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Trapped modes in a channel containing three layers of fluids
and a submerged cylinder

A. Chakrabarti, P. Daripa∗ and Hamsapriye

Abstract. The problem of existence of trapped waves in fluids due to a cylinder is investigated
for the hydrodynamic set-up which involves a horizontal channel of infinite length and depth and
of finite width containing three layers of incompressible fluids of different constant densities. The
set-up also contains a cylinder which is impermeable, fully immersed in the bottom (lower-most)
fluid layer of infinite depth, and extends across the channel with its generators perpendicular
to the side walls of the channel. When the ratios of the densities of the adjacent fluids differ
from unity by sufficiently small quantities, the underlying mathematical problem reduces to a
generalized nonlinear eigenvalue problem involving a cubic polynomial-cum-operator equation.
The perturbation analysis of this eigenvalue problem suggests existence of three distinct modes
with different frequencies: one of the order of one persisting at the free surface, and the other two
of the order of the density ratio (except for modulo one) persisting at the two internal interfaces.
The correlation between these results for the three-layer case and very recent numerical results
of other authors in the two-layer case has also been addressed.
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1. Introduction

There have been propositions in many scientific circles for the development of
underwater tubular bridges across several fjords and straits (see [1]) as a viable
means of improving/increasing modes of transportation. However, undertaking
of such projects requires, among many other concerns, investigation of various
hydrodynamic phenomena that may arise due to the presence of such tubular
bridges. Some of these phenomena may need to be taken into consideration for the
design and construction of such bridges. One such phenomenon is the occurance
of trapped waves: time harmonic oscillations of fluid particles with its amplitude
decaying to zero in the far field. From the 1951 work of Ursell [2], such trapped
waves with one set of frequencies have been known to appear due to the presence
of a cylinder extending across a channel in an incompressible fluid layer of constant
density. Such studies on trapped waves, due to a cylinder in an incompressible fluid
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of infinite depth, by several researchers (see Ursell [2], Jones [3]) have led to the
development of interesting mathematical techniques to solve a class of boundary
value problems involving an unknown parameter ν associated with the frequency
of such trapped waves.

Since straits and fjords rarely contain a fluid of constant density, it seems that a
more appropriate model for studies of existence and properties of such waves should
perhaps include more than one fluid layer because the number and frequencies of
such trapped waves, if they exist in multi-layer cases, may depend on the number of
such fluid layers and their densities. In fact, recently Kuznetsov [4] has investigated
such trapped waves in a channel containing two layers of incompressible fluids of
different constant densities and a fully immersed impermeable cylinder extending
across the channel in the bottom layer. This model is based on the assumption
that the top layer is perhaps pure water and the bottom layer is salty with density
only slightly more than that of pure water (we comment more on this model
later in this section). Kuznetsov’s theoretical analysis of the problem gives rise to
a quadratic-cum-operator nonlinear eigenvalue problem from which he concludes
that, in contrast to the one-layer case, there are two sets of frequencies at which
trapped modes might exist in this two-layer case: one set (having frequency of
the order one) corresponding to disturbances on the free surface which are similar
to those for the one-layer fluid case, and the other set (having frequency of the
order of the density difference) corresponding to trapped modes on the interface
between the two layers,

The sharp interface between the two layers in the above two-layer model is
basically a crude representation of the smooth pycnocline that exists between
fresh and salt water. However, a better model perhaps would involve replacing
the sharp interface in the two-layer model with a layer of finite width in which the
density either varies linearly between upper and lower values, or remains constant
representing some sort of mean density of the middle layer. Even though the first
case is perhaps a better model, the later case is simpler and serves to improve upon
the two-layer model. In this paper, we study the simpler three-layer fluid problem,
each layer having constant density, using Kuznetsov’s theoretical approach. In
particular, we address the problem of existence of trapped waves in a channel
containing three layers, two of which are of finite depths, and a submerged cylinder
in the bottom layer of infinite depth. This problem reduces to the above two
problems (one-layer problem of Ursell [2] and two-layer problem of Kuznetsov [4])
in the limiting cases (see next section).

Using mathematical tools similar to the ones used in [4], we find that the
answer to our problem of existence of trapped waves in the three layer case lies in
addressing the issue of existence of a parameter ν associated with the frequency of
trapped modes. It is shown here that this parameter ν satisfies a cubic polynomial-
cum-operator equation which generalizes the corresponding quadratic equation
that arose in the study of two-layer set-up by Kuznetsov [4].

The generalized problem considered here contains two small parameters ε and
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ε∗, involving the ratios of the densities of the adjacent layers of fluids under con-
sideration (see Sec. 2 below), unlike in the work of Kuznetsov [4] where there is
only a single parameter ε. When ε∗ = αε with α a fixed known constant, we show,
using a perturbation procedure similar to that employed in [4], that there exists
three sets of frequencies (positive eigenvalues) ν which correspond to three dis-
tinct trapped modes of waves. For the hydrodynamic set-up considered here, the
first set of frequencies corresponds to trapped modes of waves on the free surface,
and the other two sets correspond to trapped modes of waves on the two internal
interfaces. This is in contrast with the two sets of trapped modes obtained by
Kuznetsov [4] in the case of two layers, the first set of which corresponds to the
trapped modes of waves on the free surface and the second set corresponds to the
trapped modes of waves on the internal interface.

It is worth emphasizing here that the limiting case ε → 0 (α > 0) of our problem
(see text) corresponds to a one-layer fluid of infinite depth, the one considered by
Ursell [2]. We show below that our results derived in this paper for three-layer case
recover Ursell’s results in this limit. The α → 0 (ε > 0), limit problem corresponds
to the two-layer fluid problem and our results in this limiting case are consistent
with the results of Kuznetsov [4]. Some of these results are discussed in light of
very recent numerical results of Linton and Cadby [5] on the trapped modes in the
two-layer problem which is a limiting case of our three-layer problem.

The layout of the paper is as follows. The problem is defined and formulated in
Sec. 2. In Sec. 3, the problem is reduced to that of determining a single unknown
potential which describes motion of the fluid in the bottom layer. In Sec. 4, with
the aid of the special Green’s function constructed by Ursell [2], the problem is
reduced further to a cubic eigenvalue problem involving an eigenvalue and a set
of known operators. The eigenvalue problem derived in section 4 is analyzed in
Sec. 5 using a perturbation approach and the results obtained are examined for
the limiting values of the parameters. Finally we conclude in Sec. 6.

2. Statement of the problem

We consider three layers of incompressible fluid in a channel of finite width but
of infinite length and depth with vertical side walls. The top layer W ∗∗ contains
fresh water of density ρ∗∗ and has depth (1 − δ) where 0 < δ < 1. The middle
layer W ∗ has salt water of constant density ρ∗ and has depth δ > 0. The bottom
(lower-most) layer W contains muddy water of another constant density ρ and is
of infinite depth. The problem is formulated in a Cartesian (x, y, z) coordinate
system with y-axis directed normal to the bottom internal interface separating the
middle and the bottom layers, and the (x, z)-plane coinciding with this internal
interface. The side walls are at z = ∓b. The bottom layer has a fully immersed
cylinder extending across the channel between its side walls and it has its genera-
tors parallel to the z-axis, i.e. perpendicular to the side walls. Below, the arbitrary
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cross section of the cylinder is denoted by D and its rigid boundary by S. The
mathematical formulation of the problem under consideration is described below
assuming linearized theory of surface water waves.

We define φ(x, y, z, t), φ∗(x, y, z, t), and φ∗∗(x, y, z, t) as the time dependent
velocity potentials corresponding to the irrotational motion of the muddy, salty
and fresh water respectively. It is easy to see that these potentials satisfy the
following equations and conditions (see also [4]).

∇2φ∗∗ ≡ φ∗∗
xx + φ∗∗

yy + φ∗∗
zz = 0, in W ∗∗, (2.1)

φ∗∗
tt + gφ∗∗

y = 0, on y = 1, (2.2)

φ∗∗
z = 0, on z = ±b, (2.3)

∇2φ∗ = 0, in W ∗, (2.4)
φ∗∗

y = φ∗
y, on y = δ, (2.5)

ρ∗∗(φ∗∗
tt + gφ∗∗

y ) = ρ∗(φ∗
tt + gφ∗

y), on y = δ, (2.6)

φ∗
z = 0, on z = ±b, (2.7)

∇2φ = 0, in W, (2.8)
φ∗

y = φy, on y = 0, (2.9)

ρ∗(φ∗
tt + gφ∗

y) = ρ(φtt + gφy), on y = 0, (2.10)

φz = 0, on z = ±b, (2.11)

φn ≡ ∂φ

∂n
= 0, on S, (2.12)

and

φ → 0, as y → −∞. (2.13)

In (2.12) above, S refers to the boundary of the cross-section of the cylinder. The
above relations are the usual ones in the theory of linear hydrodynamics, which
arise from the conditions of continuity of the normal component of the velocity
field and the pressure across the interfaces y = 0, and y = δ. The surface tension
at the interfaces and the free surface is neglected. We assume that

ρ = ρ∗(1 + ε), and ρ∗ = ρ∗∗(1 + ε∗) for ε, ε∗ > 0, (2.14)

where the positive quantities ε and ε∗ are assumed to be sufficiently small for the
analysis, described in section 3, to hold good.

For the problem defined by (2.1) through (2.14), we look for trapped wave
solutions of the form:

φ(x, y, z, t) = e−iωtu(x, y) cos(kz),

φ∗(x, y, z, t) = e−iωtu∗(x, y) cos(kz),

φ∗∗(x, y, z, t) = e−iωtu∗∗(x, y) cos(kz),

(2.15)

where ω corresponds to the frequency of the waves and k is the wave number.
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In order that the boundary conditions on the side walls (i.e. the conditions
(2.3), (2.7), and (2.11)) are satisfied, we set

k =
πn

b
, n = 1, 2, · · · (2.16)

Using the relations (2.15) in the relation (2.1)-(2.13), and defining

ν =
ω2

g
, (2.17)

we obtain that

∇2u∗∗ = k2u∗∗, in W ∗∗, (2.18)
u∗∗

y − νu∗∗ = 0, on y = 1, (2.19)

u∗∗
y = u∗

y, on y = δ, (2.20)

∇2u∗ = k2u∗, in W ∗, (2.21)
ρ∗∗(u∗∗

y − νu∗∗) = ρ∗(u∗
y − νu∗), ony = δ, (2.22)

u∗
y = uy, on y = 0, (2.23)

ρ∗(u∗
y − νu∗) = ρ(uy − νu), on y = 0, (2.24)

∇2u = k2u, in W, (2.25)

un ≡ ∂u

∂n
= 0, on S, (2.26)

u(x, y) → 0, as y → −∞, (2.27)

For trapped mode solutions, we also need that the motion decay at large dis-
tances, i.e.,

u∗∗, |∇2u∗∗| → 0, as |x + iy| → ∞,
u∗, |∇2u∗| → 0, as |x + iy| → ∞,
u, |∇2u| → 0, as |x + iy| → ∞.





(2.28)

In the next two sections, through some manipulations we reduce the problem
defined by (2.18) through (2.28) involving the three unknown functions u, u∗, u∗∗,
to an equivalent but simpler problem which can be analyzed by the tools of the
spectral theory of operators.

3. Reduction to the problem in the lower-most layer

Using the Fourier transform as defined by the relation

ũ(ξ, y) =
∫ ∞

−∞
u(x, y)e−ixξ dx, (3.1)

all the equations and conditions (2.18)-(2.25) are transformed easily and the result-
ing ordinary differential equations for the transformed unknowns ũ∗∗ and ũ∗ are
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solved in terms of the function ũy(ξ, 0) along the lines described by Kuznetsov [4].
In doing so, we find that the condition (2.23) can be expressed as

ũy(ξ, 0) =
ν(1 + ε)ũ(ξ, 0)

ε + νF̃ (ξ, ε∗)
, (3.2)

where

F̃ (ξ, ε∗) =

[ν cosech2(λδ)(ν − λ coth λ) + ε∗{λ2 coth2 λδ

+ (ν2 − λ2)(coth λ coth λδ) − νλ coth λ cosech2(λδ) − ν2}]
λ[ν cosech2(λδ)(λ − ν coth λ) + ε∗{ν2 coth(λδ)×
(1 − coth λ coth λδ) + λ2(coth λ − coth λδ)
+νλcosech2(λδ)}]

, (3.3)

where we have defined λ =
√

k2 + ξ2. Applying the Fourier inversion formula to
the relation (3.2), we obtain

uy(x, 0) =
ν(1 + ε)

2π

∫ ∞

−∞

ũ(ξ, 0)eiξx dξ

ε + νF̃ (ξ, ε∗)
on y = 0. (3.4)

Then using the relations (2.25), (2.26), (2.27) and the condition (3.4), we find
that the whole problem is reduced to that of determining the single unknown func-
tion u(x, y), in the region y < 0, satisfying the following equation and conditions:

∇2u = k2u, (3.5)
∂u

∂n
= 0, on S, (3.6)

and
uy = ν(1 + ε)Mu, on y = 0, (3.7)

where

Mu =
1
2π

∫ ∞

−∞

ũ(ξ, 0)eiξx dξ

ε + νF̃ (ξ, ε∗)
, (3.8)

and the function F̃ (ξ, ε∗) is as given by the relation (3.3). Additionally, we have
the far field conditions (2.27) and (2.28).

4. Reduction to the spectral problem

Following Kuznetsov [4], we seek the function u(x, y), satisfying the equation (3.5),
of the following form

u(x, y) = (V µ)(x, y) =
1
π

∫ ∞

−∞
µ(σ)G(x, y;σ, 0) dσ, (4.1)
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where µ(σ) is a square integrable function and the Green’s function G(x, y;σ, 0)
is given by the following relation (see Kuznetsov [4] and Ursell [2], for details):

G(x, y;σ, 0) = K0(k[(x − σ)2 + y2]
1
2 )

+
∫

S

m(s, σ){K0(k[(x − X(s))2 + (y − Y (s))2]
1
2 )

+ K0(k[(x − X(s))2 + (y + Y (s))2]
1
2 )} ds, (4.2)

where K0 is the well known Macdonald function, s denotes the arc length along
S, X(s) and Y (s) are the coordinates of a point on S, and the function m(s, σ)
is the unique solution of the following Fredholm integral equation of the second
kind:

−πm(s, σ) +
∫

S

m(s′, σ)
∂

∂n(s′)
{K0(k[(X(s′) − X(s))2 + (Y (s′) − Y (s))2]

1
2 )

+ K0(k[(X(s′) − X(s))2 + (Y (s′) + Y (s))2]
1
2 )} ds′

= − ∂

∂n(s)
K0(k[(X(s) − σ)2 + Y 2(s)]

1
2 ). (4.3)

It is easily verified that the function u(x, y), given by the relation (4.1), satisfies
the condition

uy(x, 0) =
∂

∂y
(V µ) = µ, when y = 0. (4.4)

Substituting the relation (4.1) into the relation (3.7) and using Fourier transform,
we obtain

ũy(ξ, 0) = µ̃(ξ) =
ν(1 + ε)Ṽ µ(ξ, 0)

ε + νF̃ (ξ, ε∗)
. (4.5)

The above relation (4.5) can be cast into the following cubic spectral problem
(after utilizing the Fourier inversion formula), involving the spectral parameter (or
eigenvalue) ν and the eigenfunction µ, after setting ε∗ = αε.

ν3[A0 + ε(A + αA1) + αε2A2]µ − ν2
[
B + ε(1 + α)B + αε2B1

]
µ

+ν
[
ε(C0 + αC1) + αε2(C0 + C2)

]
µ − αε2Dµ = 0, (4.6)

where the operators A0, A1, A2, B,B1, C0, C1, C2, and D are defined by the follow-
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ing relations:

Ã0µ =
1

λ sinh2(λδ)

[
λ−2µ̃ + λ−1 coth λṼ µ

]
, (4.7)

Ãµ =
λ−3 coth λ

sinh2(λδ)
Ṽ µ, (4.8)

Ã1µ = λ−3(coth(λδ) coth λ − 1)µ̃ + λ−2 coth(λδ)(coth(λδ) coth λ − 1)Ṽ µ, (4.9)

Ã2µ = λ−2 coth(λδ)(coth(λδ) coth λ − 1)Ṽ µ, (4.10)

B̃µ =
1

λ sinh2(λδ)
((λ−1 coth λ)µ̃ + Ṽ µ), (4.11)

B̃1µ =
1

λ sinh2(λδ)
Ṽ µ + λ−2 coth(λδ)(coth λ coth(λδ) − 1)µ̃, (4.12)

C̃0µ =
1

λ sinh2(λδ)
µ̃, (4.13)

C̃1µ = (coth(λδ) − coth λ)((λ−1 coth(λδ))µ̃ + Ṽ µ), (4.14)

C̃2µ = (coth(λδ) − coth λ)Ṽ µ, (4.15)

D̃µ = (coth(λδ) − coth λ)µ̃. (4.16)

In the next section, we analyze the spectral problem (4.6) by employing a
perturbation approach which is similar to the one employed by Kuznetsov [4].

5. Perturbation method

By taking the inner-product of the equation (4.6), we obtain the cubic equation
(
a0 + ε(a + αa1) + αε2a2

)
ν3 − (

b + ε(1 + α)b + αε2b1

)
ν2

+
(
ε(c0 + αc1) + αε2(c0 + c2)

)
ν − dαε2 = 0, (5.1)

for the determination of the eigenvalue ν where

a0 =< A0µ, µ >=
∫ ∞

−∞
(A0µ)(x)µ(x)dx,

a =< Aµ, µ >, a1 =< A1µ, µ >, a2 =< A2µ, µ >,

b =< Bµ, µ >, b1 =< B1µ, µ >,

c0 =< C0µ, µ >, c1 =< C1µ, µ >, c2 =< C2µ, µ >, d =< Dµ, µ > .

The cubic relation (5.1), which holds good for small positive values of ε, implies
just two possible forms of the perturbational expansion for the eigenvalue ν, along
with the corresponding eigenfunctions µ, as given by
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Form I:

ν ≡ ν+ = ν0 + εν1 + ε2ν2 + · · ·
µ ≡ µ+ = µ0 + εµ1 + ε2µ2 + · · ·

}

(5.2)

and
Form II:

ν ≡ ν(0) = εν
(0)
1 + ε2ν

(0)
2 + ε3ν

(0)
3 + · · ·

µ ≡ µ(0) = µ
(0)
0 + εµ

(0)
1 + ε2µ

(0)
2 + · · ·

}

(5.3)

Now, on substituting the expansions (5.2) into the relation (4.6) and equating
the various powers of ε on either side we arrive at the following set of relations:

ν3
0A0µ0 − ν2

0Bµ0 = 0, (5.4)

ν3
0A0µ1 − ν2

0Bµ1 = (1 + α)ν2
0Bµ0 + 2ν0ν1Bµ0 − ν3

0Aµ0

− αν3
0A1µ0 − 3ν2

0ν1A0µ0 − ν0(C0 + αC1)µ0, (5.5)

ν3
0A0µ2 − ν2

0Bµ2 = αν2
0B1µ0 + 2ν0ν1(1 + α)Bµ0 + 2ν0ν1B1µ0

+ ν2
1Bµ0 + (1 + α)ν2

0Bµ1 + 2ν0ν1Bµ1 − αν3
0A2µ0

− 3αν2
0ν1A1µ0 − 3αν2

0ν1Aµ0 − 3ν0ν
2
1A0µ0

− 3ν2
0ν2A0µ0 − ν3

0Aµ1 − αν3
0A1µ1 − 3ν2

0ν1A0µ1+
+ αDµ0 − ν1(C0 + αC1)µ0 − αν0(C0 + C2)µ0

− ν0(C0 + αC1)µ1, (5.6)

ν3
0A0µ3 − ν2

0Bµ3 = 2αν0ν1B1µ0 + (1 + α)ν2
1Bµ0

+ 2ν0ν2(1 + α)Bµ0 + 2ν1ν2Bµ0 + 2ν0ν3Bµ0

+ αν2
0Bµ1 + 2ν0ν1(1 + α)Bµ1 + 2ν1ν0B1µ1

+ ν2
1Bµ1 + (1 + α)ν2

0Bµ2 + 2ν0ν1Bµ2

− 3αν2
0ν1A2µ0 − 3αν0ν

2
1A1µ0 − 3αν2

0ν2A1µ0

− 3ν0ν
2
1Aµ0 − 3ν2

0ν2Aµ0 − ν3
1A0µ0

− 3ν2
0ν3A0µ0 − αν3

0A2µ1 − 3αν2
0ν1A1µ1

− 3αν2
0ν1Aµ1 − 3ν0ν

2
1A0µ1 − 3ν2

0ν2A0µ1

− 3ν0ν
2
1A0µ1 − 3ν2

0ν2A0µ1 + ν3
0Aµ2

− αν3
0A1µ2 − 3ν2

0ν1A0µ2

+ αDµ1 − ν2(C0 + αC1)µ0 − αν1(C0 + C2)µ0

− ν1(C0 + αC1)µ1 − αν0(C0 + C2)µ1, (5.7)

and so on.
Similarly, substituting the expansions (5.3) into the relation (4.6) and equating
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the various powers of ε on either side leads to the following set of relations:

ν
(0)2

1 Bµ
(0)
0 − ν

(0)
1 (C0 + αC1)µ

(0)
0 + αDµ

(0)
0 = 0, (5.8)

ν
(0)2

1 Bµ
(0)
1 − ν

(0)
1 (C0 + αC1)µ

(0)
1 + αDµ

(0)
1 = −ν

(0)2

1 (1 + α)Bµ
(0)
0

−2ν
(0)
1 ν

(0)
2 Bµ

(0)
0 + ν

(0)3

1 A0µ
(0)
0 + ν

(0)
2 (C0 + αC1)µ

(0)
0 + αν

(0)
1 (C0 + C2)µ

(0)
0 (5.9)

and so on.
The first of the set of relations (5.4)-(5.7) gives rise to the eigenvalue problem

ν0A0µ0 − Bµ0 = 0, (5.10)

for the determination of the nonzero eigenvalue ν0 and the eigenfunction µ0, where
the operators A0 and B are as defined by the relations (4.7) and (4.11). The
eigenvalue problem (5.10) is the same as the one encountered by Kuznetsov [4] in
which these operators are defined as:

A0 = LV + C, and B = L + V, (5.11)

where

Cµ(x) = (2k)−1

∫ ∞

−∞
e−k|x−σ|µ(σ) dσ, (5.12)

Lµ(x) =
∫ ∞

−∞
µ(σ)

(
1
π

∫ ∞

0

coth λ

λ
cos(ξ|x − σ|) dξ

)

dσ, (5.13)

and
V µ(x) = V µ(x, 0),

with the operator V defined by the relation (4.1).
It has been shown by Kuznetsov [4] that the eigenvalue ν0, associated with

(5.10), is positive which is, therefore, also the case in the present problem for all
values of the parameter δ involving the thickness of the top layers of fluids under
our consideration. Then having determined the value of ν0 and the corresponding
eigenfunction µ0 using arguments similar to one in [4], we can determine the val-
ues of ν1, µ1, ν2, µ2, etc. by applying the solvability criteria to the inhomogeneous
equations (5.4), (5.5), (5.6), (5.7), etc. It can be shown ultimately that the eigen-
value ν in the expansion (5.2) is a positive number for a sufficiently small value of
the parameter ε.

We have thus shown that there exists a set of positive numbers ν for sufficiently
small values of the parameter ε = ρ

ρ∗ − 1 (see the relations (2.14)), assuring the
existence of trapped modes of waves on the free surface for all positive values of
the parameters δ and α.

In contrast with the set of relations (5.4)-(5.7) which correspond to the Form-I
of the unknowns ν and µ, we find that the set of relations (5.8)-(5.9), corresponding
to the Form-II of these unknowns, produce two distinct solutions µ given by the
expansion (5.3) for any arbitrary positive value of δ < 1. This fact is obvious
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from relations (4.7)-(4.16) and the positivity of all the operators B,C0, C1 and D
appearing in these relations. In support of this statement, we note the following.

Using inner product along with the relation

< Pµ(x), µ(x) >=
1
2π

< P̃µ(ξ), µ̃(ξ) >≡ 1
2π

∫ ∞

−∞
p̃(ξ)|µ̃(ξ)|2dξ,

for any operator P of the form

Pµ(x) =
∫ ∞

−∞
p(x − σ)µ(σ) dσ,

where µ̃(ξ) represents the Fourier transform of µ(x), we find that relation (5.9)
can be cast into the form

p0(q0 + ṽ)ν(0)2

1 − [p0 + c0(r0 + ṽ)] ν(0)
1 + c0 = 0, (5.14)

where

p0 =
1

λ sinh2(λδ)
, q0 = λ−1 coth λ,

r0 = λ−1 coth(λδ), c0 = α(coth(λδ) − cot(λ)),
(5.15)

and

ṽ(ξ) =
∫ ∞

−∞
v(σ)eiξσ dσ. (5.16)

It is worth emphasizing that it can be shown that V µ(x) defined before is related
to v(σ) through the following convolution.

V µ(x) =
∫ ∞

−∞
v(x − σ)µ(σ) dσ. (5.17)

Then, using the fact that operator V is positive and r0 > q0 for 0 < δ < 1, we find
that both the roots of the quadratic equation (5.14) are positive.

We thus conclude that three sets of frequencies of trapped modes exist in the
case of the hydrodynamic set-up, comprising of three layers of fluids, as considered
in the present work, which is a more general result as compared to the set-up of
Kuznetsov [4], involving just two layers of fluids.

5.1. Case studies for extreme and limiting values of the parameters

In this section we discuss within the framework of the analysis given in the previous
section the zero-parameter solution (e.g., ε = 0) and the zero-parameter-limit (e.g.,
ε → 0) solution for each of the two parameters, ε and α separately.
Two-layer fluid limit: If α = 0 with ε > 0, then ε∗ = αε = 0 meaning ρ∗ = ρ∗∗

(see (2.14)). Therefore, in this case, the upper internal interface disappears re-
ducing the problem to the two-layer case which has been studied by Kuznetsov [4]
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using perturbation approach and also very recently by Linton and Cadby [5] (refer-
eed as ‘LC’ henceforth) using completely numerical approach (we comment more
on LC later). These studies have shown that the solution of this problem sup-
ports trapped modes on both the free surface and the interface for finite density-
difference between the two layers.

Now we look at the zero-α-limit (i.e. α → 0) solution of our three-layer fluid
problem. In the limit α → 0 (ε > 0), equation (4.6) reduces to

ν2(A0 + εA)µ − ν(1 + ε)Bµ + εC0µ = 0.

Then taking its Fourier transform and using (4.7), (4.8), (4.11), and (4.13), it is
easy to compare the resulting relation with the Fourier transformed version of the
relation (22) of Kuznetsov [4] and then conclude that our results in the limiting case
α → 0 reduce to those of Kuznetsov [4]. Thus, two-layer-limit solution of the three-
layer problem considered here is same as the two-layer solution of Kuznetsov [4]. In
this case, it is interesting and important to observe from equation (5.14) that there
exists only one positive value of ν

(0)
1 corresponding to the trapped mode on the

interface of two fluid layers. Therefore, the trapped modes ν
(0)
1 that exist in this

limit must correspond to the trapped modes on the lower interface of the three-
layer fluid set-up. Similarly, the trapped modes ν

(0)
1 that disappears in this limit

must correspond to the trapped modes on the upper interface of the three-layer
fluid set-up.
Single-layer fluid limit: We consider here single-layer-limit solution of our three-
layer problem. In our three-layer-fluid problem if ε = 0, then ε∗ = αε = 0 and
(2.14) implies that there is only a single layer of fluid of infinite depth which is the
problem considered in Ursell [2]. There it has been shown that the solution of this
problem supports trapped modes on the free surface. This has been mentioned
before in the section on Introduction.

Now we look at the zero-ε-limit (i.e. ε → 0) solution of our three-layer fluid
problem. In the limit ε → 0 (α > 0), equation (4.6), after setting ε = 0 and then
taking its Fourier transform, reduces to

νA0µ̃ − Bµ̃ = 0.

Using the definitions (4.7) and (4.11), this equation can be cast into

ν(λ−2µ̃ + q0Ṽ µ) − (q0µ̃ + Ṽ µ) = 0,

where q0 is given by (5.15). Using inner product and the convolution theorem of
Fourier transform along with the fact that V is a positive operator, we can show,
after using the fact that ṽ > 0 which follows from (5.16), that

ν =
q0 + ṽ

λ−2 + q0ṽ
> 0,

and this establishes the Ursell’s result [2] that positive values of ν exist in the
single fluid case of our hydrodynamic set-up. Also note that the eigenvalue ν+
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defined in (5.2) reduces to ν0 and the eigenvalues ν(0) defined through (5.3) vanish
in this limit, Therefore, this eigenvalue ν+ corresponds to trapped modes on the
free surface of the three-layer fluid set-up.

Previously, Kuznetsov (see [4]) has shown using the same perturbation ap-
proach on two-layer fluid problem (as opposed to three-layer case considered here)
that his two-layer solution also recovers Ursell’s result [2] in the single-layer limit.
Remarks: Some remarks are necessary here in light of very recent numerical work
of Linton and Cadby [5] (refereed as ‘LC’ henceforth) on trapped modes in two-
layer fluid. This recent work of LC was brought to our attention after completion
of our work presented above. This two-layer problem which was originally solved
by Kuznetsov a decade ago using perturbation approach as mentioned in this
paper, has been recently solved by LC using numerical approach, but for arbitrary
density ratio between two layers. The single-layer-limit solution of LC, obtained
numerically by extrapolating numerical data for finite-density-difference to zero-
density-difference between layers, supports trapped modes only on the interface
(of the limit problem) and none on the free surface. Therefore, the single-layer-
limit solution of the two-layer numerical solution of LC is not same as that of
the two-layer perturbation solution of Kuznetsov. In LC, no mathematically
sound resolution of this paradox (i.e. the above mentioned contradictory results
between perturbation approach of Kuznetsov and numerical approach of LC) has
been provided. LC provides a physical interpretation of their limit solution which
is that that in the presence of a second layer, however small its width may be,
the trapped modes on the free-surface starts leaking energy along the interface as
suggested by LC (see also LC [5]).

What all this means for our three-layer problem can be a speculation at best
which is this. If one were to solve our three-layer-problem using LC’s numerical
approach (assuming that his numerical results are not flawed), then the single-
layer-limit solution of this three-layer numerical solution should perhaps support
only the modes associated with the lowest interface which is not what we get using
perturbation approach as discussed before. If all this were true, then it would
mean that the single-layer-limit solution of the three-layer numerical solution
is not same as that of the three-layer perturbation solution presented here. At
this point, we do not have any mathematically rigorous resolution of the difficulties
mentioned here since it first requires solving these problems numerically to test the
validity of existing numerical results for the two-layer case and to obtain numerical
results for the three-layer case which have not been worked out yet by anyone. All
this falls outside the scope of this paper and perhaps will be addressed in the
future.
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6. Discussions and conclusions

The mathematical analysis involving a perturbation technique applied to a polyno-
mial-cum-operator eigenvalue problem shows here the existence of trapped modes
of waves in three layers of fluids in a horizontal channel containing a fully immersed
cylinder in the bottom layer. This generalizes the results of Kuznetsov [4] from
two layer case to three layer case. It has been shown that whilst two definite sets of
frequencies of trapped modes exist in the case of two layers, there exist three sets
of such trapped modes in the case of three fluid layers. The one set corresponds to
the trapped modes of waves on the free surface and the other two sets of frequencies
correspond to the two internal interfacial modes of trapped waves, one for each of
the internal interfaces. An analysis of the correlation between our results for the
three-layer case and very recent numerical results of LC in the two-layer case is
given and some inconsistencies in the limiting cases between the perturbation and
numerical solutions are pointed out.
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