr , x → ∞
Sl , x → −∞ (12)

where Sl > Sr and all derivatives of S go to zero as x → ±∞ for all τ ≥ 0. We see in (12)
that this two dimensional basic solution of (11) does not depend on coordinate y. Since, the
profile (12) (see also Fig. 2) is independent of y (meaning it is same at every y) and hence
depends only on one independent variable such as x here, it is customary in the literature
to refer to the basic solution (12) as one-dimensional traveling wave solution without any
ambiguity.
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Before characterizing the profile of the wave, we mention for clarity that growth of
instabilities at the front (i.e., the region of fast transition from left state to right state, see
Fig. 2) of the traveling wave eventually gives rise to diffusive fingers, i.e., two-dimensional
thin regions bounded by curves having approximate shape of “fingers.” In the absence of
capillary effect, these fingers have zero width in the direction of flow with effective dimen-
sion one and discontinuity in saturation across these fingers. Capillary pressure not only adds
another dimension (width) to the front by smoothing the discontinuity in saturation across
it, but also reduces the growth rate of instabilities at the front. This implies slowdown in the
development of viscous fingers that eventually ensue from the growth of these disturbances.
Next we characterize the profile of the wave connecting left state Sl and right state Sr .

In order to implicitly construct the profile of this one-dimensional traveling wave which
is useful for later purposes, we write Eq. 11 for one-dimensional flow (in the direction x) as
the following evolution equation for saturation S.

φ
∂S

∂τ
+ ∂

∂x
(vT fw) = ∂

∂x

(
−c(S) fw(S)

dPc

dS

∂S

∂x

)
. (13)

Here, we have used vT for vT since velocity is a scalar field now which takes a constant
value for all values of x (see Eq. 4). Note that since c(S), fw(S) are positive and dPc/dS is
negative for all values of S, the term (−c(S) fw(S) dPc/dS) in (13) is always positive.

In a moving frame χ = (x −Uτ)& t = τ then, the sought after traveling wave is a steady
profile S(χ) such that

S(χ)→ Sr as χ→∞, S(χ)→ Sl > Sr as χ→−∞,
dS

dχ
→0 as χ→∓∞. (14)

The speed U of the traveling wave (and also the moving frame) is a constant still to be
determined, and left and right states Sl and Sr are both constants. If Sr is the residual value
of the water saturation

dkw
dS

(Sr ) = 0, kw(Sr ) = 0. (15)

Since

∂

∂τ
= ∂

∂t
− U

d

dχ
,
∂

∂x
= d

dχ
, (16)

we have from (13) and (16),

− d(U φ S)

dχ
+ d

dχ
(vT fw) = − d

dχ

(
c(S) fw(S)

dPc

dS

dS

dχ

)
. (17)

Integrating once, we obtain

vT fw − U φ S + c(S) fw(S)
dPc

dS

dS

dχ
= A, (18)

where A is a constant of integration. The relation (9) for the water phase in one-dimensional
flow and the relation (18) give

A = vw − UφS, (19)

where vw is the speed of the water phase. Relation (18) suggests that if a steady profile S(χ)
satisfying (14) exists, then the free parameters U and A must satisfy

− Uφ Sl + vT fw(Sl) = −Uφ Sr + vT fw(Sr ) = A, (20)
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Fig. 1 A typical flux function
fw(s) given by (10) and the line
(D) given by (23) are shown

1

1Sr

fw

(D)

S

from which we obtain

U = vT

φ

(
fw(Sl)− fw(Sr )

Sl − Sr

)
. (21)

This relation between the speed of the traveling wave and the two states at infinity is expected
from well established theory on nonlinear waves.

An implicit relation for the basic solution S(χ) is obtained from (18) in the form

χ − χo =
∫ S

S(0)

ψ(S) dS

(A + UφS)− vT fw
, ψ(S) = c(S) fw(S)

dPc

dS
< 0, (22)

where S(0) = S(χ0). Clearly, behavior of the integral (22) is given by the set of intersection
points of the line (D) (see Fig. 1) given by

l(S) = (A + UφS)/vT , (23)

with the fractional flow curve fw(S) defined by (10). Note that the slope of the line l(S)
defined by Eq. 23 is Uφ/vT which, according to Eq. 21, is the slope of the chord connecting
the points fw(Sr ) and fw(Sl) on the graph of the flux function fw(S). This is illustrated in
Fig. 1. Therefore, the denominator of the kernel in the integral is positive for all values of
S in the interval (Sr , Sl) (Recall from (14) that Sl > Sr ) so long as these states Sl and Sr

are on the convex part of the flux function as shown in the figure. Therefore, the sign of the
kernel in the integral is negative (since �(S) < 0) for all values of S in the interval (Sr , Sl).
Hence, χ is a monotonically decreasing function of S for any S ∈ [Sr , Sl ], Upon inversion,
we see that traveling wave saturation profile S(χ) is a monotonically decreasing function of
χ for Sl > Sr as shown in Fig. 2.

We denote by P the basic state of oil pressure, corresponding to S given implicitly
by (22). We also look for a steady profile P in the moving coordinate χ . Then Eq. 7 for
one-dimensional flow in the moving coordinate χ becomes
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Sl

Sr

Fig. 2 A typical traveling wave saturation profile in the moving frame is shown

− U φ
dS

dχ
+ d

dχ

(
c(S)

dP

dχ

)
= 0. (24)

Therefore the basic solution profiles (S, P) as traveling waves are solutions of the system

c(S) fw(S)
dPc

dS

dS

dχ
= U φS − vT fw(S)+ A, (25)

c(S)
dP

dχ
= U φS + C, (26)

where C is a constant. The second of these equations, namely (26), is obtained from integrating

(24). Using (19) and (25) we see that dS
dχ → 0 when S → Sr .

For the purpose of our analysis in sections below, we do not need to know the pressure and
saturation solutions of the above equations. Actually, we have already discussed qualitative
behavior of the saturation solution in the paragraph immediately following Eq. 23. Solving
for the pressure solution of the above equations is no less difficult than similar problem that
arises in the context of Navier–Stokes (NS) equations. In our case here, the problem for the
saturation is a Cauchy problem (see Eq. 7) whereas the problem for the pressure is governed
by a Poisson-type equation (see Eq. 8) for which the boundary data (far-field) data is usually
not provided and need to be estimated from the Cauchy-problem for saturation, analogous to
the case for Navier–Stokes’ equation. Nonetheless, for the sake of completeness, we outline
a procedure to obtain this pressure solution in terms of two constants. These two constants,
of course, can be found if boundary conditions for the pressure can be estimated.

Note that Eq. 26 can be rewritten as

c(S)
dS

dχ

d P

d S
= U φS + C. (27)

Equations 18 and 20 can be used to obtain, after some simplification, the following equation.

c(S)
dS

dχ
fw(S)

dPc

dS
= vT (Sr − S)

(
fw(Sr )− fw(S)

Sr − S
− [ f ]

[S]

)
≡ g(S) > 0, (28)
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Stability in Porous Media 9

where [ f ] = ( fw(Sr )− fw(Sl)) and [S] = (Sr − Sl). Note that (28) also defines the function
g(S) which is greater than zero for Sr < S < Sl . Then from Eqs. 27 and 28, we can write

dP

dS
= fw(S)

dPc

dS
(U φS + C)/g(S), Sr ≤ S ≤ Sl . (29)

Note that there is already an unknown constant C in this equation and right hand side is

only a function of S keeping in mind that dPc
dS

(which is a function of S) is a negative
quantity usually for a wetting phase such as water in our case. Integrating this Eq. 29,
we can find P(S) in terms of two constants to be determined by two boundary conditions
on P . However, we do not see any need to further continue with this profile of P(S)
since this falls outside the scope of this article and in any case, is not needed below in
our analysis.

3 Capillary Slowdown via Linear Stability Analysis

Consider perturbations of traveling wave solutions, (S, P), of the system (25)–(26):

S(x, y, t) = S(χ)+ εs1, P(x, y, t) = P(χ)+ εp1. (30)

where ε is a small parameter and

s1, p1 → 0, as x → ∓∞, (31)

and also all its derivatives go to zero as x → ∓∞ for each y and t ≥ 0. We expand
the functions a, b, c defined in (6) in Taylor series about S to obtain expressions of the
form

a(S + εs1) = a(S)+ as(S)εs1 + O(ε2), (32)

for a, b, c. Here the subscript s denotes derivative with respect to S.
We transform (7) and (8) in a moving frame χ = x −Ut , in which we first substitute (30)

and (32) and then equate to zero the coefficients of like powers in the small parameter ε. At
order O(ε), we obtain the following linearized equations for s1 and p1.

φ
∂s1

∂t
− φU

∂s1

∂χ
+ ∇· (c(S)∇ p1 + css1∇ P

) = 0, (33)

∇· (a(S)∇ p1 + ass1∇ P − b(S)∇s1 − bss1∇S
) = 0. (34)

We study the temporal evolution of arbitrary perturbations by the method of normal modes.
Hence, we consider a typical wave component of the form

(s1, p1) = (s(χ), p(χ)) e(iky+σ t), (35)

where k is a real axial wavenumber and σ is the growth rate. From (30) and (35), we
obtain

s(χ) → 0 as χ → ∓∞,
ds

dχ
→ 0 as χ → ∓∞. (36)
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We substitute (35) into (33) and (34), and obtain

p′′ c + p′ c′(S)− c k2 p + σ φ s − φU s′ + d

dχ

(
cs(S) s

dP

dχ

)
= 0, (37)

p′′ a + p′a′(S)− a k2 p − s′′ b − b′(S) s′ + b k2 s

+ d

dχ

(
as(S)

dP

dχ
s − bs(S)

dS

dχ
s

)
= 0, (38)

where ′ = d/dχ and a, b, c are the values of a, b, c for the traveling wave S. The system
(37)–(38) holds in the domain χ ∈ (−∞,∞) of the porous medium. Terms in the above
system containing as(S), bs(S), cs(S) and the partial derivatives of S and P do not appear
in the corresponding system studied in Yortsos and Hickernell (1989).

Below, we give an analysis of the normal modes in the far-field for the system of Eqs. 37
and 38. As we will see, this leads to a system of equations (see (41) and (42) below) which
still depend on the basic traveling wave profile but an estimate of the growth rate based on
these equations do not. Therefore, we believe that conclusions about the growth rates based
on far-field analysis are likely to hold also at the front, although further research is required
to strengthen the validity of this statement.

Equations 37 and 38 simplify in the far field which are easier to analyze. In order to
see the simplification, first note from Eq. 26 that P ′ approaches a constant value, say
P ′∞, far downstream and we know that S(χ) → Sr as χ → ∞. Then for a given ε > 0
however small, there exists a point R (large enough) such that |S(χ)−Sr |, |P ′(χ)−P ′∞| < ε

for χ > R. These differences are decreasing functions of the distance of the point R.
We choose a value R so far downstream that these differences are small enough to have
any effect in our leading order Eqs. 37 and 38 in the far field χ > R. Therefore, we can
set S(χ) = Sr , and P ′(χ) = constant for χ > R in (37) and (38). Note that this is
also consistent physically in an infinite porous media with Sr as the residual saturation,
because wave can travel only so far to have no effect beyond the distance it has traveled.
We analyze now the terms of (37)–(38) in the far field. We can write the last term of
Eq. 37 as

d

dχ

(
cs(S)s

dP

dχ

)
= d 2c(S)

dS 2

dS

dχ

dP

dχ
s + cs(S)

d2 P

dχ2 s + s′cs(S)
dP

dχ
≈ s′cs(S)

dP

dχ
, χ ≥ R,

(39)

A similar expression holds for the term containing the coefficient as in (38). It is worth noting
from (9) that in the far-field, where ∇S = 0, we have vw = vT fw and from (19) that the
right hand side of (25) is zero in the far-field.

We consider next the system (37), (38) & (39) in the domain χ ≥ R. Therefore the
terms containing the derivatives of S and P ′ with respect to χ are equal to zero. Moreover,
we have

a ′(χ) = a ′(S(χ)) = da

dχ
(S) = da

dS
(S)

dS

dχ
= 0, ∀ χ ≥ R, (40)
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and analogous formulae for b
′

and c′. Then in the region χ ≥ R, a′ = b
′ = c′ = 0. and the

system (37)–(38) reduces to

p′′c(Sr )− k2 p c(Sr )+ φ σ s − φUs′ + s′cs(Sr )
dP

dχ
= 0, ∀ χ ≥ R, (41)

p′′a(Sr )− k2 p a(Sr )− s′′b(Sr )+ k2 s b(Sr )+ s′as(Sr )
dP

dχ
= 0, ∀ χ ≥ R. (42)

We multiply the first equation by a(Sr ) and the second equation by c(Sr ). We subtract and
obtain only one relation for the unknown eigenfunction s(χ).

b(Sr ) c(Sr ) (s
′′ − k2 s)+ σ φ a(Sr ) s − U φ a(Sr ) s′

+ s′ dP

dχ
(a(Sr ) cs(Sr )− c(Sr ) as(Sr )) = 0, ∀ χ ≥ R. (43)

We use the relations (6) and (15) and obtain:

a(Sr ) cs(Sr ))− c(Sr ) as(Sr ) = K 2

µwµo

(
kw(Sr )

dko

dS
(Sr )− ko(Sr )

dkw
dS

(Sr )

)
= 0, ∀ χ ≥ R. (44)

From (43) and (44), we have

b(Sr ) c(Sr ) (s
′′ − k2s)− a(Sr )φUs′ + σ φ a(Sr ) s = 0. (45)

The general solution S of (7)–(8) and the basic solution S of (25) satisfy the same boundary
condition at x = ∞. Hence we have s(∞) = 0 which together with Eq. (45) constitute the
following eigenvalue problem:

− α s′′ + φUs′ + αk2s = ω s, χ > R, (46)

s(∞) = 0, (47)

where

α = b(Sr ) c(Sr )/a(Sr ) < 0, ω = σ φ, φ > 0. (48)

Theorem 1 The growth rate σ is real. Therefore, no modes get convected and stability (or
instability) is purely absolute in nature.

Proof Since s1 (see (30)) is real, the ansatz (35) implies that

s(χ; k) = s∗(χ;−k) (49)

where a “∗” stands for complex conjugate. Note from (46) that s also depends on the
wavenumber k. In the ansatz (35), the dependence of s on wavenumber k is not explicitly
expressed, though implied. Using the above relation in the equation resulting from taking the
complex conjugate of the Eq. 46, we obtain

− α s′′ + φUs′ + αk2s = ω∗ s, χ > R. (50)

So, it follows from (46) and (50) that ω = ω∗ meaning the growth rate is real. 
�
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12 P. Daripa, G. Paşa

Theorem 2 The eigenfunction “s” of Eq. (46) is real

Proof Since perturbations are real, Fourier series expansion
∑∞

k=−∞ s(χ; k)ei k y of the
initial perturbation implies that s(χ; k) satisfies (49). Since k in Eq. 46 appears as k2 only,
then solution of this equation must satisfy

s(χ; k) = s(χ;−k). (51)

These two relations (49) and (51) show that eigenfunction s(χ; k) is real. 
�

Consider a point M > R at a finite distance far downstream. We multiply the relation (46)
by s, and integrate over the interval [M,∞). Then we obtain

α

{∫ ∞

M
(s′2 + k2 s2) dχ − s′(∞)s(∞)+ s′(M)s(M)

}
+ φU {s2(∞)− s2(M)}/2

= ω

∫ ∞

M
s2 dχ.

(52)

Using (47) we get

α

{∫ ∞

M
(s′2 + k2 s2) dχ + s′(M)s(M)

}
− φ

2
U s2(M) = ω

∫ ∞

M
s2 dχ, (53)

and therefore the growth rate σ is given by

σ = α

{∫ ∞
M (s′2 + k2 s2) dχ + 0.5(s2)′(M)

}
φ

∫ ∞
M s2 dχ

− U s2(M)

2
∫ ∞

M s2 dχ

< α

{∫ ∞
M (s′2 + k2 s2) dχ + 0.5(s2)′(M)

}
φ

∫ ∞
M s2 dχ

. (54)

Recall from (48) that α < 0 in the above formula. Now, we draw the following inferences
from the above formula.

Note that the integrals in (54) are positive. This can not be said of the only other term
(s2)′(M) in general for any disturbance. If this were the case, then this would imply stability
in general. Even though this is not the case, the situation is very close to it in the following
sense which makes the capillary slowdown very dramatic. Short waves are certainly stable
because the integral in the numerator is always going to be larger than |(s2)′(M)| for k beyond
some threshold. Moreover, this threshold value need not be very large considering the fact
that the point M > R in the far field can be taken to be the point where |(s2)′(M)| assumes
the least value. In this sense, only very long waves are possibly unstable, rest being stable
and it is in this sense that the stabilizing effect of capillarity is termed as dramatic. Moreover,
the class of modal perturbations for which |(s2)′| = 0 at a point M > R in the far-field are
always stable. Such a stable modal perturbation only needs to have either its amplitude zero
or its amplitude’s local extremum at a point M > R.

Remark 1 At this point, it is worth mentioning some details of stability analysis given in
Yortsos and Hickernell (1989). Thus, below all notations and equations refer to Yortsos and
Hickernell (1989). There, amplitude of perturbation is normalized using the derivative of
basic saturation at a finite point in the mobile system ξ . The normalized amplitude� is given
in the definition (3.3) there as � = s/(d S/dξ). After some calculation, following stability
equation (4.3) in Yortsos and Hickernell (1989) is obtained.
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ω

v
=

{
− µ

λT
� ′′ −

(
µ

λT

)′
�′ + α2 µ

λT
�+ α2

[
ζ ′ −

(
µ

λT

)′ ]
W

}
/ζ ′�,

where λT is the normalized mobility, W is a function of water saturation and oil pressure,
µ = ζλT +λ0, ζ = vS + f ∞

w −1, v is traveling velocity—see notations (3.4b)–(3.8). Hereω
is the growth constant and α is the wave-number. The stability analysis of the above equation
by the authors there implicitly assumes existence of a upstream point where � has a local
maximum. This assumption precludes a large class of modal disturbance whose amplitude
might decay monotonically away from the origin in the region ξ < 0 (using the notation of
Yortsos and Hickernell (1989)) which is the region of interest in their analysis.

We mention the following theorems followed by simple proofs.

Theorem 3 A mode whose amplitude decays with oscillations as χ → ∞ is stable.

Proof Consider a mode whose amplitude decays exponentially with oscillations in the far
field χ → ∞. Then there must exist a point M in the far field where s2 attains a maximum
and therefore it follows from (54) that σ < 0 for such a mode (recall α < 0 in (54)). 
�

A direct consequence of this theorem is the following corollary.

Corollary 1 Amplitude of an unstable mode decays exponentially without oscillations as
χ → ∞.

In the proof above, it is clear that a mode whose amplitude decays with oscillations in
the far field must be stable. However, note from (54) that σ can be negative even if there is
no point M in the far field where (s2)′ is zero and therefore, amplitude of a stable mode can
decay without oscillations in the far field. We summarize this in the following theorem.

Theorem 4 Amplitude of a stable mode can decay with or without oscillations in the far
field.

We can characterize the behavior of these short (stable) and long (unstable) waves as
χ → ∞ more precisely if we analyze the solution of the problem defined in (46). The
Eq. 46 admits solutions of the type exp(rχ) if r satisfies the characteristic equation:

r2 + Ũr − (ν + k2) = 0, (55)

where Ũ = −φU/α and ν = −ω/α. Note that Ũ > 0. The roots r1 and r2 of this charac-

teristic equation are given by r1,2 = −Ũ/2 ±
√
(Ũ/2)2 + (ν + k2) where subscripts 1 and

2 correspond to the + and − signs respectively. The following cases arise from this.

1. If ν + k2 > 0, then only the negative root is admissible due to the boundary condition
defined in (46). Since ν+ k2 > 0 implies growth rate σ > φ α k2 (recall α < 0, φ > 0),
we conclude that unstable long waves decay exponentially without oscillations in space
as χ → ∞ for any fixed t > 0.

2. If −(Ũ/2)2 < (ν + k2) < 0, both the roots are negative and if −(Ũ/2)2 > (ν + k2),
then both the roots are complex with negative real part. Since in both of these cases
ν+ k2 < 0 which means σ < φ α k2, we conclude that the stable short waves can decay
exponentially with or without oscillations in space as χ → ∞ which will depend on
whether −(Ũ/2)2 is greater or less than (ν + k2), respectively.

Note that implications by the above analysis are consistent with the Theorems 3 and 4 as it
should be.
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14 P. Daripa, G. Paşa

Remark 2 In Yortsos and Hickernell (1989), a strict upper bound on the growth rate is a
parabola in wavenumber k with a positive maximum point and a finite cut-off wave-number
beyond which the growth rate is negative. Our result in (54) can be interpreted in a somewhat
similar fashion leading to stronger results for a certain class of disturbances in the far field.
In order to show this, we rewrite (54) as

σ <

(
α

φ

) (
k2 +

∫ ∞
M s′ 2 dχ∫ ∞
M s2 dχ

+ 0.5(s2)′(M)∫ ∞
M s2 dχ

)
. (56)

Recall that α < 0 and φ > 0. The leading term of the bound on the growth rate σ is a parabola
in wave-number k with a negative maximum point. The second term is negative which makes
the value of the upper bound even more negative except for the shift due to the term involving
(s2)′(M) whose sign can be determined a priori in general. If initial amplitude s(χ) of any
wave disturbance in the far field has the property that (s2)′(M) ≥ 0, then such waves are
certainly stable since all terms above in (56) is negative. This result precisely characterizes
the growth rate of stable waves in the far-field.

4 Conclusions

We have presented a simple approach to show that the traveling wave solutions of the sat-
uration model (1) through (4) with the property (14) are stable to short wave perturbations
and alluded to the fact the bandwidth of such waves is very large in general meaning the
bandwidth of the unstable long waves is possibly very small. This brings out some of dif-
ferences between the role of surface tension in immiscible Hele-Shaw flows and the role of
capillarity in immiscible porous media flow. Surface tension and capillarity both stabilizes
the short waves in respective flows, but the effect of capillarity is more severe as it tends to
stabilize almost entire spectrum of waves (except the very small ones). This, in some sense,
quantifies the physics-based expectation, discussed earlier in Sect. 1, of the two prong sta-
bilizing influence of capillarity on disturbances. Another distinction is that a large class of
modal perturbations, for which (s2)′ = 0 far downstream at a point M > R, exist which are
completely stabilized by capillarity.

In summary, we mention following results obtained in this article.

1. Growth rate of perturbations, which is not in contradiction with the upper bound obtained
in Yortsos and Hickernell (1989), is analyzed through weak formulation as well as exact
solution of the underlying ordinary differential equation for perturbation. In Sect. 3, we
establish that The short waves are stable and long ones are unstable. The width of the
unstable band of long waves is infinitesimally small.

2. The instability (stability) of each unstable (stable) mode is absolute in nature. We char-
acterize the asymptotic structure of these modes: Amplitude of an unstable mode decays
(in space) exponentially without oscillations, and that of a stable mode can decay with
or without oscillations as χ → ∞. It then follows that a mode whose amplitude decays
with oscillations as χ → ∞ must be stable.

3. The traveling wave can be stabilized by controlling disturbance amplitude s(χ) at only
one point in the far field downstream such that (s2)′ = 0 at that point.

In closing, we want to add some general comments regarding two aspects having to do with
the title and content of this article: (i) the role of viscous fingering on enhanced oil recovery,
and (ii) the importance of capillary pressure on stability and oil recovery. In homogeneous
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reservoir with significant vertical permeability (i.e., in the x− direction for this article) and
negligible gravity effect, the case considered in the article, viscous fingering is certainly
very important and plays a significant role in reducing sweeping efficiency of flooding in oil
recovery. Thus viscous fingering is a serious impediment to oil recovery. Hence, slowing down
the development of viscous fingering by any means is desirable for enhanced oil recovery.
We have shown in this article that capillary forces play such a positive effect on enhanced
oil recovery by slowing down the growth of instabilities that lead to viscous fingering. This,
de facto, sheds light on the second aspect mentioned above, namely, capillary pressure which
is important for stability and oil recovery.

Since there are no homogeneous field reservoirs in general, flow in most field reservoirs is
mostly dominated by channeling through high permeable zones. Although, viscosity driven
instability is present here, it does not lead to significant viscous fingering due to heterogene-
ity in permeability. Thus, viscous fingering is a secondary effect for oil recovery in such
heterogeneous reservoirs. It is worth mentioning here that in Daripa and Pásá (2004), it has
been shown that viscosity driven instability in mildly heterogeneous reservoirs mitigates
(see Daripa and Pásá 2004) to some extent the tendency of preferential channeling of flow
through high permeable regions. The role of capillary pressure on oil recovery and stabil-
ity is no different for heterogeneous reservoir than for homogeneous reservoir. For reasons
mentioned earlier, capillary force is extremely important for fluid displacement processes
through reservoir rocks and hence for oil recovery and stability.
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