1 9.4: Surface Area of Revolution

Goal: Given a curve, find the area of the surface formed by rotating the curve about a horizontal or vertical axis.

Method: Partition the appropriate interval, then approximate the surface using frustrums of cones*

Area of a Cone Frustrum:

(See derivation in the text)

Examples: Find the area of the surface obtained by rotating the curve $y = \sqrt{r^2 - x^2}$, $x \in [-r, r]$ about the x-axis.

*-Why not cylinders? See http://www.math.tamu.edu/~dmanuel/math152/frustrum.pdf for a discussion of this.

Find the area of the surface obtained by rotating the graph of $y = \frac{x^2}{2}$, $0 \le x \le 1$, about the *y*-axis.

Method I:

Method II:

.

The circle $x = \cos t$, $y = 1 + \sin t$ is rotated about the x-axis. Find the area of the resulting surface.

On Beyond Average:

(NOTE CHANGE): Find the area of the surface obtained by rotating the curve $y = \frac{x^4}{8} + \frac{1}{4x^2}$, $x \in [1, 2]$ about the *y*-axis.