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Abstract Stabilization of multi-layer Hele-Shaw flows is studied here by including the
influence of Rayleigh–Taylor instability in our earlier work (Daripa, J. Stat. Mech. 12:28,
2008a) on stabilization of multi-layer Saffman–Taylor instability. Furthermore, this article
goes beyond our previous work with few extensions, improvements, new interpretations, and
clarifications on the use of some terminologies. Results of two complete studies have been
presented: the first investigates the effect of individually unstable interfaces on the overall
stability of the flow, and the second studies the cumulative effect of unstable interfaces as
well as unstable internal viscous layers. In each case, modal and absolute upper bounds on
the growth rate are reported. Next, these bounds are used to investigate (i) stabilization of
long waves on various interfaces; (ii) stabilization of all waves on all interfaces in comparison
to pure Taylor instability; (iii) stabilization of disturbances on interior interfaces instead of
exterior interfaces. In the first study, notions of partial and total stabilization with respect
to the pure Taylor growth rate are introduced. Then necessary and sufficient conditions for
partial and total stabilizations are found. Proof of stabilization of long waves on one of the two
external interfaces in multi-layer flows is also proved. In the second study, an absolute upper
bound is obtained in the presence of stabilizing density stratification across each internal
interface even though all interfaces and layers have unstable viscous profiles. Exact results
on the upper bounds, and necessary and sufficient conditions for control of instabilities driven
by stable/unstable density stratification, unstable viscous layers and unstable interfaces are
new and may be relevant to explain observed phenomena in many complex flows generating
these kinds of viscous profiles and density stratification as they evolve. The present work
builds upon and goes much further in details and new results than our previous work. The
gravity effect included here brings with it restrictions which have not been addressed before
in this multi-layer context.
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350 P. Daripa

1 Introduction

It is well known that fluid flow through porous media is a very important topic of fundamental
and applied research. It occurs in nature as well as in a wide variety of applications such
as in oil recovery, drainage of fluids through soil and subsurface formations, just to name a
few. Advances in understanding of porous media flow through research can have immediate
positive impact worldwide. The complexity of fluid flow and level of modeling difficulty
depend on several factors such as heterogeneity of media properties, wettability properties of
the medium, number of fluid phases flowing, nonlinearity in capillary pressure dependence
on concentrations of various phases and chemicals, initial data of various phases, chemicals
etc., dynamic development of coherent structures such as fingering at various scales, and
number of displacing fluids in cases where goal is to displace a particular fluid such as oil in
oil recovery. Collective effect of all of these factors on fluid flow may not always be desirable
and when that is the case, it becomes necessary to control some of the factors that may lead
to desirable outcome. An understanding of the effect of each of these factors in isolation
may be helpful in this regard. With this goal in mind, the purpose in this paper is to estimate
the collective effect of multiple displacing fluids on the Taylor stability of the interfaces that
sweep a displaced fluid in homogeneous porous media. This study has relevance to chemical
enhanced oil recovery (see Daripa and Ding 2012). It has been argued in Daripa (2008b)
that fluid flow in homogeneous porous media is analogous to Hele-Shaw flow so long as
the effect of rarefaction waves of saturation is negligible. Because of this analogy, the study
below refers to Hele-Shaw flow only for brevity.

The displacement of a more viscous fluid by a less viscous one is known to be potentially
unstable in a Hele-Shaw cell (see HeleShaw 1898). This is also known as the Saffman–Taylor
instability (Saffman and Taylor 1958). Similarly, stratified flows are gravitationally unsta-
ble if the gravitational acceleration acts in the direction of negative density gradient. This
is known as the Rayleigh–Taylor instability. Therefore, if a fluid displaces another fluid of
different viscosity and different density in the presence of gravity, then the interface will be
influenced by a combination of Saffman–Taylor and Rayleigh–Taylor instabilities. Depend-
ing on the viscosity and density jumps across an interface, these two instabilities can either
reinforce or attenuate each other. Exact linearized growth rates of small amplitude interfacial
disturbances for such single-interface flows are well known in the literature and well-docu-
mented in standard textbooks on hydrodynamic stability theory, e.g. Drazin and Reid (1981).
For our purposes below, it is worth citing here some exact results for rectilinear flows. If
(μr , ρr ) are the (viscosity, density) of the displaced fluid, (μl < μr , ρl) are the (viscosity,
density) of the displacing fluid, U is the constant velocity of the rectilinear flow, gravity g
is in the direction of U , and the interfacial tension at the interface is T , then the pure Taylor
growth rate σt of the interfacial disturbance having wave-number k is given by

σt (k) = k(U (μr − μl) − g(ρr − ρl)) − k3T

μr + μl
, (1)

from which it follows that growth rate of any unstable wave can not exceed σ u
t :

σt ≤ σ u
t = 2T

(μr + μl)

(
U (μr − μl) − g(ρr − ρl)

3T

)3/2

. (2)

The pure Taylor growth rate has been used to refer to individual growth rate of disturbances
on a single interface due to the combined effect of Saffman–Taylor and Rayleigh–Taylor
instabilities. These formulas allow reliable prediction of the effect of interfacial tension and
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On Stabilization of Multi-Layer Hele-Shaw 351

fluid properties across an interface on the growth of the interfacial disturbances. They also
help in the selection of correct fluid and interfacial properties a priori in order to control
growth rates of interfacial disturbances.

Below, “total stabilization” means all interfaces in multi-layer flows are less unstable in
comparison to σ u

t based on extreme layer fluids, total referring to “all interfaces” and “stabil-
ization” referring to “being less unstable”. Similarly “partial stabilization” means at least one
interface is less unstable in comparison to σ u

t . In general, conditions under which partial and
total stabilization can be achieved are non-trivial because of the complicated role of inter-
facial tensions of all interfaces on the collective stability of the system. In Daripa (2008a),
this has been addressed in the absence of gravity. In this paper, we study this problem by
including gravity and show, in addition to many other properties, how gravity alters the con-
ditions for stabilization. We also classify interfaces in multi-layer flows into two groups as
it helps discussing the physical implications of our results. These two groups are: external
versus internal interfaces. An external interface has on its one side a fluid layer of infinite
extent and an internal interface has on its each side a fluid layer of finite extent which in turn
is separated from other fluid layers of either finite or infinite extent. Thus, a 3-layer flow has
no internal but two external interfaces, a 4-layer has one internal and two external interfaces
and so on. As we will see below, internal and external interfaces are different stability-wise.

For multi-interface flows, there is no mathematical formula analogous to the above two
formulas (1) and (2). In the absence of such a theory, it is tempting to use the above two
single-interface results locally around each interface thereby ignoring the effects of other
interfaces. Such a theory could be misleading and a better alternative is desirable. Recently,
Daripa (2008a) presented such a theory that gives upper bounds on the disturbance growth
rates in multi-layer flows but in the absence of gravity. In this paper, we extend our previous
work (see Daripa 2008a) in several respects some of which are (i) inclusion of the influ-
ence of gravity when the density in each layer is constant; (ii) introduction of the notions of
partial and total stabilization with respect to the pure Taylor growth rate σ u

t ; (iii) necessary
and sufficient conditions for partial and total stabilization; and (iv) formulas delineating the
distinction between internal and external interfaces from the viewpoint of stability; (v) proof
of stabilization of long waves on one of the two external interfaces in multi-layer flows; and
(vi) upper bound results for multi-layer flows in the presence of stable and unstable density
stratification. Exact results on the upper bounds, and necessary and sufficient conditions for
control of instabilities driven by stable/unstable density stratification and unstable viscous
layers and interfaces are new. These results may be relevant for explanation of some observed
phenomena in many complex flows involving such viscous and density profiles. The results
derived in this paper now make it possible to assess the cumulative effects of all interfacial
tensions and viscosity and density jumps across all interfaces on the overall stability of the
multi-layer system. The formulas and principles laid out can guide to the selection of fluid
properties and interfacial tensions in order to achieve a desired level of stabilization.

The paper is laid out as follows. In Sect. 2, relevant fluid flow equations involving density
stratification, unstable viscosity profiles, and unstable viscous jumps at interfaces are pre-
sented. Then the eigenvalue problem arising from the stability analysis of these fluid flow
equations is presented. In Sects. 3, 4, and 5, constant viscosity layer cases in the presence
of density stratification are treated respectively for 3, 4 and general multi-layer cases. The
3-layer case is the fundamental building block and hence it has been treated first. The internal
interface which appears first in the 4-layer case behaves differently from external interfaces
as discussed in Sect. 4. Therefore this 4-layer case is treated separately and in detail before
generalizing to the case of arbitrary number of layers in Sect. 5. In Sect. 6, we directly treat
the case of an arbitrary number of layers in the presence of stable and unstable density
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352 P. Daripa

Fig. 1 Three-layer fluid flow in a Hele-Shaw cell

stratification when interfaces and internal layers have unstable viscosity profiles. With stable
density stratification for internal interfaces, upper bound results in strict inequality form are
presented for the general case. Finally we conclude and provide a summary of this work in
Sect. 7.

2 Background

The three-layer case as shown in Fig. 1 is the fundamental building block of the multi-layer
case and hence we discuss this case first briefly. Since this paper extends the work of Daripa
(2008a), some degree of overlap is not only unavoidable but also necessary as it enables
us to present our work in a more reader-friendly manner without losing any continuity and
clarity. The physical set-up and mathematical formulation of the basic flow differs from
the one discussed in Daripa (2008a) only in the effect of gravity which is included in the
present model. We briefly describe the present set-up: the physical set-up consists of two-
dimensional fluid flows in a three-layer Hele-Shaw cell. The domain � of interest is then
� := (x, y) = R

2 (with a periodic extension of the set-up in the y-direction). The fluid
upstream (i.e., as x → −∞) has a velocity u = (U, 0). The fluid in the left layer with con-
stant viscosity μl extends up to x = −∞, the fluid in the right layer with constant viscosity
μr extends up to x = ∞, and the fluid in-between middle-layer of length L has a smooth
viscous profile μ(x) with μl < μ(x) < μr . Thus ST-instability is present at each of the
interfaces. The density in three layers from left to right are respectively ρl , ρ1, and ρr with
gravity g acting in the direction of flow, i.e. along positive x-axis. The density is constant
in each layer with the possibility of density jump at each of the interfaces. Thus each layer
is RT-stable (RT stands for Raleigh-Taylor) but an interface can be RT-unstable if density at
that interface decreases in the direction of gravity.

The underlying equations of this problem are then given by

∇u = 0, ∇ p = −μ u + ρ g e1,
∂μ

∂t
+ u∇μ = 0, (3)

where ∇ =
(

∂
∂x , ∂

∂y

)
and e1 is the unit vector in the x-direction. The first equation (3)1

is the continuity equation for incompressible flow, the second equation (3)2 is the Darcy’s
law (1856), and the third equation (3)3 is the advection equation for viscosity (Daripa and
Pasa 2005; Gorell and Homsy 1983). This equation for viscosity arises from the continuity
equation of species such as polymer in water which is simply being advected, and viscosity
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On Stabilization of Multi-Layer Hele-Shaw 353

of this poly-solution (polymer in water) is an invertible function of polymer concentration.
For further details, we direct the readers to Daripa (2008a) and Daripa and Pasa (2005).

The above system admits a simple basic solution: the whole fluid set-up moves with speed
U in the x direction and the two interfaces, namely the one separating the left layer from the
middle-layer and the other separating the right layer from the middle-layer, are planar (i.e.
parallel to the y − z-plane). The pressure corresponding to this basic solution is obtained
by integrating (3)2. In a frame moving with velocity (U, 0), the above system is stationary
along with two planar interfaces separating these three fluid layers. Here and below, with
slight abuse of notation, the same variable x is used in the moving reference frame. Linear
stability analysis of the basic solution (u = 0, v = 0, p0(x), μ(x)) in the moving frame
leads to the following eigenvalue problem. The eigenfunction f (x) is proportional to the
x-directional velocity perturbation and eigenvalue σ is the growth rate of the disturbance
with wavenumber k. We refer to Daripa (2008a) for more details on this.

μ
(

fxx − k2 f
) + μx fx + k2U

σ
μx f = 0, x �= −L , 0. (4)

fxx − k2 f = 0, x < −L , x > 0, (5)

with far-field behavior given by

f (x) = f (−L) exp(k(x + L)), for x < −L , f (x) = f (0) exp(−kx), for x > 0.(6)

Following the procedure sketched in Daripa (2008a), interfacial conditions in the presence
of gravity and density stratification are

−(μ− f −
x f )(0) = μr k f 2(0) − E0

σ
f 2(0),

(μ+ f +
x f )(−L) = μl k f 2(−L) − E1

σ
f 2(−L),

}
(7)

where

E0 = k2(U [μ]r − g[ρ]r ) − T0 k4, E1 = k2(U [μ]l − g[ρ]l) − T1 k4. (8)

Above [μ]r = (μr − μ−(0)), and [μ]l = (μ+(−L) − μl). Similarly, for [ρ]r and [ρ]l . The
mathematical problem for this three-layer case is defined by the field equation (4), far-field
boundary conditions (6) and two interfacial conditions (7). Note that boundary conditions
(7) depend on the gravity through the definition of E0 and E1 in (8).

3 Constant Viscosity Fluid Layers: Three-Layer Case

Both, Saffman–Taylor and Rayleigh–Taylor, instabilities now play a role as opposed to our
earlier study Daripa (2008a) of Saffman–Taylor instability in the multi-layer case. These
two instabilities can act in a way to either reinforce or weaken the overall instability of the
system depending on the situation. Viscosity driven layer-instability and interfacial-insta-
bility appear in our model through the field equation (4) and the boundary conditions (7)
respectively. Their roles for the instability of multi-layer flows have been well explored in
several of our recent papers (see Daripa 2008a,b; Daripa and Ding 2012). The current model
also includes the gravity driven instability through the boundary conditions (7) which were
otherwise absent in all of our studies so far. The three-layer case here with constant viscos-
ity and constant density of all layers retain these instabilities only at the interfaces, thereby
making it possible to estimate their relative effects on the growth rate as shown below. With
constant viscosity μ1 (μl < μ1 < μr ) of the intermediate layer and using weak formulation
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354 P. Daripa

of the above underlying equations, one obtains the following Rayleigh-quotient type formula
for the growth rate as in Daripa (2008a).

σ(k) = E0 f 2(0) + E1 f 2(−L)

μr k f 2(0) + μl k f 2(−L) + μ1
∫ 0
−L(k2 f 2 + f 2

x ) dx
. (9)

All the terms in the denominator above are positive. In this subsection, an estimate of the
upper bound will be obtained by neglecting the positive values of integrals in (9) and by
making use of the following relation from Daripa and Pasa (2006) which holds for arbitrary
n under the condition Ai > 0, Bi > 0, Xi > 0, for i = 1, . . . , n,

∑n
i (Ai Xi )∑n
i (Bi Xi )

≤ max
i

{
Ai

Bi

}
. (10)

We consider following two non-trivial cases. Case 1. U [μ]l − g [ρ]l > 0 and U [μ]r −
g [ρ]r > 0.

This condition means that both the interfaces are individually unstable. We obtain the
following estimates for the growth rates of waves grouped in the following four classes.

(i) k2 > max

{
U [μ]l − g [ρ]l

T1
,

U [μ]r − g [ρ]r
T0

}
⇒ E0 < 0, E1 < 0 ⇒ σ < 0.

(11)

(ii)
U [μ]r − g [ρ]r

T0
< k2 <

U [μ]l − g [ρ]l
T1

⇒ E0 < 0, E1 > 0 ⇒ σ <
E1

μl k
. (12)

(iii)
U [μ]l − g [ρ]l

T1
< k2 <

U [μ]r − g [ρ]r
T0

⇒ E0 > 0, E1 < 0 ⇒ σ <
E0

μr k
.

(13)

(iv) k2 < min

{
U [μ]l − g [ρ]l

T1
,

U [μ]r − g [ρ]r
T0

}
⇒ E0 > 0, E1 > 0. (14)

Therefore, we obtain for nontrivial disturbance in the range (14), (15)

σ(k) <
E0 f 2(0) + E1 f 2(−L)

μr k f 2(0) + μl k f 2(−L)
< max

{
E0

kμr
,

E1

kμl

}

= max

{(
(U [μ]r − g[ρ]r ) k − T0k3

μr

)
,

(
(U [μ]l − g[ρ]l)k − T1k3

μl

)}
.

(16)

Since the upper bound (16) is not less than the estimates (12) and (13) for the upper bounds
on growth rates for waves outside the range (14), (16) is a modal upper bound for all waves.
The absolute upper bound (i.e., the growth rate of any unstable wave can not exceed this
bound) is then given by

σ < max

{
2T0

μr

(
U [μ]r − g[ρ]r

3T0

)3/2

,
2T1

μl

(
U [μ]l − g[ρ]l

3T1

)3/2
}

. (17)

Case 2. U [μ]l − g [ρ]l < 0 and U [μ]r − g [ρ]r > 0 or U [μ]l − g [ρ]l > 0 and U [μ]r −
g [ρ]r < 0.
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Since only one of the two interfaces remains effectively unstable in the presence of gravity,
it easily follows from similar analysis as given above that

σ < 2T0
μr

(
U [μ]r −g[ρ]r

3T0

)3/2
, if U [μ]l − g [ρ]l < 0 and U [μ]r − g [ρ]r > 0.

σ < 2T1
μl

(
U [μ]l−g[ρ]l

3T1

)3/2
, if U [μ]l − g [ρ]l > 0 and U [μ]r − g [ρ]r < 0.

⎫⎪⎬
⎪⎭

(18)

Note that this case is actually covered by (17) as one of the terms in (17) is negative. There-
fore, the distinction between the two cases given above will not be made below and the strict
inequality (17) or its improved equivalent version will be used for all cases involving at least
one unstable interface. This covers the above two cases: Case 1 and Case 2.

Later, we give an estimate for the integral in the denominator of (9) which was neglected
in deriving the above formulas (16) and (17). This estimate of the integral will then be used
to obtain an improved estimate of the upper bound which, as we will see, is an improvement
over (16) and (17) in some sense. Still the bound given above is useful as we will see when
we compare these two upper bounds.

3.1 A Lemma

The following lemma proof of which can be found in Daripa (2008a) will be used below
to obtain a stronger result on the upper bound than the one given above (i.e., the inequality
(17)).

Lemma 1 Consider the function f and the integral I such that

fxx (x) − k2 f (x) = 0, ∀ x ∈ (−L , 0), I =
0∫

−L

(k2 f 2 + f 2
x )dx . (19)

Then we have the following inequality

I ≥max
{
k tanh(kL) f 2(−L), k tanh(kL) f 2(0)

}≥k tanh(kL)(λ1 f 2(−L)+λ2 f 2(0)),

(20)

where λi ≥ 0, and λ1 + λ2 ≤ 1. For non-trivial disturbance f , the second inequality above
should be taken as a strict inequality when both the parameters λ1 and λ2 are simultaneously
zero.

The lemma given in Daripa (2008a) has been modified above by the last sentence. For
purposes below, it is useful to recall the following notations from Daripa (2008a).

3.2 Some Notations

• λi, j : This notation is a generalization of the notation λ1 and λ2 used in the lemma above.
This is required for multi-layer flows as we will see in later sections. First subscript ‘i’
on λi, j can be either 1 or 2 in the spirit of the lemma (see (20)). As we will see below, an
inequality of the type (20) will appear for each internal layer for multi-layer flows. The
second index ‘ j’ on λi, j refers to the specific internal layer number ‘ j’ in multi-layer
flows. Below, we do not use this second index when there is only one internal layer, i.e.,
in the three-layer case because there is no source of confusion in not using this second
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356 P. Daripa

index in this case. In general, however, for more than one-internal layer flows we will use
λ1, j and λ2, j instead of λ1 and λ2 when using the above lemma.

• σn(k): This notation stands for exact value of the growth rate σn(k) of a mode with wave-
number k in (n + 2)-layer Hele-Shaw flows which has n-internal layers (n = 1, 2, N are
of interest below).

• σm
n (k; λi, j ): This notation stands for modal upper bound on σn(k) which depends on

parameters λi, j . In other words, σn(k) ≤ σm
n (k; λi, j ) for all allowable values of λi, j

according to Lemma 1. Exact number of parameters it will depend on will be exactly 2n
and it will be explicit in the expression for σ m

n (k; λi, j ).
• σm

n (k): This stands for modal upper bound independent of parameters λi, j . Physically,
this is of interest. Thus it is defined as

min
λ1, j +λ2, j ≤1

σm
n (k; λi, j ) ≤ σ m

n (k).

This minimum is to be taken over all layers, i.e., λ1, j + λ2, j ≤ 1, ∀ 1 ≤ j ≤ n.
• σ u

n (λi, j ): This is the absolute upper bound over all wavenumbers for any specific choice
of parameters within the constraint of the Lemma.

• σ u
n : This is the absolute upper bound over all wavenumbers and over all allowable values

of the parameters λi, j . Growth rates can not exceed this value regardless of the value of
k and parameters λi, j . Thus

max
k

σm
n (k) ≤ σ u

n .

Below, when necessary we will use either s or l subscript on σ in addition to n to denote
short wave or long wave regimes respectively.

3.3 Improved Estimates of Modal and Absolute Upper Bounds

The effective modal growth rates Ql(k, λ1) and Qr (k, λ2) of disturbances on the trailing
(left) and leading (right) interfaces respectively are given by (see Daripa 2008a).

Ql(k, λ1) = k(U [μ]l − g[ρ]l − T1k2)/(μl + λ1μ1 tanh(kL)),

Qr (k, λ2) = k(U [μ]r − g[ρ]r − T0k2)/(μr + λ2μ1 tanh(kL)),

}
(21)

and an improved estimate for the upper bound in terms of these is given by

σ1(k) ≤ max {Ql(k, λ1), Qr (k, λ2)} = σm
1 (k; λ1, λ2).

For best possible estimate of the upper bound within the limitation of the Lemma, we need
to use values of (λ1, λ2) for which the estimate (22) is minimum over all admissible values
of λ1 and λ2. Therefore, using the Lemma, it is clear from the expression (22) that desired
estimate σm

1 (k) of the modal upper bound over all allowable values of λ1 and λ2 is given by

σ1(k) ≤ min

(
max

{
k(U [μ]l − g[ρ]l) − T1k3

μl + μ1 tanh(kL)
,

k(U [μ]r − g[ρ]r ) − T0k3

μr

}
,

max

{
k(U [μ]l − g[ρ]l) − T1k3

μl
,

k(U [μ]r − g[ρ]r ) − T0k3

μr + μ1 tanh(kL)

})

= σm
1 (k). (22)

If (U [μ]r − g[ρ]r ) ≤ 0, then obviously the ratio involving this in the above inequality drops
out. Similarly if U [μ]l − g[ρ]l ≤ 0. When both of these are not true, (i.e. when all interfaces
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are individually unstable), the functions Ql(k, λ1 = 0) and Qr (k, λ2 = 0) take their maxi-
mum values Ql,max(λ1 = 0) and Qr,max(λ2 = 0) at k = kc1 and k = kc0 respectively which
are given by

kc1 =
√

U [μ]l−g[ρ]l
3T1

, kc0 =
√

U [μ]r −g[ρ]r
3T0

,

Ql,max(λ1 = 0) = 2T1
μl

(
U [μ]l−g[ρ]l

3T1

)3/2
, Qr,max(λ2 = 0) = 2T0

μr

(
U [μ]r −g[ρ]r

3T0

)3/2
.

⎫⎬
⎭
(23)

The following improved estimate σ u
1 of the absolute upper bound follows from (22) and (23).

σ1(k) ≤ min

(
max

{
Ql,max(λ1 = 1),

2T0

μr

(
U [μ]r − g[ρ]r

3T0

)3/2
}

,

max

{
2T1

μl

(
U [μ]l − g[ρ]l

3T1

)3/2

, Qr,max(λ2 = 1)

})
,

= σ u
1 , (24)

where

Ql,max(λ1 = 1)=max
k

(
k(U [μ]l − g[ρ]l)−T1k3

μl + μ1 tanh(kL)

)
=

(
k∗

1(U [μ]l − g[ρ]l) − T1(k∗
1)3

μl + μ1 tanh(k∗
1 L)

)
,

(25)

and k∗
1 is the value of k that solves the following equation.

k(U [μ]l − g[ρ]l) − T1k3

μl + μ1 tanh(kL)
= (U [μ]l − g[ρ]l − 3T1k2) cosh2(kL)

μ1 L
. (26)

Similarly, formulae analogous to (25) and (26) can be written down for Qr,max(λ2 = 1) and
corresponding value of k∗

0 respectively. The notation k∗
0 is a departure from the notation k∗

2
used in a similar place in Daripa (2008a). One has to take recourse to numerical computation
to first find k∗

1 , k∗
0 from (26) etc., and then find the upper bound σ u

1 using the formulae (24). An
approximation σ a

1 of the bound σ u
1 that does not require numerical computation is given by

σ1(k) ≤ min

(
max

{
2T1

μl + μ1 c1

(
U [μ]l − g[ρ]l

3T1

)3/2

,
2T0

μr

(
U [μ]r − g[ρ]r

3T0

)3/2
}

,

max

{
2T1

μl

(
U [μ]l − g[ρ]r

3T1

)3/2

,
2T0

μr + μ1 c0

(
U [μ]r − g[ρ]r

3T0

)3/2
})

= σ a
1 ∼ σ u

1 . (27)

where 0 < c1 ≤ tanh(kc1 L) and 0 < c0 ≤ tanh(kc0 L). The constants kc1 and kc0 have been
defined in (23).

3.4 Stability Enhancement

Presence of gravity certainly alters the landscape of stability enhancement strategies due
to the presence of Rayleigh–Taylor instability. For two-layer flows, a reduction in forward
jump (i.e., jump in the direction of upstream flow) in viscosity (μr − μl) or/and an increase
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in forward jump in density (ρr − ρl) (see Eq. (2)) at an unstable interface has a stabiliz-
ing effect whereas a reduction in the value of interfacial tension has a destabilizing effect.
Therefore, stabilizing an unstable interface in an otherwise two-layer flow (fluid with vis-
cosity μl pushing fluid with viscosity μr ) by introducing a third fluid having viscosity μ1

with μl < μ1 < μr (notations have been discussed above) requires that interfacial tensions
and density of the middle-layer fluid must have reasonable values not to offset any gain in
stabilization due to reduction in viscosity jump at the leading interface in this three-layer
set-up. It is of interest to be able to quantify this in terms of fluid viscosities, fluid densities,
and interfacial tensions for the three-layer flows. We will do this below in this section after
discussing the roles of short and long waves in this stabilization process.

Since interfacial tension primarily affects short waves and not long waves, it is possible
that middle-layer fluid with (i) μl < μ1 < μr and ρl ≥ ρ1 > ρr or (ii) μl ≤ μ1 < μr

and ρl > ρ1 > ρr in the three-layer flow suppresses instability of long waves regardless of
interfacial tension values at the two interfaces. We need to mathematically investigate this
issue in this three-layer case. If this is indeed the case (as we will see below), then it will
allow us to obtain estimates for the constants c0 and c1 that appear in the formula (27).

3.4.1 Long and Short Waves

From approximate modal upper bound σ m
1,l(k; λ1, λ2) for long waves (kL  1), inequality

(22) is approximated as

σ1,l(k) < σm
1,l(k; λ1, λ2)

≈ max

{
k(U (μ1 − μl) − g(ρ1 − ρl))

μl + λ1k L μ1
,

k(U (μr − μ1) − g(ρr − ρ1))

μr + λ2k L μ1

}
. (28)

Using this, one can show that all long waves are stabilized on at least on one of the two
interfaces regardless of the values of the interfacial tensions, i.e., they will be less unstable
than on a Taylor-unstable interface separating two extreme-layer fluids having μr > μl . In
fact, following the procedure outlined in Daripa (2008a), it can be seen that inequalities

(Uμ1 − gρ1) < (Uμl − gρl) + U (μr − μl) − g(ρr − ρl)

μr + μl
μr (1 + L). (29)

and

(Uμr − gρr ) − U (μr − μl) − g(ρr − ρl)

μr + μl
μr (1 + L) < (Uμ1 − gρ1). (30)

are necessary and sufficient for stabilization of long waves on both the interfaces assuming
as always μr > μl . The subscript s below is used on σ for the short wave regime, kL ≥ 1.

σ1,s(k) ≤ σm
1,s(k; λ1, λ2)

= max
λ1+λ2≤1

{
k(U [μ]l − g[ρ]l) − k3T1

μl + λ1c1μ1
,

k(U [μ]r − g[ρ]r ) − k3 T0

μr + λ2c0μ1

}
, (31)

where λi ≥ 0 and c1, c0 are suitable constants mentioned above after Eq. (27).

3.4.2 Necessary and Sufficient Conditions for Stability Enhancement

Condition of stabilization due to an introduction of an intermediate layer is σ u
1 < σ u

t . An
approximation to this isσ a

1 < σ u
t where σ a

1 is given by (27) andσ u
t by (2). Letting c1 = c0 = c
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in (27) and then manipulating this approximate inequality give following sufficient condi-
tions for total stabilization (i.e. reduction in maximum growth rates of disturbances on both
the interfaces).

(Uμ1 − gρ1) < (Uμl − gρl) +
(

T1

T

)1/3 (
μ1l

μl + μr

)2/3

(U (μr − μl) − g(ρr − ρl)),

(32)

and

(Uμr − gρr ) <

(
T0

T

)1/3 (
μr1

μl + μr

)2/3

(U (μr − μl) − g(ρr − ρl)) + (Uμ1 − gρ1),

(33)

where

μ1l = (μl + λ1μ1 c), and μr1 = (μr + λ2μ1 c). (34)

It is easy to see that the following necessary condition (parameterized by two parameters λ1

and λ2) for total stabilization which is also a sufficient condition for partial stabilization (i.e.,
stabilization of at least one of the two interfaces) follows from these inequalities.

(
T0

T

)1/3

+
(

μl + λ1μ1c

μr + λ2μ1c

)2/3 (
T1

T

)1/3

>

(
μr + μl

μr + λ2μ1c

)2/3

. (35)

Since this condition is parameterised by λ1 and λ2 which can take values in a range mentioned
in the lemma (see Sect. 3.1), it is clear that there is a wide selection possibilities of interfacial
tensions and middle layer fluid that will guarantee stabilization but for best stabilization as
discussed before choice of (λ1, λ2) should be either (1,0) or (1,0).

The following specific points about above sufficient conditions for total and partial stabi-
lizations are worth highlighting here.

• The sufficient conditions for total and partial stabilizations depend always (i.e., for all
admissible values of λ1 and λ2) on all three interfacial tensions.

• The sufficient (also necessary) conditions (32) and (33) for total stabilization depend on
gravity and hence on ST-instability. In other words, densities of fluids affect the criteria
for stabilizations of both the interfaces which, in general, is expected.

• Interestingly, the sufficient condition (35) for partial stabilization does not depend on
the density of any of the fluids. Therefore, effect of RT-instability can be ignored while
making choices of viscosities and interfacial tensions based on (35) which will guarantee
stabilization of one of the interfaces. This result is unusual and non-intuitive.

• The condition (35) does not depend on the viscosity of the middle layer when (λ1, λ2) =
(0, 0). When all three interfacial tensions are same, partial stabilization is always ensured
since the resulting inequality from (35) holds regardless of the values of viscosities,
densities, and equal interfacial tensions.

4 Constant Viscosity Fluid Layers: Four-Layer Case

The set-up shown in Fig. 2 is self-explanatory and is an extension of the three-layer case. It
has now three interfaces located at x = 0, x = −L , and x = −2L in the frame moving with
speed U . The gravity acts in the direction of U and each layer has constant density which
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Fig. 2 Four-layer fluid flow in a
Hele-Shaw cell. Interfacial
tensions at three interfaces are
shown as T0, T1, and T2. The
constant viscosities are
increasing in the direction of
flow: μl < μ2 < μ1 < μr rµµ2 µ1µ

l

T
0

T
1

T
2

can be different in different layers. The constant densities of fluids are denoted similar to the
viscosities but with conventional notation ρ.

We first treat the case where the density jump at each of the interfaces is either positive
or negative in the direction of flow so long as each of the interfaces is overall individually
unstable. The field equation (5) holds away from all three interfaces and hence the far-field
behavior (6), with L there replaced by 2L , holds in the exterior layers of fluid. The dynamic
and kinematic interfacial conditions are similar to the ones given in Sect. 4 of Daripa (2008a)
except that each of the interfacial viscosity jumps there is modified by adding −g[ρ]/U to
it where [ρ] denotes the density jump at that interface in the flow direction. Other than this,
further analysis identical to the one in that paper leads to the following modal upper bound
on the growth rate σ2, subscript 2 on σ stands for number of layers which is two for the
four-layer (two external and two internal layers) case.

σ2(k) ≤ E0 f 2(0) + E1 f 2(−L) + E2 f 2(−2L)

F0 f 2(0) + F1 f 2(−L) + F2 f 2(−2L)
, (36)

where Ei ’s and Fi ’s are defined by

E0 = k2 (U (μr − μ1) − g(ρr − ρ1)) − k4T0,

E1 = k2 (U (μ1 − μ2) − g(ρ1 − ρ2)) − k4T1,

E2 = k2 (U (μ2 − μl) − g(ρ2 − ρl)) − k4T2.

⎫⎬
⎭

F0 = k
{
μ1λ2,1 tanh(kL) + μr

}
,

F1 = k
(
μ1λ1,1 + μ2λ2,2

)
tanh(kL),

F2 = k
{
μl + μ2λ1,2 tanh(kL)

}
.

⎫⎬
⎭ (37)

According to the lemma, λ1,1 + λ2,1 ≤ 1 and λ1,2 + λ2,2 ≤ 1 where each of these λi, j ≥ 0.
To obtain an upper bound from applying the inequality (10) to (36) (see below), F1 can not be
zero. This means that in this 4-layer case, we have another constraint, namely the coefficients
λ1,1 and λ2,2 can not be simultaneously zero or equivalently

λ1,1 + λ2,2 > 0. (38)

Following procedure given in Daripa (2008a) (see also Sect. 3 of this paper), following
estimate of the modal upper bound on the growth rate of all waves is obtained.

σ2(k) ≤ max
λ1, j +λ2, j =1

{Q0, Q1, Q2}
= σm

2 (k; λ1,1, λ2,1, λ1,2, λ2,2) ≡ σm
2 (k; λi, j ), (39)

where

Q0(k, λ2,1) = E0/F0 = k(U [μ]0 − g[ρ]0 − T0k2)/(μr + λ2,1μ1 tanh(kL)),

Q1(k, λ1,1, λ2,2) = E1/F1 = k(U [μ]1 − g[ρ]1 − T1 k2)/((μlλ1,1 + μ2λ2,2) tanh(kL)),

Q2(k, λ1,2) = E2/F2 = k(U [μ]2 − g[ρ]2 − T2k2)/(μl + λ1,2μ2 tanh(kL)).

⎫⎬
⎭
(40)
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and [μ]0 = (μr − μ1), [μ]1 = (μ1 − μ2), [μ]2 = (μ2 − μl). Similarly, for the definitions
of [ρ]. The Q0(k, λ2,1), Q1(k, λ1,1, λ2,2), Q2(k, λ1,2) are effective modal growth rates of
disturbances on the leading (right-most interface in the figure), internal and left-most inter-
faces respectively. It is worth drawing attention to the similarity in the form of the effective
growth rates Q0(k, λ2,1) and Q2(k, λ1,2) of the two external interfaces and to the differ-
ence between these and the effective growth rate Q1(k, λ1,1, λ2,2) of the internal interface.
We have four families of upper bounds in (40) due to four parameters λ1,2, λ2,2, λ1,1, λ2,1.
Some simple upper bounds (strict inequality) will result from choosing anyone of these
four λ’s one and rest all zero with the exception of the case λ1,1 = λ2,2 = 0 due to (38).
This leaves only the following two choices: (i) λ1,1 = 1, λ1,2 = λ2,2 = λ2,1 = 0; and
(ii)λ2,2 = 1, λ1,2 = λ1,1 = λ2,1 = 0. For these choices, some of the terms in the denominator
of (36) are essentially neglected. For other choices (see the Lemma) such that λ1,1 +λ2,1 < 1
and/or λ1,2 + λ2,2 < 1, the modal upper bound σ m

2 (k; λi j ) is also a strict inequality. There
are many choices (e.g., λ1,1 > 0 or/and λ2,1 > 0) for which σ m

2 (k; λi j ) is also a strict inequal-
ity. The modal upper bound σ m

2 (k; λi j ) for λ1,2 = λ2,2 = λ1,1 = λ2,1 = 1
2 , which is an

interesting upper bound because of the symmetry, may be approachable because the bound
in this case is not a strict inequality.

4.1 Optimal Estimates of Modal and Absolute Upper Bounds

Following the procedure of Sect. 3.3, the formula for the best estimates of the modal and
absolute upper bounds are as follows for the four layer case. The corresponding formulas
for the three-layer case are (22) and (24). It will be easier to understand the formulae for
upper bounds below if we just recall here the order in which the dependency of σ m

2 on the
parameters appears in σ m

2 (k; λ1,1, λ2,1, λ1,2, λ2,2). For the model upper bound σ m
2 (k), we

obtain

σ2(k) ≤ min
(
σm

2 (k; 1, 0, 1, 0), σm
2 (k; 1, 0, 0, 1), σm

2 (k; 0, 1, 0, 1)
)

= min
(
max

{
Q0(k, λ2,1 = 0), Q1(k, λ1,1 = 1, λ2,2 = 0), Q2(k, λ1,2 = 1)

}
,

max
{

Q0(k, λ2,1 = 0), Q1(k, λ1,1 = 1, λ2,2 = 1), Q2(k, λ1,2 = 0)
}
,

max
{

Q0(k, λ2,1 = 1), Q1(k, λ1,1 = 0, λ2,2 = 1), Q2(k, λ1,2 = 0)
})

= σm
2 (k). (41)

Note that σm
2 (k; 0, 1, 1, 0) is not included above because it corresponds to choice of λ1,1 =

λ2,2 = 0 which does not satisfy the constraint (38). For the absolute upper bound σ u
2 , we

have from the analysis of σ m
2 (k) the following.

σ2(k) ≤ min

(
max

{
2T0

μr

(
U [μ]0 − g[ρ]0

3T0

)3/2

, Q1,max(λ1,1 = 1, λ2,2 = 0),

Q2,max(λ1,2 = 1),

}
,

max

{
2T0

μr

(
U [μ]0 − g[ρ]0

3T0

)3/2

, Q1,max(λ1,1 = 1, λ2,2 = 1),

2T2

μl

(
U [μ]2 − g[ρ]2

3T2

)3/2}
,
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max

{
Q0,max(λ2,1 = 1), Q1,max(λ1,1 = 0, λ2,2 = 1),

2T2

μl

(
U [μ]2 − g[ρ]2

3T2

)3/2})

= σ u
2 , (42)

where, for the three specific choices of the pair (λ1,1, λ2,2) which appear in (41),

Q1,max(λ1,1, λ2,2) = max
k

(
k(U [μ]1 − g[ρ]1) − T1k3

(μlλ1,1 + μ2λ2,2) tanh(kL)

)
≈ U [μ]1 − g[ρ]1

L(μlλ1,1 + μ2λ2,2)
.

(43)

and

Q2,max(λ1,2 = 1)=max
k

(
k(U [μ]2 − g[ρ]2)−T2k3

μl +μ2 tanh(kL)

)
=

(
k†

2(U [μ]2−g[ρ]2)−T2(k
†
2)3

μl + μ2 tanh(k†
2 L)

)
,

(44)

with k†
2 as the solution of the following equation.

k(U [μ]2 − g[ρ]2) − T2k3

μl + μ2 tanh(kL)
= (U [μ]2 − g[ρ]2 − 3T2k2) cosh2(kL)

μ2 L
. (45)

Similarly, formulae analogous to (44) and (45) can be written down for Q0,max(λ2,1 = 1)

and corresponding k†
0 respectively.

Now, with all the details given above, the absolute upper bound σ u
2 can be evaluated

from (42) only after k†
0 and k†

2 have been found numerically. Approximate formulas for

Q0,max(λ2,1 = 1) and Q2,max(λ1,2 = 1) that do not require any numerical evaluation of k†
0

and k†
2 can be obtained using the same procedure as in Sect. 3.3. Using such procedure and

(43) in (42), the following approximate upper bound σ a
2 is obtained.

σ2(k) ≤ min

(
max

{
2T0

μr

(
U [μ]0 − g[ρ]0

3T0

)3/2

,

U [μ]1 − g[ρ]1

Lμl
,

2T2

μl + μ2 c†
2

(
U [μ]2 − g[ρ]2

3T2

)3/2}
,

max

{
2T0

μr

(
U [μ]0 − g[ρ]0

3T0

)3/2

,
U [μ]1 − g[ρ]1

L(μl + μ2)
,

2T2

μl

(
U [μ]2 − g[ρ]2

3T2

)3/2}
,

max

{
2T0

μr + μ1 c†
0

(
U [μ]0 − g[ρ]0

3T0

)3/2

,

U [μ]1 − g[ρ]1

Lμ2
,

2T2

μl

(
U [μ]2 − g[ρ]2

3T2

)3/2})

= σ a
2 ∼ σ u

2 . (46)
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For selection of values for c†
0 and c†

2, the procedure discussed in Sect. 3.3 for selection

of values for c0 and c1 can be used. Specifically, as justified there, c†
0 ≤ tanh(k†

0 L) and

c†
2 ≤ tanh(k†

2 L) and these can be chosen approximately less than or equal to tanh(1) = 0.76,

i.e., c†
0 = c†

2 = c† (see Sect. 3.4.1) with c† ≤ tanh(1) = 0.7616, preferably with equal sign
for obvious reasons.

4.2 Long and Short Waves

For long waves kL << 1, the modal upper bound (39) can be approximated as

σ2,l(k) ≤ max

{
k(U [μ]2 − g[ρ]2)

μl + λ1,2μ2kL
,

U [μ]1 − g[ρ]1

L(λ2,2μ2 + λ1,1μ1)
,

k(U [μ]0 − g[ρ]0)

μr + λ2,1μ1kL

}
,

= σm
2,l(k; λi, j ). (47)

where [μ]2 = μ2 −μl , [μ]1 = μ1 −μ2, [μ]0 = μr −μ1 and similarly for [ρ]i , i = 0, 1, 2.
Of the three terms within curly bracket above, the first and the last one correspond to the
effective growth rates of long waves on the two external interfaces and the middle one corre-
sponds to the internal interface. The second term in the above expression does not depend on
k. Unless U [μ]1 − g[ρ]1 < 0 in which case the internal interface is individually stable (i.e.
stable in the absence of other interfaces), the modal upper bound (47) is not arbitrary small
for long waves, i.e., when k tends to zero. Compare this with modal upper bounds σt (k) (see
(1)) for the two-layer case and σ m

1,l(k) (see (28)) for the three-layer case. This shows that
growth rate of long waves on the internal interface may not be less than that based on σt (k)

(see (1)).
Long waves on external interfaces will be stabilized if the effective growth rates of long

waves on these interfaces (i.e. first and last terms in (47)) are less than σ t (k) which gives two
inequalities. Analyzing these two inequalities exactly the same way as in Sect. 3.4.1 leads to
2μr L > (μl − μr ) which always holds (since μr >μl ) provided the initial densities in the
two internal layers are such that the internal interface is individually stable. Therefore, all
long waves at least on one of the two external interfaces are stabilized in this four layer set-up
provided the internal interface is individually stable. The formulas for modal and absolute
upper bounds for short waves kL ≥ 1 are similar to the ones given in Sect. 4.1 of Daripa
(2008a) except that each interfacial viscosity jump [μ] in those formulas must be replaced
by [μ]− (g/U )[ρ] where [ρ] stands for corresponding interfacial density jump. For the pur-
poses later, an absolute upper bound (i.e., independent of k but dependent on the parameters
λi, j ), denoted by σ u

2,s(λi, j ) and defined by σ u
2,s(λi, j ) = max

k
{σm

2,s(k; λi, j )} for waves in this

short wave regime is given below.

σ2,s(k) ≤ max

{
2T0

μr1

(
U [μ]0 − g[ρ]0

3T0

)3/2

,
2T1

μ12

(
U [μ]1 − g[ρ]1

3T1

)3/2

,

2T2

μ2l

(
U [μ]2 − g[ρ]2

3T2

)3/2}

= σ u
2,s(λi, j ), (48)

where

μr1 = (μr + λ2,1μ1 c†
0), μ12 = (λ1,1μ1 + λ2,2μ2)c, μ2l = (μl + λ1,2μ2 c†

2). (49)
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and [ ]n, n = 0, 1, 2 stands for jumps at the three interfaces and λi, j can take values within
the constraint of the Lemma.

4.3 Stability Enhancement

Total stabilization for such 4-layer flows over the two-layer case requires that the upper bound
on growth rate given by (48) be less than σ u

t (see (2)). This leads to three conditions, similar
to (32) and (33) obtained earlier in three-layer case, each corresponding to each interface.

(Uμ2 − gρ2) < (Uμl − gρl) +
(

T2
T

)1/3 (
μ2l

μl+μr

)2/3
(U (μr − μl) − g(ρr − ρl)),

(Uμ1 − gρ1) < (Uμ2 − gρ2) +
(

T1
T

)1/3 (
μ12

μl+μr

)2/3
(U (μr − μl) − g(ρr − ρl)),

(Uμr − gρr ) < (Uμ1 − gρ1) +
(

T0
T

)1/3 (
μr1

μl+μr

)2/3
(U (μr − μl) − g(ρr − ρl)),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(50)

where μ2l and μr1 have been defined in (49). These are sufficient conditions for total stabil-
ization. It is easy to see that the following criterion (similar criterion for three layer case can
be obtained in Sect. 3.4.2) follows from above three conditions if σ u

t > 0.

1 <

i=2∑
i=0

(
Ti

T

)1/3 (
μi,i+1

μl + μr

)2/3

, (51)

where μ0,1 = μr1 and μ2,3 = μ2l as defined above in (49). Therefore this is a necessary
condition for total stabilization and not a sufficient one as the three conditions (50) do not
follow from (51). However, it is easy to see from properties of inequalities that at least one
of these the three conditions must hold if inequality (51) holds when σ u

t > 0. Therefore, this
inequality (51) is a sufficient condition for partial stabilization when σ u

t > 0.
When the internal interface is individually stable, (Uμ1 −gρ1) < (Uμ2 −gρ2). It follows

from this, the first, and the third inequalities of (50) that if σ u
t > 0, then

1 <

(
T0

T

)1/3 (
μ0,1

μl + μr

)2/3

+
(

T1

T

)1/3 (
μ1,2

μl + μr

)2/3

(52)

Note that this is a less restrictive condition than (50) and is a necessary condition for total
stabilization. However, this is now only a sufficient condition for stabilization of at least one
of the two external interfaces while the the middle interface by the very second inequality
(50) is already stable.

5 Constant Viscosity Multi-Fluid Layers: General Multi-Layer Case

This is an extension of our studies in previous two sections to multi-layer case involving
N intermediate regions of equal length L in the interval (−N L , 0) where N is an arbi-
trary number. A fluid of constant viscosity μl occupies the left-most region x < −N L
and another fluid of constant viscosity μr occupies the right-most infinite region x > 0.
The region (−pL ,−pL + L), 1 ≤ p ≤ N has a fluid of constant viscosity μp such that
μl = μN+1 < μN < μN−1 < · · · < μp < μp+1 < · · · < μ1 < μ0 = μr . Similar
convention is used for labeling density of fluids in various layers so that labeling index for
viscosity and density for a specific layer is the same. There are (N + 1) interfaces located
at xi = −i L , i = 0, 1, 2 . . . , N and labeled as i th interface. Interfacial tension on the i th
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interface at x = xi is denoted by Ti for i = 0, 1, . . . , N . Similarly, [μ]i = μi −μi+1 denotes
the viscosity jump at the i th interface for i = 0, 1, . . . , N . The flow is in the direction of
increasing viscosity.

Procedure of the previous sections and, in particular, that of Sect. 5 of Daripa (2008a)
leads to the following estimate of the modal upper bound on the growth rates of all waves.

σN (k) ≤ max
λ1,i +λ2,i =1

{
E0

F0
,

E1

F1
, . . . ,

Ei

Fi
, . . . ,

EN−1

FN−1
,

EN

FN

}

≤ max
λ1,i +λ2,i =1

{Q0, Q1, . . . , Qi , . . . , QN−1, QN }
= σm

N (k; λi, j ), (53)

where

Q0 = E0

F0
= k(U [μ]0 − g[ρ]0) − k3 T0(

μr + λ2,1μ1 tanh(kL)
) ,

Qi = Ei

Fi
= k(U [μ]i − g[ρ]i ) − k3 Ti(

λ1,iμi + λ2,i+1μi+1
)

tanh(kL)
, i = 1, . . . , (N − 1)

QN = EN

FN
= k(U [μ]N − g[ρ]N ) − k3 TN(

μl + λ1,N μN tanh(kL)
) . (54)

The absolute upper bound arising from (53) will depend on parameters λ1, j , and λ2, j , j =
1, . . . , N . Following the procedure outlined in Sect. 4.1, one can judiciously choose the
parameters λi, j satisfying λ1,i + λ2,i+1 > 0 (so that the denominators Fi s of Qi s are not
zero) at all interfaces and λ1,i + λ2,i = 1, i = 1, . . . , N for the best modal upper bound
σm

N (k) analogous to (41), for the best absolute upper bound σ u
N analogous to (42), and for

the best approximate absolute upper bound σ a
N analogous to (46).

5.1 Long and Short Waves

For long waves (i.e. kL << 1), similar procedure as before gives the following modal upper
bound σm

N ,l(k; λi, j ).

σN ,l(k) ≤ σm
N ,l(k; λi, j ) = max

{
Ql

0, . . . , Ql
p, . . . , Ql

N

}
(55)

where

Ql
N = k(U (μN − μl) − g(ρN − ρl))

μl + μN λ1,N kL
, Ql

0 = k(U (μr − μ1) − g(ρr − ρ1))

μr + μ1λ2,1kL
,

Ql
p = U (μp − μp+1) − g(ρp − ρp+1)

(μpλ1,p + μp+1λ2,p+1)L
, p = 1, . . . , (N − 1) (56)

Ql
0 and Ql

N above are effective growth rates of long waves on the two external interfaces
and Ql

p for p = 1, . . . , N − 1 are the effective growth rates of the (N − 1) internal inter-
faces. These formulas for stability of long waves on these internal and external interfaces
have similar interpretation as in the four layer case when N = 2 which has been discussed
in Sect. 4.2. For example, the modal upper bound is not arbitrarily small for long waves on
internal interfaces and hence such long waves may not be stabilized on these internal inter-
faces. However, maximum growth rates on these interfaces can be made less than σ u

t with
proper choice of parameters which has been addressed in the next subsection. For exactly
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the same reasons as in Sect. 4.2, all long waves on at least one of the two external interfaces
are stabilized provided the internal interfaces are individually stable on their own.

For shortwaves with kL ≥ 1, similarly one obtains following upper bound σ u
N ,s(λi, j ) on

the growth rate.

σN ,s(k) ≤ σ u
N ,s(λi, j ) = max

{
Qs

0, . . . , Qs
p, . . . , Qs

N

}
, (57)

where

Qs
0 = 2T0

μr1

(
U (μr − μ1) − g(ρr − ρ1)

3T0

)3/2

,

Qs
N = 2TN

μNl

(
U (μN − μl) − g(ρN − ρl)

3TN

)3/2

,

Qs
p = 2Tp

μp,p+1

(
U (μp − μp+1) − g(ρp − ρp+1)

3Tp

)3/2

, p = 1, 2, . . . , (N − 1) (58)

Above we have use the following notations:

μ0,1 ≡ μr1 = μr + λ2,1μ1 c,
μi,i+1 = (λ1,iμi + λ2,i+1μi+1)c, i = 1, 2, . . . , (N − 1)

μ N ,N+1 ≡ μ Nl = μl + λ 1,N μ N c.

⎫⎬
⎭ (59)

where c ≈ tanh(1). An absolute upper bound σ u
N ,s dependent on parameters λi, j easily fol-

lows from (57) using the same procedure as in Sect. 4.2. This will result in a formula similar
to (48) except that there will be N +1 similar terms, each one corresponding to one interface,
instead of three as it appears in (48). One most important thing to note that as before this
formula in fact is also an excellent approximation for the absolute upper bound over the entire
spectrum, not just short waves for the same reasons mentioned in the 3-layer case.

5.2 Stability Enhancement

Analogous to the 4-layer case, sufficient conditions for stabilization are the following N
inequalities.

(Uμi − gρi ) <

(
Ti

T

) 1
3
(

μi,i+1

μl + μr

) 2
3 + (Uμi+1 − gρi+1); i = 0, 1, 2, . . . , N (60)

If σ u
t > 0, then the following necessary condition for total stabilization of (N + 2)-layer

flows follows from the above N + 1 conditions.

1 <

i=N∑
i=0

(
Ti

T

)1/3 (
μi,i+1

μl + μr

)2/3

(61)

Notice that it reduces to (51) in the 4-layer case as it should. Following the arguments after
(51), it is easy to derive conclusions similar to the ones given there in the 4-layer case (details
omitted) such as (i) inequality (61) is also a sufficient condition for partial stabilization; (ii)
if one or more of the internal interfaces is individually stable on its own, then conditions less
restrictive than (61) exist for total stabilization. For example, if j th and lth interfaces are
individually stable on its own, then two terms corresponding to these two interfaces in the
formula (61) need not be included in the sum and the resulting formulae will be the necessary
condition for total stabilization.
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6 Variable Viscosity Fluid Layers

The physical set-up here is the same as discussed in Sect. 5 except that each of the N internal
fluid layers has a smooth viscous profile μ(x) with μx > 0 so that each internal layer is
also individually unstable. The case when one or more of these internal layers has constant
viscosity is also included in the following treatment. The field equation in each internal layer
is now defined by general equation (4). This equation simplifies to (5) in the exterior layers:
x < −N L , x > 0. Because of this, the far-field behavior is external layers are same as previ-
ous cases. Following procedure similar as before, following interfacial boundary conditions
at x = −N L , . . . x = −L , x = 0 are obtained.

−(μ− f −
x f )(0) = μr k f 2(0) − σ−1 E0 f 2(0),

(μ+ f +
x f )(−pL) − (μ− f −

x f )(−pL) = −σ−1 E p f 2(−L), p = 1, . . . , N − 1
(μ+ f +

x f )(−N L) = μl k f 2(−N L) − σ−1 EN f 2(−N L),

⎫⎬
⎭

(62)

where Ei = k2(U [μ]i − g[ρ]i ) − k4 Ti , i = 0, 1, . . . , N with [μ]0 = [μ]r = (μr −
μ−(0)), [μ]p = (μ+(−pL) − μ−(−pL)), p = 1, . . . (N − 1) and [μ]N = [μ]l =
(μ+(−N L) − μl). Similarly for [ρ]r , [ρ]p, p = 1, . . . (N − 1) and [ρ]l . Multiplying var-
iable viscosity field equation (4) by f (x) and then integrating across the N internal layers
(−N L , 0), we get

(μ+ f +
x f )(−N L) +

p=N−1∑
p=1

[(μ− f −
x f )]p − (μ− f −

x f )(0) +
0∫

−N L

μ f 2
x dx+

+ k2

0∫
−N L

μ f 2 dx = σ−1k2U

0∫
−N L

μx f 2 dx . (63)

Above [ ]p denotes jump in the bracketed quantity in the direction of flow at the pth inter-
nal interface. Since μ(x), fx (x) are discontinuous at the interior interface locations x =
−(N − 1)L , . . . ,−L , the integrals needs to be split into N parts, each spanning over one
internal layer. Thus we get using relations (62) in (63) and then simplifying

σ =
∑p=N

p=0 E p f 2(−pL) + k2 U
∫ 0
−N L μx f 2

μl k f 2(−N L) + μr k f 2(0) + ∫ 0
−N L μ( f 2

x + k2 f 2) dx
. (64)

Here also, as before, it is adequate for the purpose of estimating the upper bound to ana-
lyze (64) over the wavenumber in the range given by k2 ≤ min(U (μi − μi+1) − g(ρi −
ρi+1)/Ti ), i = 0, 1, . . . , N for which all Ei > 0, i = 0, . . . , N . In such case, it is obvious
that all interfaces are individually unstable on its own. If one or more of these interfaces
is individually stable, then these interfaces do not participate in the analysis for estimating
upper bound.

For 3-layer case N = 1, it is straightforward (see previous sections) to apply the inequal-
ity (10) as we have done in previous sections to (64). This leads to the following absolute
upper bound in strict inequality form similar to the result already presented in Daripa (2008a)
except for the density jump term below.
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σ1 ≤ max

{
2T0

μr

(
U [μ]r − g[ρ]r

3T0

)3/2

,
2T1

μl

(
U [μ]l − g[ρ]l

3T1

)3/2

,
U

μl
sup

x
{μx }

}
= σ u

1 .

(65)

However, for flows involving more than 4 layers it is not so obvious how (64) can be reduced
to a form to which the inequality (10) can be applied to obtain an estimate of the absolute
upper bound similar to the above 3-layer case. However, it becomes possible if all the internal
interfaces are individually stable, i.e., when density stratification across each of the internal
interfaces is stable enough to offset the interfacial Saffman–Taylor instability induced by
unfavorable viscosity jumps across these internal interfaces. For instance, in the four layer
(N = 2) case, (64) becomes

σ = E2 f 2(−2L) + E1 f 2(−L) + E0 f 2(0) + k2 U
∫ 0
−2L μx f 2

μl k f 2(−2L) + μr k f 2(0) + ∫ 0
−2L μ( f 2

x + k2 f 2) dx
. (66)

Since E1 < 0 because the internal interface is individually stable, the term involving E1 can
be dropped which reduces (66) to a form to which the inequality (10) can be applied to obtain
an estimate of the absolute upper bound resulting in

σ < max

{
2T0

μr

(
U [μ]r − g[ρ]r

3T0

)3/2

,
2T2

μl

(
U [μ]l − g[ρ]l

3T2

)3/2

,

U

μl
sup

x
{μx |x �= −L ,−2L , 0}

}

= σ u
2 . (67)

Thus the absolute upper bound is given by the maximum over the effective growth rates of
three entities: two external unstable interfaces and two individually unstable internal layers.
Similar analysis will give exactly similar formula for layered flows with N > 2 (this corre-
sponds to 4-layer flows) when all (N − 1) internal layers are individually stable. In this case,
the absolute upper bound will be given by the maximum over the the effective growth rates
of two external unstable interfaces and of (N − 1) unstable internal layers.

7 Conclusions

In this paper, stability of multi-layer flows is analyzed in the presence of unstable density
stratification and viscosity jumps at various interfaces and also in the presence of unstable
viscous profiles in various internal layers. This extends our previous work (see Daripa 2008a)
in many respects. Most of the mathematical analysis is similar to the case with no density
stratification and physical insight as well as mathematical analysis suggests that density strat-
ification at various interfaces is equivalent to modifying the jumps in viscosity at interfaces
simply by (−[ρ]g/U ) where ρ is the value of the jump in density across the correspond-
ing interface. Among many new contributions in this paper, we specifically mention the
following.

1. We have introduced notions of partial and total stabilizations which helps in presenting
our results concisely. For the same reasons, we have classified interfaces into two groups:
internal and external interfaces.

2. For three-layer Hele-Shaw flows with constant density and constant viscosity layers and
gravity acting in the direction of basic flow, we obtain the following results when σ u

t > 0:
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(i) optimal upper bound results in exact equality forms. These show that the effective
maximum growth rate at an interface can be more than when the interface is considered
individually but less than σ u

t , thus resulting in enhancement of stabilization. (ii) sufficient
conditions for total stabilization which depend on fluid densities and viscosities of all
three fluids as well as interfacial tensions of two interfaces; (iii) a necessary condition
for total stabilization which is also a sufficient condition for partial stabilization. This
condition does not depend on the densities of the fluid layers and hence this condition is
the same as the one in the case when gravity is absent (see Daripa 2008a); (iv) all long
waves on at least one of the two interfaces are always stabilized regardless of value of
the density of the middle layer.

3. Extending the 3-layer constant-viscosity case to the multi-layer case as such is not at all
straight-forward as it may seem without a careful analysis of the 4-layer case in detail.
This was missing in Daripa (2008a) because of which some of the restrictions on the
values of the parameters λi, j were not discovered. We have fixed this problem by first
discovering the role of internal interfaces different from that of external interfaces. The
3-layer case has no internal interface as opposed to the 4-layer case where there is one
internal interface. Since the internal interface responds somewhat differently in compar-
ison to external interfaces from the standpoint of stability, the four layer case needed
to be analyzed first in great detail here which made generalizing the 4-layer results to
multi-layer case considerably easier, compact and correct.

4. In multi-layer flows with more than 3-layer, internal interfaces are distinctly different
from the two external interfaces for the stability of long waves. We have obtained the
following results: (i) upper bounds on growth rate; (ii) maximum growth rate at each of
the interfaces can be made less than σ u

t which gives sufficient conditions for stabiliza-
tion; (iii) a necessary condition for total stabilization which also serves as a sufficient
condition for partial stabilization; (iv) long waves on internal interfaces are not neces-
sarily stabilized in multi-layer flows; (v) long waves on at least one of the two external
interfaces are always stabilized.

5. Extending the 3-layer variable-viscosity case to the multi-layer case as such is difficult.
In fact, we encountered this problem in Daripa (2008a) for 4-layer flows and an upper
bound there could not be obtained for flows with more than three layers. This problem has
been resolved here due to stable density stratification across internal interfaces which
allow application of mathematical tools for estimates of upper bounds for flows with
arbitrary number of layers. We have obtained an absolute upper bound on the growth
rate in multi-layered flows with individually unstable viscous layers and interfaces and
with favorable density stratification at internal interfaces. The upper bound result, for
optimal viscous profiles, will give similar conditions for stabilization as in the constant
viscosity layer cases following the same procedure which has been discussed in Sect. 5.
We omit the details here.

In closing, we mention that quantitative results presented in this paper and techniques
leading to these results are of broad interest to many areas of fundamental and applied sci-
ence. We have treated the displacing fluids as Newtonian. In practice, however, most of the
displacing fluids used in enhanced oil recovery are in general non-Newtonian. For example,
polymeric aqueous phase is non-Newtonian and so is surfactant-laden aqueous phase with or
without polymer. Interestingly, results of this paper can provide some understanding of some
of the observed phenomena when non-Newtonian fluids are used. Due to shear-thinning or
shear-thickening property of the non-Newtonian displacing fluid, a viscous profile is auto-
matically created behind the displacing front due to non-uniform shear in the region behind
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the displacing front. Stabilizing effect of such variable viscosity profiles arising from the non-
Newtonian property of complex displacing fluids can be understood within the Newtonian
framework as has been shown in this paper theoretically. Such viscous profiles can be locally
stabilizing or destabilizing depending on whether the viscosity gradient locally is negative
or positive in the direction of flow. Recent works on viscous fingering in non-Newtonian
fluids (Amar and Poire 1999; Chevalier et al. 2006; Lindner et al. 2002, 2000c,a,b) also show
this to be the case even in the highly non-linear regime of viscous fingering. Therefore, in
the absence of understanding based on exact non-linear theory of non-Newtonian complex
fluids, our results and approach presented in this paper may be useful in interpreting some of
the experimental results on viscous fingering in complex fluids. Towards this end, it is worth
mentioning that stability of the system in the presence of various types of viscous profiles has
been recently studied in great detail within Hele-Shaw model by Daripa and Ding (2012).

In vertical displacement processes where gravity plays a decisive role, density profiles
of displacing fluids also become important, in addition to the viscosity profiles, for overall
stability of the displacement process. In such instances, both, Saffman–Taylor and Ray-
leigh–Taylor, instabilities play a role. Often there are also stratified layers of oil, water and
gas whose displacements by a sequence of displacing fluids of varying viscosity and density
creates a scenario which is addresses in this paper. Oil recovery for such displacement pro-
cesses can be improved using results of this paper. One can use the results to design most
stable displacement process. Stabler the displacement process, less severe is the fingering
problem in general which is desirable for enhanced oil recovery. This entire paper is about
stabilization issues and thus can be very useful. Usually, reducing the maximum growth rate
of the disturbances even within linear regime has one to one correspondence with improv-
ing oil recovery. For example, one can a priori assess the stability response of a multi-layer
displacement process by calculating the upper bound given in inequality (53). Thus, analyz-
ing the parameter space on which this upper bound depends and taking into consideration
various choices of displacement and displacing fluids, one can design an optimal multi-layer
displacement process. For the three-layer displacement process, explicit necessary and suf-
ficient conditions are given for optimal selection of displacing fluids that provide improved
oil recovery over other choices.

Stability characteristics influence the selection of finger width among other factors. In
general, stabler the system wider is the finger with flatter topology at its tip. Leaving out
many factors on which finger width depends, it certainly depends on the wavenumber of
most unstable wave and its growth rate. Thus the finger width for this multi-layer system
usually will decrease with increasingly unstable system if one were to ignore the variation in
the wavenumber of most unstable wave. Stabilization of the displacement process is likely
to provide wider fingers in the non-linear regime than otherwise possible. Hopefully, future
research in this direction will test the validity of this conjecture.

It is perhaps worth mentioning that during immiscible displacement processes in porous
media rarefaction waves behind the displacing front create time evolving viscous and density
profiles behind the displacing front. Consideration of such profiles help in the design of effi-
cient enhanced oil recovery processes (see Slobod and Lestz 1960; Uzoigwe et al. 1974; Shah
and Schecter 1977). There are other problems involving multi-layered flows of complex fluids
where one of the goals is to find ways to control severe instability which can otherwise cause
undesirable intermixing of the layers, particularly in thin skin coextrusion (see Schrenk et al.
2004 and also Matsunaga et al. 2004, Mogavero and Advani 2004 for similar problems).
The stabilization techniques similar to the ones addressed here can be useful there either
directly or indirectly. We must also stress that many of the results obtained in this paper and
the techniques used hold promise for applications to other unstable multi-layer flows such
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as Rayleigh–Taylor unstable flows, coating flows, jet-flows, and to Kelvin–Helmholtz flow,
just to name a few. These results are obviously of fundamental and practical importance to
many applications where stability of flows plays a decisive role.
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