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Abstract In this paper, we discuss a previously unknown selection principle of optimal
viscous configurations for immiscible multi-fluid Hele-Shaw flows that have emerged from
numerical experiments on three- and four-layer flows. Moreover, numerical investigation on
four-layer flows shows evidence of four-layer systems which are almost completely stabiliz-
ing. Simple physical mechanisms that explain both of these findings are discussed.

Keywords Multi-layer Hele-Shaw flow · Porous media flow · Enhanced oil recovery ·
Linear stability · Optimal viscous profile

1 Introduction

We consider flows involving many distinct immiscible fluids in succession in a Hele-Shaw
cell assuming sharp interfaces between different regions of fluids of distinct viscosity pro-
files. See Fig. 1 for example where there are only four layers. Such Hele-Shaw flows have
been referred in all of our papers (Daripa 2008a,b, 2011; Daripa and Pasa 2006, 2007, 2010)
as multi-layer (three-layer, four-layer, and so on) with slight abuse of the usage of the word
”layer” perhaps. In a geoscience context, layer is generically attached to horizontal strata
parallel to the imposed mean flow. However, we have been using the word ”layer” to mean
strata perpendicular to the imposed mean flow. In order to continue the tradition that has been
set by our works in this area and not to confuse readers of our previous works on similar
flows, we henceforth call these flows as multi-layer flows.

At the risk of oversimplification, multi-layer Hele-Shaw flows serve as models for immis-
cible displacement processes during enhanced oil recovery by injection of a sequence of
fluids in a homogeneous porous media. The nuances of oversimplification and similarity
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Fig. 1 Four-layer fluid flow in a
Hele-Shaw cell
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between Hele-Shaw and the porous media flows have been addressed before (see Daripa
and Ding 2012; Daripa 2008a). In general, this displacement process is overall unstable and
complexity of the instability, in its nascent and fully developed stages, usually depends on the
viscous configuration of the system (i.e., the viscous profiles of different layers and jump in
viscosity at each of the interfaces) and interfacial tensions. Fully developed stages containing
fingers of displacing fluids is detrimental in the context of oil recovery due to early water
breakthrough. Past several decades of research in this area have created a general consensus
containing even the linearized growth rates of unstable waves curtail the severity of the fin-
gering phenomena, thereby improving oil recovery. Therefore, one of the goals has been to
develop injection schemes that will reduce the growth rate of the most dangerous wave as
much as possible. The utopian goal in this area, of course, is to have an injection policy that
completely stabilizes the flow which is perhaps impossible for heterogeneous porous media
but may be possible to a large extent for Hele-Shaw flow which is a simplified model for
homogeneous porous media flow.

It is well-known that an injection policy involving two-layer flows such as water displacing
oil is an unstable process. Recent works of the authors and collaborators (see Daripa 2008b,a;
Daripa and Ding 2012) reveal that such displacement processes can be stabilized to some
extent using an injection policy in which two or more fluids having constant and/or mono-
tonic viscous profiles (viscosity profile of each layer bounded by viscosities of the extreme
layer fluids (oil and water)) are injected judiciously in succession. In Daripa (2008a), injec-
tion of an arbitrary number of fluids, each having constant viscosity, in succession has been
considered and an estimate for the maximum growth rate has been obtained from stability
analysis of the flow. There, use of this estimate as a guide to select an optimal injection policy
(i.e., one having most stabilizing capacity measured by the smallest value of the maximum
growth rate) has been shown. Similar multi-layer (or multi-fluid) flows when the fluids in
various layers can have variable viscosity is too difficult to analyze theoretically (see Daripa
2008a) and too impractical to solve numerically due to excessive number of parameters. The
simplest of these is the three-layer flow where the middle layer has variable viscosity profile
and the other two fluid layers have constant viscosity fluids corresponding to oil and water.
This case has been studied theoretically to the extent possible (see Daripa 2008a) and also
numerically recently (see Daripa and Ding 2012). In this later article, authors use numerical
results on optimal profiles to explain possible physical mechanisms behind the selection of
optimal viscous profiles for the middle layer profile in the three-layer flows. In this paper, we
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investigate this issue further using 4-layer flows and also explore the possibility of complete
stabilization of 4-layer flows for some choices of viscous profiles of the internal layers. We
keep this section short by directing readers to Daripa (2008a) and Daripa and Ding (2012)
for a discussion of significance and relevance of optimal injection policies in the context of
enhanced oil recovery including an historical account of other authors’ contribution in this
area.

This paper is laid out as follows. The mathematical model and the numerical procedure for
the solution of the resulting eigenvalue problem are discussed in Sect. 2. In Sect. 3, numerical
results are presented and discussed. Finally, we conclude in Sect. 4 by summarizing the main
results.

2 Preliminaries and Formulation

The four-layer (or equivalently four-domain) Hele-Shaw flows with two internal layers is
shown in Fig. 1. A fluid of viscosity μl occupies an infinite region x < −L and a fluid of vis-
cosityμr > μl occupies an infinite region x > 0. Two intermediate regions −(L/2) < x < 0
and −L < x < −(L/2) have fluids of smooth viscous profilesμ1(x) andμ2(x), respectively.
The interfacial tension at the three interfaces located at x = 0,−L/2,−L are T0, T1, T2,
respectively. With application to enhanced oil recovery in mind, we assume that each of the
two exterior interfaces at x = −L and 0 can have positive viscosity jumps in the direction
of flow, the middle interface can have viscosity jump but the viscosity on either side of the
interface cannot be outside the range [μl, μr]. The viscosity profiles of both the internal layers
are restricted to be linear in this study which include the constant viscosity layer as a special
case. The viscous configuration within these constraints that gives the smallest maximum
growth rate is sought for given values of the interfacial tensions.

The fluid flow in each domain is governed by

∇·u = 0, ∇ p = −μ u,
Dμ

Dt
= 0, (1)

where ∇ =
(
∂
∂x ,

∂
∂y

)
and D

Dt is the material derivative. The first Eq. (1)1 is the continuity

equation for incompressible flow, the second Eq. (1)2 is the Darcy’s law (Darcy 1856), and
the third Eq. (1)3 is the advection equation for viscosity (Gorell and Homsy 1983; Daripa and
Pasa 2005b). This last equation simply states that viscosity is simply advected by the fluid.
Because of the analogy of this flow with flow in a Hele-Shaw cell, this model is commonly
referred as the Hele-Shaw model. A description of this Hele-Shaw model can be found in
Pearson (1977), Gorell and Homsy (1983), Pasa (2008), Daripa (2008a), and Daripa (2008b).

The above system (1) is subject to kinematic interfacial conditions, namely that particles
on interfaces remain there, i.e., on an interface given by x = g̃(y, t) in a moving frame,
g̃t = ũ(0, y, t). Additionally, there are also dynamic boundary conditions on the interfaces,
namely, that jump in pressure across an interface is balanced by local curvature times the
interfacial tension, which within linear approximation for an interface x = g̃(y, t) is given by
p+(0)− p−(0) = T g̃yy , where the superscripts ”+” and ”−” are used to denote the “right”
and “left” limit values, T is the interfacial tension, and g̃yy is the approximate curvature of
the perturbed interface. Details can be found in Daripa and Pasa (2004) and Daripa (2008a).

The system (1) admits a simple basic solution, namely the whole fluid set-up moves with
speed U in the x direction and the two interfaces, namely the one separating the left layer from
the middle-layer and the other separating the right layer from the middle-layer, are planar,
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i.e., parallel to the y-axis. The pressure corresponding to this basic solution is obtained by
integrating (1)2. In a frame moving with velocity (U, 0), the above system is stationary. Here
and below, with slight abuse of notation, the same variable x is used in the moving refer-
ence frame. In linearized stability analysis by normal modes, disturbances (denoted by tilde
variables below) in the moving reference frame are written in the form

(̃u, ṽ, p̃, μ̃) = ( f (x), ψ(x), φ(x), h(x))e(iky+σ t) (2)

where k is the wave number and σ is the growth rate. We then insert this disturbance form into
the linearized disturbance equations obtained from (1) and also into the linearized dynamic
and kinematic interfacial conditions (see Daripa and Pasa 2005a). After some algebraic
manipulation, we obtain the following equations

−(μ1 fx )x + k2μ1 f = λk2Uμ1x f, x ∈ (−L/2, 0),
−(μ2 fx )x + k2μ2 f = λk2Uμ2x f, x ∈ (−L ,−L/2),
fxx − k2 f = 0, x /∈ (−L , 0).

⎫
⎬
⎭ (3)

and the boundary conditions

fx (0) = (λe + q) f (0),
μ1(−L/2) f +

x (−L/2)− μ2(−L/2) f −
x (−L/2) = −λE1 f (−L/2),

fx (−L) = (λr + s) f (−L),

⎫⎬
⎭ (4)

where λ = 1/σ and e, q, r, s are defined by

e = {(μr − μ(0))Uk2 − T0k4}/μ(0), q = −μrk/μ(0) ≤ 0,
r = {(μl − μ(−L))Uk2 + T2k4}/μ(−L), s = −μlk/μ(−L) ≥ 0,
E1 = k2U (μ1(−L)− μ2(−L))− k4T1.

⎫⎬
⎭ (5)

The weak formulation of this problem was analyzed in Sect. 7 of Daripa (2008a), where it
was conjectured from an upper bound estimate of the growth rate, that four-layer flows could
be a candidate for complete stabilization with some monotonic viscous profiles of the type
shown in Fig. 1. Below, we investigate the possibility of complete stabilization numerically.
The governing differential Eqs. (3)1 and (3)2 and boundary conditions (4) are discretized
over the domain (−L , 0) using 2M + 1 uniformly spaced nodes. Then the discrete analog of
the above problem can be written as

A′f = λB ′f, (6)

where A′ and B ′ are square matrices of size (2M + 1)× (2M + 1) and f is the vector with
entries f0, f1, f2, . . . , f2M . The above system is solved numerically for λ from which the
growth rate σ = 1/λ is obtained.

For parameters μl, μr,U, L , T0, T1, and T2 fixed, the growth rate σ then depends on k
and the viscous profiles μ1(x) and μ2(x) of two layers. If we restrict our studies with linear
viscous profiles, then the viscous profile μ1(x) is completely defined by μ1(−L/2) and its
slope, say α1. Similarly the viscous profile μ2(x) is completely defined by μ2(−L/2) and
its slope, say α2. Thus, the growth rate σ of a disturbance with wave number k in general
depends on k, μ1(−L/2), μ2(−L/2), α1, and α2. Below we use several terminology whose
meaning should be clear in the context. But to avoid any confusion, we define these here. The
maximum growth rate σmax refers to the growth rate of the most dangerous wave number
for a given choice of viscous profiles, i.e., for given values of μ1(−L/2), μ2(−L/2), α1,
and α2. Thus σmax depends on μ1(−L/2), μ2(−L/2), α1, and α2. Below, minimized max-
imum growth rate refers to the minimum value of σmax, minimum taken over all allowable
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values of the slopes, α1 and α2, of two linear profiles. This minimized maximum growth
rate still depends on the values of μ1(−L/2) and μ2(−L/2). Similarly, the smallest min-
imized maximum growth rate means the minimum value of minimized maximum growth
rate, minimum taken over all allowable values of μ1(−L/2) and μ2(−L/2). The viscous
profiles of the two layers corresponding to the smallest minimized maximum growth rate
together with the constant viscous profiles of two external layers constitute the optimal vis-
cous configuration of the system because it will be the most stabilizing of all linear viscous
configurations. Thus “smallest minimized maximum growth rate” means the same as “max-
imum growth rate of the optimal viscous configuration.” Below, we use the terminology
“maximum growth rate of the optimal configuration” instead of “smallest minimized maxi-
mum growth rate.”

Since interfacial tensions are generally stabilizing specially for the long waves, it is con-
ceivable that stabilizing (destabilizing) viscous profiles, large enough interfacial tensions,
and destabilizing (stabilizing) interfacial viscosity jumps can together drastically stabilize
the system. We can find merits of this speculation by numerical simulation which we do in
the next section. Purpose of numerical simulations is then to (i) seek such optimal viscous
configuration and determine its dependency on the interfacial tensions; (ii) identify emer-
gence of drastically stabilized flow and corresponding viscous configuration and interfacial
tensions; and (iii) identify common features, if any, between optimal viscous configurations
for the four-layer case and for the previously reported (see Daripa and Ding 2012) three-layer
case. As we will see, we identify the selection principle of optimal viscous configuration that
may as well hold for multi-layer (more than 4-layer) Hele-Shaw flows with small and large
slug sizes.

3 Results and Discussion

All simulations are performed with linear viscous profiles in each of the two internal layers for
the four-layer case. This allows comparison with the results on three-layer linear profile case
reported in Daripa and Ding (2012) so long as the other parameter values are chosen to be the
same, which we do. Simulations for different values of interfacial tensions while keeping the
other parameters same as for the three-layer case, namely μl = 2, μr = 10, L = 1,U = 1,
are carried out.

The first simulation is carried out with interfacial tensions same as in the three-layer case
(see Daripa and Ding 2012), namely T0 = T1 = T2 = 2/3 with

∑
Ti = 2. Figure 2 shows

minimized maximum growth rate σmax versus μ1(−L/2) and μ2(−L/2) in two different
formats, the left panel in standard line plots and the right panel in color grid plot. For each
pair of (μ1(−L/2), μ2(−L/2)), the minimized maximum growth rate is obtained from sim-
ulating over all of the parameter combinations of μ1(0) ∈ [2, 10] and μ2(−L) ∈ [2, 10].
From this figure, we find that σmax = 0.3622 for the optimal profile. For this optimal profile
we find μ1(−L/2) = 5 and μ2(−L/2) = 4. The other two corresponding viscosity values
are μ2(−L) = 4 and μ1(0) = 5. Comparing with the optimal profile for three-layer case
reported in Daripa and Ding (2012), σmax = 0.3652.

Thus, the four-layer and the three-layer flows with optimal viscous profiles are more or
less equally unstable for the above choices of parameters. The optimal viscous profiles for
the three-layer and the four-layer are shown in Fig. 3. We will be focusing exclusively on the
four-layer case henceforth. It is expected based on stability theory that increasing interfacial
tensions should be stabilizing for the flows and perhaps with high enough interfacial tensions,
the flows can be drastically stabilized. But it is perhaps difficult to predict the rate at which

123



358 P. Daripa, X. Ding

2 3 4 5 6 7 8 9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

μ
1
(−L/2)

σ
m

ax

μ
2
(−L/2)=2

μ
2
(−L/2)=3

μ
2
(−L/2)=4

μ
2
(−L/2)=5

μ
2
(−L/2)=6

μ
2
(−L/2)=7

μ
2
(−L/2)=8

μ
2
(−L/2)=9

2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

σmax

μ
1
(−L/2)

μ
2

(−
L

/2
)

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 2 Minimized σmax versus μ1(−L/2) for various values of μ2(−L/2), while both μ2(−L) and μ1(0)
are varying from 2 to 10. The viscous profiles μ1(x) and μ2(x) are both linear. All the other parameters are:
μl = 2, μr = 10, T0 = T1 = T2 = 2/3,U = 1, L = 1, and 2M + 1 = 31
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Fig. 3 Optimal viscous profiles in three-layer and four-layer Hele-Shaw flows

the growth rate decreases with increasing interfacial tensions. Next set of simulations are
carried out to find answers to these issues.

We carry out simulations with interfacial tensions T0 = T2 = 1 and vary the interfacial
tension T1. Figure 4 shows σmax of the optimal profile versus the interfacial tension T1. It is
important to emphasize that the optimal profile also depends on the value of T1. It is clear
that the maximum growth rate decreases with increasing interfacial tension T1. Furthermore,
the maximum growth rate decreases very rapidly with T1 initially, i.e., when T1 is small and
reaches a plateau for large T1, specially for T1 > 100 (approximately). It is interesting to
note that when T1 is close to zero, for the optimal profile σmax = 0.3673 which is close to
σmax = 0.3652, the maximum growth rate for the optimal linear profile in the three-layer
case (see Daripa and Ding 2012). We see from this figure that almost complete stabilization
requires unusually high interfacial tension of the middle interface while interfacial tensions
of the other two interfaces have the modest values, namely T0 = T2 = 1.
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Fig. 4 Maximum growth rate σmax of the optimal profiles versus T1.μ1(0) ∈ [2, 10], μ2(−L) ∈ [2, 10].
Viscous profiles μ1(x) and μ2(x) are both linear. All the other parameters are: μl = 2, μr = 10, T0 = T2 =
1,U = 1, L = 1, and 2M + 1 = 31

Most of our results shown have been obtained with 31 number of grid points and refining
the mesh does not change the results. The overriding conclusions from our study based on
these grid points remain same as with finer grid size. In support of this, plots of σmax versus
T1 for four different grid sizes are shown in Fig. 5. We see the convergence of the plots
as mesh is refined. The inset shows excellent agreement between results obtained with grid
points 31 and 41.

Figure 6 shows six optimal viscous configurations associated with Fig. 4. Different panels
in this figure correspond to different range of values for T1. Top left panel corresponds to
T1 = 0.5, top right panel corresponds to 1 ≤ T1 < 8, and so on. We see that viscosity
in each layer is constant with positive jump (in the direction of displacement) in viscosity
at each of the interfaces. It should be mentioned here that characterization of these viscous
profiles are approximate due to numerical error. The viscosity jump at the middle interface
increases monotonically and that at each of the exterior interfaces decreases monotonically
with increasing values of T1. Figure 7 shows the plot of viscosity jumps at the middle inter-
face versus T1. It shows that the jump in viscosity approaches zero as T1 approaches zero.
The observations made from Figs. 4, 6, and 7 can be explained qualitatively as follows which
is similar, but more involved, to our discussion for the three-layer case (see Daripa and Ding
2012). Next, we show the optimal viscous configurations of the set-up for several values of
the interfacial tension T1.

In general, there is an interplay between interfacial modes and the fingering (instability
in the layer) modes that determines the optimum viscous configuration of such multi-layer
systems. The interfacial and layer instabilities contribute toward the overall instability of the
system as measured by σmax. Increasing interfacial tension provides stabilization of a flow,
which is reflected in this problem through a decrease in the value of σmax (see Fig. 4); this
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Fig. 5 Convergence study: maximum growth rate σmax of the optimal profiles versus T1 for four different
number of grid points: 2M + 1 = 11, 21, 31, 41. Rest of the data are same as in Fig. 4

reduction must be shared by all instability modes (interfacial and layer) present. Since only
the middle interface would be stabilized by an increase in T1 if it were not for the other two
interfaces, a transfer of stability from the middle interface to the other two interfaces must
take place. This is naturally accomplished by a decrease in the viscosity jumps at both the
exterior interfaces and an increase in the viscosity jump at the middle interface. However,
this should occur in a way so that the maximum value of σmax is minimum among all possible
configurations since an optimal configuration is sought in these calculations. This explains
the changes in the optimal configuration (see Fig. 6) that take place with increasing T1. In
particular, it appears from the interfacial viscosity jumps in the optimal configurations shown
in Fig. 6 that splitting of the net gain in stabilization (due to an increase in T1) among three
interfacial modes occurs along the equipartition principle in a qualitative and approximate
sense. It is worth recalling that this same principle explains selection mechanism of the opti-
mum configurations in the case of three-layer Hele-Shaw flows (Daripa and Ding 2012). It
is conjectured here that this same principle will be at work for more than four-layer flows as
well.

The rational explanation given above behind the selection principle of optimal configu-
rations in Fig. 6 should help predict the direction in which the viscosity jumps at various
interfaces should occur (i.e., increase or decrease) in response to changes in one or more
interfacial tensions. It is difficult to predict a priori whether the optimal viscous profile of
each layer will be a constant or a linear viscous profile, keeping in mind that optimal profiles
are sought only with linear profiles of which, constant viscous profile is a special case. The
next set of experiments is designed to exemplify this and to show the possibility of drastic,
almost complete, stabilization of four-layer flows.

In this last set of simulations, we keep interfacial tension T1 = 1 and increase the values of
the other two interfacial tensions T0 and T2 keeping T0 = T2. Figure 8 shows the maximum
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Fig. 6 Optimal viscosity profiles for different values of T1. The parameters are: μl = 2, μr = 10, T0 =
T2 = 1,U = 1, L = 1, and 2M + 1 = 31

growth rates of the optimal profiles versus interfacial tensions T0 = T2. This figure shows that
the maximum growth rate decreases with increasing values of T0 = T2 which is expected.
Two interesting observations are worth paying attention to: (i) dramatic stabilization capac-
ity of interfacial tensions of exterior interfaces. Increasing values of T0 = T2 from 1 to 10
stabilizes the flow in excess of two-fold as seen in Fig. 8. The corresponding optimal viscous
configurations are shown in the top two right panels of Fig. 9. Similar, but slightly less,
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Fig. 7 The viscosity jumps μ1(−L/2) − μ2(−L/2) versus T1.μ1(0) ∈ [2, 10], μ2(−L) ∈ [2, 10].μ1(x)
and μ2(x) are both linear. All the other parameters are: μl = 2, μr = 10, T0 = T2 = 1,U = 1, L = 1, and
2M + 1 = 31

dramatic stabilization of interfacial tension of the middle interface is also seen in Fig. 4; (ii)
With increasing values of T0 = T2, maximum growth rate of the optimal profile approaches
to infinitesimally small value as expected. Interestingly, the flow with the optimal viscous
configuration is almost stable when T0 = T2 = 100. Even though, such dramatic effect
of high interfacial tensions on stabilization is expected on theoretical ground, the selection
principle of optimal viscous configurations that make such dramatic stabilization possible is
not well understood. We discuss this next.

Figure 9 shows optimal viscous configurations for different values of T0 = T2. The changes
in optimal configurations with changes in the values of T0 = T2 can be partly explained using
the selection principle discussed above. For low values of T0 = T2, interfacial modes exist
(see left top panel in Fig. 9) which we have seen in one of the panels (top right) in Fig. 6.
With increasing values of T0 = T2, jumps in viscosity at exterior interfaces must increase to
offset part of the gain in stabilization of these interfaces due to increase in their interfacial
tensions. This also results in a decrease of viscosity jump at the middle interface (see Fig. 9)
thereby providing some stabilization of the middle interface; thus allows overall stabilization
of the system as well as of the individual interfaces. This trend towards selection of optimal
profiles due to increasing values of T0 = T2 brings stabilization of all three interfacial modes
and hence lower maximum growth rate of the flow as expected from stability theory. The
viscosity jump μ1(−L/2)−μ2(−L/2) at the interior interface decreases continuously with
increasing T0 = T2, going from positive to negative values. This dependency is shown in
Fig. 10. However, our selection principle cannot explain the transition from constant to linear
profiles of optimal viscous configurations seen in Fig. 9. We see that the viscous profile in
each layer is constant (linear) if the interfacial viscosity jump, μ1(−L/2) − μ2(−L/2), at
the internal layer in the direction of basic flow is positive (negative).
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Fig. 8 Maximum growth rate σmax of optimal profiles versus T0 and T2.μ1(0) ∈ [2, 10], μ2(−L) ∈
[2, 10].μ1(x) andμ2(x) are both linear. All the other parameters are:μl = 2, μr = 10, T1 = 1,U = 1, L = 1,
and 2M + 1 = 31

Interestingly, with increase in interfacial tensions T0 = T2, constant optimal profiles (mid-
dle left panel of Fig. 9) first become linear optimal profiles (middle right panel of Fig. 9)
with no jump in viscosity at the middle interface. With further increase in T0 = T2 the
middle interfacial mode and the two fingering or layer modes become individually stable.
We see that the four-layer flows with linear optimal viscous profiles of the two layers shown
in the three panels of this figure are almost completely stabilizing as seen in Fig. 8. In
Daripa (2008a), it was speculated that complete stabilization of four-layer flows are pos-
sible for certain types of viscous configurations such as the one shown in Fig. 1. It turns
out that four-layer flows with such viscous configurations as in Fig. 1 are stable. Instead,
four-layer flows with different types of viscous configurations (e.g., bottom two panels of
Fig. 9) are found to be almost completely stabilizing provided the interfacial tensions are
very high.

4 Conclusions

Hydrodynamic stability of an immiscible displacement process involving an arbitrary num-
ber of fluids each having a constant viscosity has been recently studied in Daripa (2008a).
The effect of constant viscosities of various fluids and the interfacial tensions on stabilization
of the system is now reasonably well understood from this work. From the view point of
Enhanced Oil Recovery (EOR), it is more useful to study the case when the fluids in various
layers of finite length (slug size) can have arbitrary monotonic viscous profiles and arbitrary
interfacial tensions. In this context, it is a challenging problem to find the optimal viscous
configuration which has a maximum stabilizing capacity, in particular the one that completely
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Fig. 9 Optimal viscosity configurations for different values of T0 = T2. The parameters are: μl = 2, μr =
10, T1 = 1,U = 1, L = 1, and 2M + 1 = 31

stabilizes an otherwise unstable multi-layer flow in the event that such a configuration exists.
Even more challenging problem is to find the principle (physical mechanisms) behind the
selection of the most optimal viscous configuration for multi-layer Hele-Shaw flows. In this
paper, we have addressed both of these problems.

Recently, we (see Daripa and Ding 2012) numerically addressed the physical mechanisms
behind the selection of optimal viscous configuration in the case of three-layer Hele-Shaw
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flows. The study presented here is an extension of that work to the four-layer flows. Results
on the four-layer flows with constant viscosity layers supports, in most but not all instances,
the following selection principle of optimal unstable viscous configuration: namely, opti-
mal unstable viscous configuration of multi-layer Hele-Shaw flows with constant viscosity
layers results from approximate equi-distribution of the net instability of the system among
interfacial modes. When internal layers are allowed to have arbitrary linear viscous pro-
files, a clear selection principle that applies universally is not so obvious as we have seen
in many numerical examples presented in the previous section. It is conjectured here that
this selection principle for the most optimal unstable viscous configuration may be universal
for multi-layer Hele-Shaw flows with an arbitrary number of interfaces. A second part of
the selection principle which emerges from our numerical studies is about the selection
of a new optimal unstable viscous configuration in response to a change in one or more
of the interfacial tensions of an existing optimal unstable viscous configuration. This part
of the selection principle states that for an optimal unstable viscous configuration with a
fixed (μr − μl), a change in any interfacial tension value induces an appropriate change
in the corresponding interfacial viscosity jump to offset its effect on the individual inter-
facial stability of that interface resulting in a new optimal unstable viscous configuration.
More research and numerical experiments are required to refine both parts of this selection
principle.

Notice that this selection principle is qualitative in nature. It is difficult to predict the
scope and broad application potential of this principle. One of the application areas is of
course EOR where this principle, in conjunction with other prevailing criteria, can be used
in decision making process for designing an optimal injection policy. For example, if one
had to change one of the displacing fluids in an existing optimal multi-fluid injection policy
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for economic or any other reason, then this principle can be used judiciously to choose such
a fluid from a list of available fluids to maximize oil recovery by devising a new optimal
injection policy. Depending on the choice of the fluid, the interfacial tensions of both the
interfaces bounding this fluid layer may change. If this change is positive (negative) for one
of these two interfaces, then the above selection principle suggests that the viscosity of the
fluid should be such that viscosity jump at that interface increases (decreases); similarly for
the other interface. The problem here is that process of application to home in the right fluid
is iterative since interfacial tension depends on the fluid used. There should a wide variety of
fluids to select from to make this work. This application idea just alluded is very primitive
and it is obvious that it needs refinement through further research to solidify the application
process of this principle. Exploring where and how to apply this selection principle success-
fully in an efficient and user-friendly manner is a topic of research in itself which falls outside
the scope of this paper. For now, it is left up to the readers and users of this EOR technology
to find the application of this principle.

A second contribution of this article is the possible existence of a viscous configuration
that may completely, or almost completely, stabilize a four-layer Hele-Shaw flow with a
net positive viscosity jump in the direction of flow. This issue has been investigated here.
Numerical investigations to address this issue were motivated due to a conjecture made in
Daripa (2008a) about possible existence of stable viscous configurations in such flows. As
shown in this paper, almost stable viscous configurations (with a net positive viscosity jump
in the direction of flow) exist provided the interfacial tensions are quite high. However, such
stable configurations (see Figs. 9, 10) are not same as the ones (see Fig. 1) which were orig-
inally conjectured to be stable in Daripa (2008a). Very high interfacial tensions associated
with the most stabilizing (almost stable) configurations are unusual in practical applications.
Therefore, it is not possible in practice to have an almost completely stable viscous con-
figuration for multi-layer Hele-Shaw flows within the restrictions of the viscous profiles
mentioned in the opening paragraph of Sect. 2. However, multi-layer Hele-Shaw flows with
some of the viscous configurations that provide significant stabilization (e.g., see Figs. 6, 9)
can be set-up in practice. Finally, it is worth pointing out that this study provides a broad
understanding of the above two main issues namely, selection principle of optimal viscous
configuration and possibility of viscous configurations that almost completely stabilize the
flow.

In closing, we want to mention current limitations of the selection principle, its appli-
cability for oil industry, and future directions of this research. First of all, our study here
concerns the rectilinear flow. In practice, flooding a reservoir with multiple fluid phases in
succession from a well usually involves radial flow. The effect of radial nature of the flow,
specially near the well, on this selection principle has not been investigated. It needs to be
addressed by further study. It is worth pointing out the relevance of our results for heteroge-
neous reservoir. Toward this end, we want to emphasize that the mean flow direction in this
study is perpendicular to the layers and not parallel as has been mentioned in Sect. 1. There
have been studies of flow of this later type (see Artus et al. 2004; Daripa et al. 1988; Loggia
et al. 1996) in heterogeneous porous media where the layers are of different permeability, a
situation completely different and unrelated to the present study. It is mentioned here merely
for the readers’ benefit.
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