
Z. angew. Math. Phys. 53 (2002) 281–307
0010-2571/02/020281-27 $ 1.50+0.20/0
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Exterior Stokes flows with stick-slip boundary conditions

D. Palaniappan and Prabir Daripa ∗

Abstract. Steady two-dimensional creeping flows induced by line singularities in the presence
of an infinitely long circular cylinder with stick-slip boundary conditions are examined. The
singularities considered here include a rotlet, a potential source and a stokeslet located outside
a cylinder and lying in a plane containing the cylinder axis. The general exterior boundary
value problem is formulated and solved in terms of a stream function by making use of the
Fourier expansion method. The solutions for various singularity driven flows in the presence of a
cylinder are derived from the general results. The stream function representation of the solutions
involves a definite integral whose evaluation depends on a non-dimensional slip parameter λ1 .
For extremal values, λ1 = 0 and λ1 = 1 , of the slip parameter our results reduce to solutions
of boundary value problems with stick (no-slip) and perfect slip conditions, respectively.

The slip parameter influences the flow patterns significantly. The plots of streamlines in each
case show interesting flow patterns. In particular, in the case of a single rotlet/stokeslet (with
axis along y -direction) flows, eddies are observed for various values of λ1 . The flow fields for
a pair of singularities located on either side of the cylinder are also presented. In these flows,
eddies of different sizes and shapes exist for various values of λ1 and the singularity locations.
Plots of the fluid velocity on the surface show locations of the stagnation points on the surface
of the cylinder and their dependencies on λ1 and singularity locations.
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1. Introduction

The study of low Reynolds number flows (Stokes flows) past obstacles has been the
subject of theoretical and practical importance for well over a century and half.
In his classic paper [1] (see also [2]), Stokes discussed solutions of creeping flow
equations in the presence of two and three-dimensional objects. Since then there
has been many applications of Stokes flows in the diverse fields of engineering,
science and technology. Some perspectives on analytical and numerical methods
for solving Stokes flow problems are documented in the standard reference books
on the subject [3, 4, 5, 6]. In these monographs, major attention has been given
to the solutions of creeping flow problems involving regular geometries such as
spheres, spheroids, ellipsoids etc., and their degenerating cases.
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The corresponding two-dimensional Stokes flow problems have also received
attention but less comparatively. The ill-posedness of some two-dimensional prob-
lems could be a possible cause for this. Indeed, Stokes [1] himself noticed that
there is no solution for the uniform flow past a circular cylinder. This has come
to be known as the ‘Stokes paradox’ and is true for any arbitrary two-dimensional
obstacle. The full resolution of the paradox required the perspective of singular
perturbation theory developed by Kaplun and Lagerstrom [7] and Proudman and
Pearson [8]. These authors showed that Stokes equations, although valid near a
boundary, are not uniformly valid throughout the domain of the flow. They further
demonstrated the necessity of Oseen’s approximation and confirmed the solution
due to Oseen [9].

In some circumstances, two-dimensional stokes flow problems become well-
posed and solutions have been found for some such flows. Jeffery [10] studied
the slow viscous flow generated by two circular cylinders rotating with equal and
opposite angular velocities. He discovered that such flows produce finite veloc-
ities far away from the cylinders. In particular, he showed that a uniform flow
is generated at large distances from the rotating cylinders. This phenomenon is
widely known as the ‘Jeffery paradox’. The simplest example that illustrates this
phenomenon was provided by Dorrepaal et al. [11] who noticed an uniform flow in
the case of rotlet/stokeslet induced flows in the presence of a rigid cylinder. Sub-
sequent works [12, 13] demonstrated the same phenomenon with singularities such
as source, potential-dipole etc. Almost all these studies used the no-slip boundary
conditions on the surface of the cylinder. However, there are situations where the
fluid may slip on a boundary surface such as in rarefied gas dynamics [14]. The
presence of slip can influence the flow as well as the physical quantities of interest
which are addressed in this paper.

It should be pointed out that Stokes flow problems in three dimensions with
stick-slip boundary conditions have been addressed in the literature. For instance,
Basset [15] (see also [3]) solved the Stokes flow past a solid sphere with slip on
the surface. Felderhof and coworkers [16, 17, 18, 19] developed schemes for arbi-
trary flow around spherical particles with stick-slip conditions. In their analyses,
a new approach, borrowed from electromagnetic and scattering literature, was in-
troduced. It was also found that the slip parameter influences the flow fields,
drag and torque significantly. Recent articles [20, 21] further highlighted the role
of slip parameter in Stokesian dynamics. Surprisingly, the effect of slip in two-
dimensional Stokes flows has not been explored in detail to-date to the best of
our knowledge. In this article, we investigate the role of slip on some singularity
induced creeping flows in the presence of a cylinder.

The paper is organized as follows. In section 2, the basic equations are given
and using the Stokes stream function the problem is reformulated. The boundary
conditions are then derived in terms of stream function and a brief discussion on the
slip and no-slip constraints is provided. In section 3, the general solution is derived
by the use of Fourier expansion method. The solutions to various singularity driven
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flow problems are presented in section 4. The basic singularities considered here
include rotlet, source and stokeslet. The effect of slip on the flow fields is discussed
in each case. The flow description is illustrated in different situations through
streamline plots. The plots of fluid velocity on the surface are also provided. The
effect of slip parameter and primary singularity locations on the fluid velocity on
the surface is discussed briefly in each case. The concluding remarks of the present
analysis are presented in section 5.

2. Mathematical formulation

We consider a two-dimensional steady creeping flow (Stokes flow) of a viscous
incompressible fluid past an impenetrable infinitely long circular cylinder of radius
a . The governing equations of motion are the linearized Navier-Stokes equations
or simply Stokes equations given by
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Here qr and qθ are the radial and tangential velocity components respectively,
(r, θ) are the polar coordinates, µ is the coefficient of viscosity, p is the pressure
and ∇2 is the two-dimensional Laplacian operator,
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For two-dimensional flows, one can define

qr = −1
r

∂ψ

∂θ
, qθ =

∂ψ

∂r
, (2.4)

satisfying (2.3), where ψ(r, θ) is the stream function. Substitution of (2.4) in (2.1)
and (2.2) yields

∇4ψ = 0. (2.5)

Thus, the problem of steady two-dimensional Stokes flow reduces to solving scalar
biharmonic equation (2.5) for ψ subject to appropriate boundary conditions on
the cylinder. The no-slip or stick boundary conditions are often used in fluid dy-
namics. Here, we employ the stick-slip conditions on the boundary of the cylinder.
In this case, the boundary conditions may be stated as follows.

• Normal velocity is zero on the boundary i.e., qr = 0 on r = a .
• Fluid velocity is proportional to the tangential stress on the surface of the



284 D. Palaniappan and P. Daripa ZAMP

cylinder i.e., qθ = λ
µTrθ , where

Trθ = µ

[
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∂qr
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+ r
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qθ

r

]
,

is the tangential stress and λ ≥ 0 is the slip-length. In terms of stream
function, these conditions become

ψ = 0,
∂ψ

∂r
= λr

∂

∂r

1
r

∂ψ

∂r

}
on r = a. (2.6)

Similar conditions were employed by Basset [15] to solve for the flow past a sphere
in three dimensions. Felderhof and coworkers [16, 17, 19, 18] used the stick-slip
conditions to discuss the scattering coefficients due to spherical particles suspended
in any given unbounded flow field. Here we exploit these conditions to solve the
singularity driven flow problems in the presence of a circular cylinder. It may be
noticed that when λ→ 0 , (2.6) reduces to the usual no-slip conditions and when
λ→∞ , it reduces to the perfect slip conditions.

In the present paper, we investigate the flows induced by the singularities of
Stokes flow in the presence of a circular cylinder. In this case, in addition to (2.6)
we have

ψ ∼ ψ0 as R1 → 0, (2.7)

where ψ0 corresponds to the basic flow in the absence of the cylinder and R1 (see
Fig. 1) is the distance of the field point measured from the singularity. In other
words, flow in the immediate vicinity of the singularity is that of the basic flow.
Below, we present the solution of the problem discussed above.

3. Method of solution

There are classical and numerical methods to solve (2.5) subject to the boundary
conditions (2.6) and (2.7). The most suitable and commonly used technique is
the Fourier expansion method. In this method, the given flow is expanded in a
Fourier series with known Fourier coefficients. Then, the unknown coefficients
of the perturbed flow (also written in a Fourier series) are computed with the
aid of the boundary conditions. The other methods applicable to the present
problem include the image method [11, 13] and the boundary integral equation
method [22]. We adopt the Fourier representation technique for our problem and
make an attempt to sum the resulting series solution. To this end, we write the
given flow field in the absence of the cylinder as

ψ0(r, θ) =
∞∑

n=0

[αnrn + βnrn+2]fn(θ), (3.1)
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Figure 1. Definition of the coordinate system.

where fn(θ) = γn cos nθ + δn sin nθ , and αn, βn, γn, δn are known constants. The
solution satisfying (2.5) in the presence of a circular cylinder can be taken as

ψ(r, θ) = ψ0 +
∞∑

n=0

[
An

rn
+

Bn

rn−2

]
fn(θ), (3.2)

where An, Bn are unknown constants to be determined. We remark that the
constants α0 and β0 corresponding to n = 0 may be adjusted in each problem
by choosing appropriate A0 and B0 . Applying the boundary conditions (2.6),
we obtain

An
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=

(
−1 +

n
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)
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)
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Figure 2. The streamline patterns of the four basic singularity driven flows without the
cylinder. The singularity location is at (x = 2.0, y = 0) in each case. (a) Rotlet; (b) Source; (c)
Stokeslet along x -direction; (d) Stokeslet along y -direction.

where we have defined λ1 = 2λ
a+2λ , 0 ≤ λ1 ≤ 1 . Following the terminology from

the three-dimensional case [16, 17, 18], we refer the relations (3.3) and (3.4) above
as scattering coefficients for a cylinder. The solution (3.2) with the scattering
coefficients given by (3.3) and (3.4) is sufficient to discuss various two-dimensional
problems. It is easy to see from (3.2)–(3.4) that ψ = 0 when n = 1 and β1 = 0 ,
implying that there is no solution for a uniform flow past a circular cylinder with
stick-slip conditions. This, of course, is the well known ‘Stokes paradox’ originally
demonstrated for a rigid circular cylinder by Stokes [1]. As said before, we derive
solutions for singularity driven flows in the presence of a cylinder. We consider the
basic flow due to (i) a rotlet (ii) a source (iii) a stokeslet (the streamline patterns
for these basic flows in the absence of cylinder are shown in Fig. 2), and obtain the
perturbed flow fields in each case in the presence of a cylinder. The solutions for
higher order singularities in the presence of a cylinder may be derived in a similar
manner. For the sake of completeness, we list below the velocity, the pressure and
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the vorticity fields calculated from (3.2).
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∞∑
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Below, we present solutions for singularity induced Stokes flow problems in the
presence of a circular cylinder.

4. Singularity driven flows past a cylinder

We now employ the solution scheme derived in the previous section (equations
(3.2)-(3.4)) to various singularity driven flows in the presence of a cylinder. We
show that the Fourier series solution can be summed to yield closed form expres-
sions for the stream function in all cases. We then use the closed form analytic
solutions to describe the flow fields and discuss their features. In particular, we
demonstrate the effect of the slip parameter on the flow patterns and also on other
physical quantities in each case.

4.1. A circular cylinder and a line rotlet

The stream function of the flow induced by a line rotlet of strength F located at
r = c > a , θ = 0 is given by

ψ0 = F log R1,

where R2
1 = r2 − 2cr cos θ + c2 . The Fourier expansion of ψ0 is given by

ψ0 = F log c− F

∞∑
n=1

rn

ncn
cos nθ. (4.1.1)

In the present problem α0 = F log c , β0 = 0 , γn = 1 and δn = 0 . Comparison
of (3.1) and (4.1.1) for n ≥ 1 yields

αn = − F

ncn
, βn = 0 for all n.
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In the presence of a cylinder with its axis parallel to the axis of the rotlet, the
scattering coefficients from (3.3) and (3.4) become

An = −F

(
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n

nλ1 + 1− λ1

)
a2n

ncn
αn (4.1.2)
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We have chosen A0 = −F log c,B0 = 0 corresponding to n = 0 . Now, the stream
function for the rotlet-cylinder combination becomes

ψ(r, θ) = F
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The Fourier series expansion (4.1.4) can be summed to yield the following exact
solution:

ψ(r, θ) = F

[
log R1 − log

cR2

r
+
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R2
2 = r2 − 2a2

c
r cos θ +
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c2
, R2

1ρ = ρ2 − 2cρ cos θ + c2. (4.1.7)

The second and third terms in (4.1.5) are the image terms due to the presence
of the cylinder. Interestingly the third term involves a definite integral (given in
(4.1.6)) whose evaluation depends on the slip parameter λ1 . This in turn implies
that the image system depends on the slip parameter. We note that for some
values of λ1 , the integral can be evaluated analytically. For any value of λ1

between 0 and 1 , the integral may be computed numerically. The effect of slip
on the image system may be demonstrated by evaluating the integral for specific
values of λ1 . We note that if we set λ1 = 0 in (4.1.5), we recover the results with
no-slip boundary condition [11, 12]. The results for a pure slip boundary condition
may be obtained by setting λ1 = 1 in (4.1.5).

For a rotlet of strength F ′ located at (c′, π) , c′ > a , the stream function in
the absence of a cylinder is ψ0 = F ′ log R′1 , where R′1

2 = r2 + 2c′r cos θ + c′2 .
The modified stream function in the presence of a cylinder may be constructed in
the same way as explained above. The solution in this case is given by

ψ(r, θ) = F

[
log R′1 − log

cR′2
r

+
1− λ1

λ1
(a2 − r2)I ′1

]
, (4.1.8)
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c
r cos θ +

a4

c′2
, R′21ρ = ρ2 + 2c′ρ cos θ + c′2. (4.1.10)

Next we discuss the the flow patterns due to rotlet(s) in the presence of a
cylinder. The streamlines for a single rotlet are sketched using (4.1.5) while the
streamlines for a pair of rotlets are plotted using (4.1.5) and (4.1.8). Various plots
are shown for different values of the parameters λ1, F, F ′, c and c′ keeping the
radius of the cylinder fixed ( a = 1 ). Here, we use the terminology “a pair of
opposite rotlets” to refer to two rotlets of equal strengths but of different sign.
We also use the terminology “a pair of equal rotlets” to refer to two rotlets of
same strengths and of same sign. These terminologies are also used for sources
and stokeslets in subsequent subsections. Below we discuss the flow patterns due
to rotlet(s) in the presence of a cylinder.

Figs. 3-4 show some flow patterns for an increasing sequence of values of the
flow parameter λ1 when a single rotlet is kept fixed at ( c = 2.5, θ = 0 ). For small
values of the parameter λ1 ≤ 0.5 , the flow patterns (Fig. 3(a)–(b)) do not change
qualitatively. In fact, similar patterns have been noticed before when λ1 = 0 (no-
slip case) in [11]. Distinct qualitative changes occur in the flow patterns for values
of λ1 > 0.5 . A nearly circular eddy first appears to the farther right of the rotlet
which gradually moves closer to the rotlet as the value of λ1 slowly increases
to 0.75 (see Fig. 3(c)–Fig. 4(b)) During this process, the shape of the eddy also
changes as it shrinks in overall size. In addition, the fluid exhibits a circulatory
motion enclosing the cylinder, the rotlet, and the eddy. Further increases of λ1

show interesting qualitative changes in the flow pattern. When λ1 = 0.77 , the
single eddy disappears (or if it does not, it is very small and does not show up
in this plot), but the circulatory motion prevails as shown in Fig. 4(c). Upon
increasing the value of the slip parameter further, a different set of eddies appear
around the cylinder (Fig. 4(d)). It is interesting to note that the presence of
eddies for large values of the slip parameter ( λ1 > 0.5 ). This phenomenon is
quite different from the flow pattern observed by Dorrepaal et. al. [11] in the case
of no-slip.

In Figs. 5-6, flow patterns induced by a pair of equal rotlets past a cylinder
are displayed for several values of the slip parameter. The rotlet on the right is
located closer ( c = 2 ) than the one on the left ( c′ = 3 ) to the cylinder. In this
case, circulatory flow enclosing the cylinder and rotlets appears for 0 < λ1 < 0.6
(Fig. 5(a)-(b)). For λ1 > 0.6 (see Fig. 5(c)-(d) and Fig. 6(a)-(d)), flow patterns
change considerably. An eddy first appears to the right (farther away from the
cylinder) of the rotlet which is closer to the cylinder. The flow topology in the
vicinity of the rotlet to the left at (c′, π) is qualitatively similar in these figures.
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Figure 3. Flow past a cylinder in the presence of a single rotlet located at (c = 2.5, 0) for
different values of λ1 . Here F = 1 . (a) λ1 = 0.3 ; (b) λ1 = 0.5 ; (c) λ1 = 0.66 ; (d)
λ1 = 0.68 .

For higher values of of λ1 > 0.7 (approximately) (see Fig. 6(a)-(d)), circulatory
flow enclosing the cylinder and the rotlets appear.

Fig. 7 shows the streamline patterns for a pair of rotlets with (i) opposite
strengths i.e., F ′ = −F (Fig. 7(a)-(b)); and (ii) different strengths ( F ′ = 2F
Fig. 7(c)-(f)). In case (i), for different locations of the rotlets, the flow is almost
uniform in the far-field for smaller values of λ1 . But for λ1 close to 1, flow
patterns are quite different near and far from the cylinder (see Fig. 7(b)). This
shows that λ1 alters the far-field behavior for various rotlet locations. In the
case of a pair of rotlets with different strengths (case (ii)), more interesting eddy
patterns appear in the flow field. Eddies enclosing the cylinder and rotlets are
found to exist when λ1 = 0.2 (Fig. 7(c)). When λ1 = 0.6 , a symmetric pair of
eddies of nearly semi-circular shape appears right above and below the cylinder, in
addition to the circulatory flow around the cylinder and the rotlets (see Fig. 7(d)).
These eddies disappear for values of λ1 = 0.8, 0.9 (see Fig. 7(e)-(f)). In fact, for
these values of the slip parameter, an eddy of unusual size and shape enclosing the
cylinder occurs (Fig. 7(e)). This latter eddy changes its shape if λ1 is increased
further (Fig. 7(f)). It should be pointed out that the location of the rotlets are
fixed in the plots shown in Fig. 7(c)-(f). The change of locations also affect the
generation of eddies and their structures which have not been shown here.

The velocity components with a rotlet at (c, 0) in the presence of a cylinder
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Figure 4. (continuation) Flow past a cylinder in the presence of a single rotlet located at
(c = 2.5, 0) for different values of λ1 . Here F = 1 . (a) λ1 = 0.7 ; (b) λ1 = 0.75 ; (c)
λ1 = 0.77 ; (d) λ1 = 0.79 .

in closed form are given by

qr = −F sin θ
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(4.1.11)
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[
r − c cos θ
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1

−−r − a2
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R2
2

+
1− λ1

λ1

(
−2rI1 + (a2 − r2)

∂I1

∂r

)]
, (4.1.12)

The plots of qθ versus θ on the upper half of the cylinder surface are shown
in Fig. 8(a) for different values of λ1 . The location of the initial rotlet is fixed at
c = 2.0 . The plots show that with increasing θ , the fluid velocity on the upper
half of the cylinder surface is first counter-clockwise, then clockwise and again
back to counter-clockwise. Therefore, two stagnation points occur on the upper
half of the surface for each value of λ1 as can be seen in these figures since all
the curves intersect the qθ = 0 line twice in this interval for θ . Fig. 8(b) shows
the plots of the qθ on the surface versus θ for a fixed value of λ1 = 0.5 and for
different rotlet locations. In this case, the plots are qualitatively also similar. The
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Figure 5. Flow past a cylinder in the presence of a pair of equal rotlets ( F = F ′ = 1 ) located
at (c = 2, 0) and (c′ = 3, π) for various values of λ1 . (a) λ1 = 0.2 ;(b) λ1 = 0.6 ; (c)
λ1 = 0.65 ; (d) λ1 = 0.7 .

two stagnation points on the upper surface of the cylinder for each value of c is
also evident from this figure.

4.2. A circular cylinder and a potential source

The stream function for a potential source of strength S located at r = c > a ,
θ = 0 , in an unbounded fluid is

ψ0 = S tan−1

(
r sin θ

c− r cos θ

)
,

which has the Fourier expansion

ψ0 = S

∞∑
n=1

rn

ncn
sin nθ. (4.2.1)

From (3.1) and (4.2.1) we obtain

αn =
S

ncn
, βn = γn = 0 δn = 1 for all n ≥ 1.
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Figure 6. (continuation) Flow past a cylinder in the presence of a pair of equal rotlets
( F = F ′ = 1 ) located at (c = 2, 0) and (c′ = 3, π) for various values of λ1 . (a) λ1 = 0.73 ;
(b) λ1 = 0.75 ; (c) λ1 = 0.8 ; (d) λ1 = 0.9 .

The scattering coefficients for a source-cylinder combination, calculated from (3.3)
and (3.4), are

An = S

(
−1 +

n

nλ1 + 1− λ1

)
a2n

ncn
αn, (4.2.2)

Bn = −S

(
1
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)
a2n−2

cn
αn. (4.2.3)

Substitution of (4.2.1)-(4.2.3) in (3.2) yields the Fourier series expansion for the
stream function for a source-cylinder combination. The Fourier series can be
summed to obtain the solution in a closed form. The exact expression for ψ in a
source flow in the presence of a cylinder is

ψ(r, θ) = S

{
tan−1

(
r sin θ

c− r cos θ

)
− tan−1
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)
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]
dρ, (4.2.5)



294 D. Palaniappan and P. Daripa ZAMP

Figure 7. Flow past a cylinder in the presence of a pair of rotlets. (i) Opposite rotlets
(F = −F ′ = 1) : (a) λ1 = 0.1 , c = 4, c′ = 2.5 ; (b) λ1 = 0.7, c = 1.7, c′ = 2 ; (ii) Rotlets with
different strengths (F ′ = 2F = 2), c = 2.0, c′ = 3 : (c) λ1 = 0.2 ; (d) λ1 = 0.6 ; (e) λ1 = 0.8 ;
(f) λ1 = 0.9 .

and R2, R1ρ are as defined in (4.1.7). The solution for the no-slip case [13, 12]
may be recovered from (4.2.4) by simply setting λ1 = 0 . The other limiting case
occurs when λ1 = 1 which corresponds to perfect-slip conditions. In this case,
equation (4.2.4) reduces to

ψ(r, θ) = S

[
tan−1

(
r sin θ

c− r cos θ

)
− r2

a2
tan−1

(
a2 sin θ

rc− a2 cos θ

)]
. (4.2.6)

The solution for a source of strength S′ located at (c′, π) in the presence of a
cylinder is
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Figure 8. Fluid velocity on the surface of a cylinder of radius a = 1 due to a rotlet located at
(c, 0), c > 1 . (a) Effect of slip with fixed c = 2.0 ; (b) Effect of different rotlet locations for a
fixed λ1 = 0.5

ψ(r, θ) = S′
{

tan−1

(
r sin θ

c′ + r cos θ

)
−tan−1

(
a2 sin θ

rc′ + a2 cos θ

)
+

1− λ1

λ1
(a2−r2)I ′2

}
,

(4.2.7)
where,

I ′2 =
r

1−λ1
λ1

a
2

λ1

a2/r∫
0

ρ
1

λ1
−2

[
− tan−1

(
ρ sin θ

c′ + ρ cos θ

)
+

ρc′ sin θ

R′21ρ

]
dρ, (4.2.8)

and R′1ρ is as defined in (4.1.12).
In Fig. 9, the flows induced by (i) a single source and (ii) a combination of

source and sink in the presence of a cylinder are shown for various values of λ1 .
In case (i), expected flow patterns emerge and these do not change qualitatively
for different values of the slip parameter (see Fig. 9(a)-(b)). In case (ii), the source
is located to the right of the cylinder at (c, 0) , and the sink is to the left of the
cylinder at (c′, π) . Two typical scenarios are shown in Fig. 9(c)-(d). The location
of the sink (to the left of the cylinder) is fixed in both of these plots. In Fig. 9(c),
the sink is closer than the source to the cylinder ( c = 3.5, c′ = 2.5 ) whereas in
Fig. 9(d), the source is closer than the sink to the cylinder ( c = 2, c′ = 2.5 ). It
is rather striking that there is no direct transfer of fluid from the source to the
sink in the finite plane. This is because the cylinder acts as a blocking mechanism
for the flow in the Stokes regime. It may be seen from the representative plots
Fig.9(c)-(d) that all the fluid expelled from the source goes away to infinity and all
that drawn into the sink comes from infinity. Similar features were noticed in the
case of source-sink flow in the presence of a cylinder with stick (no-slip) boundary
conditions [12]. We have also plotted (not shown here) the flow patterns for
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Figure 9. Flow past a cylinder in the presence of (i) a single source; and (ii) a source and sink;
for various values of λ1 . (i) single source c = 2.5, S = 1 : (a) λ1 = 0.2 ; (b) λ1 = 0.4 ; (ii)
Source and sink, S = −S′ = 1 : (c) λ1 = 0.6 , c = 3.5, c′ = 2.5 ; (d) λ1 = 0.7 ,
c = 2.0, c′ = 3.5 .

various other values of λ1, c and c′ . Eddies do not appear in any of these cases
as expected and the flow topologies are qualitatively similar to the cases discussed
above.

The velocity components for a source at (c, 0) in the presence of a cylinder are
given by

qr = −S

{
r(c cos θ − r)

R2
1

− a2(rc cos θ − a2)
c2R2

2

+
1− λ1

λ1
(a2 − r2)×

r
1−2λ1

λ1

a
2

λ1

a2/r∫
0

ρ
1

λ1

[
1

R2
1ρ

− 2c2 sin2 θ

R4
1ρ

]
dρ

}
, (4.2.9)

qθ = S

{
c sin θ

R2
1

− a2 sin θ

cR2
2

+
1− λ1

λ1

(
−2rI2 + (a2 − r2)

∂I2

∂r

)}
. (4.2.10)

In Fig. 10(a), fluid velocity on the surface is plotted against θ , 0 ≤ θ ≤ π ,
for several values of the slip parameter with location of the source kept fixed at
c = 2.0, θ = 0.0 . As expected, flow on the surface is unidirectional between two
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Figure 10. Fluid velocity on the surface of a cylinder of radius a = 1 due to a source located
at (c, 0), c > 1 . (a) Effect of slip with fixed c = 2.0 ; (b) Effect of different source locations for
a fixed λ1 = 0.5 .

stagnation points θ = 0, θ = π , and the velocity on the surface attains a maximum
somewhere in between whose value and location on the cylinder surface depend
weakly on the value of λ1 . In fact, these plots show that the fluid velocity on
little more than half of the cylinder surface changes little with λ1 . We also see in
Fig. 9(a)-(b) that the slip parameter has little effect on the qualitative features of
the flow fields in the Stokes regime which is consistent with our above observation.
However, similar plots in Fig. 10(b) for several choices of source location with λ1

now fixed at 0.5 show that surface velocity changes appreciably with changes in
the location of the source. It also shows that with increasing c , maximum value
of qθ decreases and its location moves farther away from the stagnation point at
θ = 0 .

4.3. A line stokeslet outside a circular cylinder

(i) Stokeslet with its axis along xxx -direction

We now consider a stokeslet of strength F1 located at r = c > a , θ = 0 ,
whose axis is parallel to the positive x -direction. The stream function for a two-
dimensional stokeslet in an unbounded fluid is given by

ψ0 = F1r sin θ log R1,

with R1 denoting the distance from the stokeslet. The Fourier expansion and the
scattering coefficients in the present problem can be found in a manner similar to
that explained for a rotlet/source problem. For the sake of brevity, we omit the
details and give the exact expression for a stokeslet-cylinder combination. The
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solution for the stream function is

ψ(r, θ) = F1 sin θ

[
r log R1 − r log

( c

a
R2

)
+

1− λ1

λ1

(
r2

a2
− 1

)
I3

]
, (4.3.1)

where

I3 =
(

a2

r

)λ1−1
λ1

a2/r∫
0

ρ
1−λ1

λ1

(
−ρ(ρ− c cos θ)

R2
1ρ

+
(ρ2 − a2)

2R2
1ρ

)
dρ. (4.3.2)

The relations R2 and R1ρ are as defined in (4.1.7). The solutions for a rigid
cylinder with stick (λ1 → 0) or pure slip (λ1 → 1) boundary conditions can be
readily deduced from (4.3.1).

In a similar manner, the solution for a stokeslet of strength F ′1 located at
(c′, π) may be derived. The expression for stream function in this case is given by

ψ(r, θ) = F ′1 sin θ

[
r log R′1 − r log

(
c′

a
R′2

)
+

1− λ1

λ− 1

(
r2

a2
− 1

)
I ′3

]
, (4.3.3)

where

I ′3 =
(

a2

r

)λ1−1
λ1

a2/r∫
0

ρ
1−λ1

λ1

(
−ρ(ρ + c′ cos θ)

R′21ρ

+
(ρ2 − a2)

2R′21ρ

)
dρ. (4.3.4)

The relations R′1 and R′1ρ are as defined in (4.1.12).
The flow patterns due to a single stokeslet (with its axis along x -direction)

in the presence of cylinder change little with λ1 as shown in two typical cases
( λ1 = 0.1 and λ1 = 0.9 , see Fig. 11(a)-(b)). The far-field patterns in these
cases are similar to that in similar stokeslet induced flow with no-slip boundary
conditions (see Dorrepaal et al. [11]). The flow topologies for a pair of opposite
stokeslets (with equal strength but opposite sign) in the presence of a cylinder
are shown in Fig. 11(c)-(d). The stokeslet locations ( r, θ ) are (c, 0) , and (c′, π)
respectively. In all these flows, we find that the flow patterns hardly change with
λ1 . Therefore, we have shown only two typical flow patterns. Stokeslet to the
right is closer than the one to left ( c = 2, c′ = 3 ) in Fig. 11(c) and the situation
is exactly reversed in Fig. 11(d) ( c = 3, c′ = 2 ). We see that the flow patterns
in these two figures are therefore also reversed as expected, and only one of these
two patterns can be considered as prototypical of these flows. Here, a symmetric
pair of toroidal eddies appears in the neighborhood of the stokeslet that is closer
to the cylinder whose shape or size do not change with variation in slip parameter.
However, the stokeslet locations seem to play a dominant role in generating the
eddies which we do not discuss in detail here. It may be worthwhile to point out
that the toroidal eddy patterns shown in Fig. 9 are similar to the viscous eddies
near planar boundaries [23, 24].



Vol. 53 (2002) Exterior Stokes flows with stick-slip boundary conditions 299

Figure 11. Flow past a cylinder in the presence of (i) a single stokeslet ( F1 = 1 ) and (ii) a pair
of opposite stokeslets ( F1 = −F ′1 = 1 ) for various values of λ1 . The axis (axes) of the
stokeslet(s) in both cases are taken to be along x− direction. (a) λ1 = 0.1 ; (b) λ1 = 0.9 ; (c)
λ1 = 0.8 ; (d) λ1 = 0.2 .

The velocity components for a stokeslet-cylinder (with the stokeslet at (c, 0)
and its axis in the x -direction) combination are

qr = −F1 cos θ

[
log R1 − log

c

a
R2 +

(1− λ1)
λ1r

(
r2

a2
− 1

)
I3

]

+ F1 sin θ

[
rc sin θ

R2
1

− a2r sin θ

cR2
2

+
(1− λ1)

λ1r

(
r2

a2
− 1

) (
a2

r

)λ1−1
λ1 ×

a2/r∫
0

ρ
1−λ1

λ1

(
−ρc sin θ

R2
1ρ

+
2ρ2c sin θ(ρ− c cos θ)

R4
1ρ

− (ρ2 − a2)ρc sin θ

R4
1ρ

)
dρ

]
,

(4.3.5)

qθ = F1 sin θ

[
log R1 +

r(r − c cos θ)
R2

1

− log
cR2

a
− r(r − a2

c cos θ)
R2

2

+
(1− λ1)

λ1

[
2r

a2
I3 +

(
r2

a2
− 1

)
∂I3

∂r

)]
. (4.3.6)

The limiting cases for a rigid cylinder with stick boundary conditions and for
a shear-free cylinder with perfect slip conditions may be deduced from (4.3.5)–
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Figure 12. Fluid velocity on the surface of a cylinder of radius a = 1 due to a stokeslet with
its axis along x -direction. (a) Effect of slip with fixed c = 2.0 ; (b) Effect of different stokeslet
locations for a fixed λ1 = 0.5 .

(4.3.7). The plots of fluid velocity on the surface versus θ ( 0 ≤ θ ≤ π ) are
shown in Fig. 12(a)-(b) for different λ1 and c respectively. It shows that the flow
clockwise on the cylinder and has stagnation points at obvious locations θ = 0, π
for all choices of the slip parameter and stokeslet locations.

(ii) Stokeslet with its axis along yyy -direction

The stream function for a stokeslet, with axis along y -direction and strength F2 ,
located at r = c > a, θ = 0 in an unbounded fluid motion is

ψ0 = −F2(r cos θ − c) log R1.

The function ψ0 may be expanded in a similar manner explained in the rotlet
problem and the scattering coefficients in the presence of a cylinder can be found
from(3.1)–(3.4). The closed form stream function in the present case is

ψ(r, θ) =

− F2

[
(r cos θ − c) log R1 −

(
a2

c
cos θ − r

)
log

(
cR2

a

)
+

1− λ1

λ1

(
r2

a2
− 1

)
I4

]
,

(4.3.7)
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where

I4 =
(

a2

r

)λ1−1
λ1

a2/r∫
0

ρ
1−λ1

λ1

(
(ρ cos θ − c)

ρ
log R1ρ

− cos θ log R1ρ − (ρ cos θ − c)(ρ− c cos θ)
R2

1ρ

+
(ρ2 − a2)

2ρ

(ρ cos θ − c)
R2

1ρ

)
dρ.

(4.3.8)

It is clear that the distribution of singularities are involved in the image solution
due to the slip-stick boundary conditions. In the limit λ1 → 0 , (4.3.7) reduces to
the solution obtained by Dorrepaal et al. [11] for a rigid cylinder and in the limit
λ1 → 1 , (4.3.7) yields the solution for a Stokeslet in the presence of a shear-free
cylinder.

The solution for a stokeslet of strength F ′2 located at (c′, π) in the presence
of a cylinder is

ψ(r, θ) =

F ′2

[
(r cos θ + c′) log R′1 −

(
a2

c

′
cos θ + r

)
log

(
c′R′2

a

)
+

1− λ1

λ1

(
r2

a2
− 1

)
I ′4

]
,

(4.3.9)

where

I ′4 =
(

a2

r

)λ1−1
λ1

a2/r∫
0

ρ
1−λ1

λ1

(
(ρ cos θ + c′)

ρ
log R′1ρ

− cos θ log R′1ρ − (ρ cos θ + c′)(ρ + c′ cos θ)
R′21ρ

+
(ρ2 − a2)

2ρ

(ρ cos θ + c′)
R′21ρ

)
dρ.

(4.3.10)

Fig. 13 shows flow patterns due to a single stokeslet (with its axis along y -
direction) in the presence of a cylinder for several values of λ1 . The flow topologies
are seen to change significantly with λ1 . A circulatory flow surrounding the cylin-
der occurs for very small values of λ1 (Fig. 13(a)). A substantial increase of the
slip parameter generates other eddies in the flow field. Two sets of eddies, one
enclosing the cylinder and the other in the neighborhood of the stokeslet, appear
as shown in Fig. 13(b)-(c). The circulatory flow around the cylinder starts disap-
pearing for slightly higher values of λ1 (Fig. 13(d)). We also examined the flow
pattern for values of of λ1 close to 1 and the flow patterns are similar to the case
shown in Fig. 13(a).

In Fig. 14, the flow fields in the case of a pair of opposite stokeslets are plotted
for different values of λ1 . The flow pattern is shown in the range 0.5 ≤ λ1 ≤ 0.78 .
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Figure 13. Flow past a cylinder in the presence of a Stokeslet with its axis along y -direction
located at (c = 2.0, 0) for different values of λ1 ( F2 = 1 ). (a) λ1 = 0.1 ; (b) λ1 = 0.35 ; (c)
λ1 = 0.37 ; (d) λ1 = 0.4 ;

When λ1 = 0.5 , two sets of closed streamlines occur: one in the neighborhood of
the stokeslet at (c, 0) , another enclosing the stokeslet at (c′, π) . In addition, a cir-
culatory flow occurs enclosing the cylinder and the stokeslet at (c′, π) (Fig. 14(a)).
For λ1 > 0.5 , the fluid circulates around the cylinder and the stokeslet at (c, 0)
(Fig. 14(b)-(d)). It is evident from these plots that the shape of the eddies change
with changes in the values of the slip parameter.

The flow patterns in the case of a pair of equal stokeslets are depicted in
Figs. 15-16 for an increasing sequence of values of λ1 . Circulatory flow as in
Fig. 15(a)-(b) occurs for small values of the slip parameter ( λ1 < 0.3 (approximate
value)) which subsequently disappears for higher values of λ1 and more interesting
flow patterns occur in the range 0.35 < λ1 < 0.5 . Here three sets of eddies
are generated enclosing the cylinder and stokeslets separately as evidenced from
Fig. 15(c)-(d). The structure of these eddies change noticeably for various values
of λ1 in this range. For higher values of λ1 , the rotational flow starts appearing
again as seen from Fig. 16(a)-(d).

The velocity components for a stokeslet at (c, 0) in the presence of a cylinder
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Figure 14. Flow past a cylinder in the presence of a pair of opposite stokeslets
( F2 = −F ′2 = 1 ) with their axes along y -direction located at (c = 3, 0), (c′ = 2.5, π) for
different values of λ1 . (a) λ1 = 0.5 ; (b) λ1 = 0.62 ; (c) λ1 = 0.74 ; (d) λ1 = 0.78 ;

are

qr = F2

{
sin θ log R1 + (r cos θ − c)

c sin θ

R2
1

+
a2

rc
sin θ log

( c

a
R2

)

− a2

c

(
a2

c
cos θ − r

)
sin θ

R2
2

+
1− λ1

λ1

(
r2

a2
− 1

)[
1

λ1r

(
a2

r

)λ1−1
λ1

a2/r∫
0

ρ
1−λ1

λ1

(
(ρ cos θ − c)

c sin θ

R2
1ρ

− rc cos θ sin θ

R2
1ρ

+
ρ sin θ(ρ− c cos θ)

R2
1ρ

− (ρ cos θ − c)
c sin θ

R2
1ρ

+ 2
(ρ cos θ − c)(ρ− c cos θ)ρc sin θ

R4
1ρ

+
(ρ2 − a2)

2ρ

(
−ρ sin θ

R2
1ρ

+
2(ρ cos θ − c)ρc sin θ

R4
1ρ

))
dρ

]}
, (4.3.11)
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Figure 15. Flow past a cylinder in the presence of a pair of equal stokeslets ( F2 = F ′2 = 1 )
with their axes along y -direction located at (c = 2, 0), (c′ = 2.5, π) for different values of λ1 .
(a) λ1 = 0.2 ; (b) λ1 = 0.37 ; (c) λ1 = 0.39 ; (d) λ1 = 0.4

qθ = −F2

{
cos θ log R1 + (r cos θ − c)

(r − c cos θ)
R2

1

− cos θ log
c

a
R2

− (r cos θ − a2

c
)
(r − a2

c cos θ)
R2

2

+
1− λ1

λ1

(
2r

a2
I4 +

(
r2

a2
− 1

)
∂I4

∂r

)}
. (4.3.12)

Plots of fluid velocity on the surface of the cylinder against θ are shown in
Fig. 17(a)-(b) for several values of λ1 and c . They show that the location of the
stagnation point at θ = π/2 does not change with changes in the values of λ1

(Fig. 17(a)), and change somewhat with c , the location of the stokeslet. We also
not that the changes in fluid velocity on the surface is more dramatic with changes
in λ1 for a fixed c than with changes in c for a fixed λ1 .

5. Conclusion

Exact analytical solutions are presented for steady Stokes flows induced by singu-
larities in the presence of a circular cylinder with stick-slip boundary conditions.
The primary singularities considered here include (i) rotlet; (ii) potential source;
(iii) stokeslet with its axis along x -direction and (iv) stokeslet with its axis along
y -direction. The closed form solution given here in each case contains an integral
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Figure 16. (continuation of Fig 15) Flow past a cylinder in the presence of a pair of equal
stokeslets ( F2 = F ′2 = 1 ) with their axes along y -direction located at (c = 2, 0), (c′ = 2.5, π)
for different values of λ1 . (a) λ1 = 0.46 ; (b) λ1 = 0.48 ; (c) λ1 = 0.53 ; (d) λ1 = 0.6 .

Figure 17. Fluid velocity on the surface of a cylinder of radius a = 1 due to a stokeslet with
its axis along y -direction. (a) Effect of slip with fixed c = 3.0 ; (b) Effect of different stokeslet
locations for a fixed λ1 = 0.5 .



306 D. Palaniappan and P. Daripa ZAMP

involving the non-dimensional slip parameter λ1 . The flow fields change quite sig-
nificantly with the slip parameter in most of the cases. In the case of flows induced
by a single rotlet and a single stokeslet, eddy patterns emerge for several values
of λ1 . The structure of these eddies most often changes with the slip parameter.
The fluid velocity on the surface of the cylinder is plotted in each case. These
plots show the extent to which the slip parameter and the primary singularity
location may affect the fluid velocity and stagnation points on the surface. The
flow fields produced by a pair of primary singularities in the presence of a cylinder
are also discussed. Here again eddies of different size and shape are noticed for
different values of λ1 . Finally, the solutions and flow patterns presented here
clearly demonstrate the effect of slip on singularity driven flows.
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