Section 1.2: Precalculus Review, part 1

Section 1.2.2 Lines

Definitions:

The slope of a line is given by $m=$

Equations of a Line:

Section 1.2.4 Unit Circle Trigonometry

Complete the following table of values:

θ-value	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin (\theta)$					
$\cos (\theta)$					
$\tan (\theta)$					
$\cot (\theta)$					
$\sec (\theta)$					
$\csc (\theta)$					

Other ways to remember these exact trig values:

1. On your fingers!
2. The Unit Circle

Example: Solve for $x: \sin (2 x)=\cos (x)$

Section 1.2.5 Exponentials and Logarithms

Properties of Exponents:
$a^{0}=$
$a^{-x}=$
$a^{m / n}=$
$a^{x}=a^{y}$ if and only if
$a^{x} \cdot a^{y}=$
$\frac{a^{x}}{a^{y}}=$
$\left(a^{x}\right)^{y}=$
$(a b)^{x}=$
$\left(\frac{a}{b}\right)^{x}=$
IMPORTANT!!! Does $(a+b)^{x}=a^{x}+b^{x} ?$

Definition of a Logarithm (or "In: WTF?")
A logarithm is just the opposite (inverse) of an exponential. This means that $y=\log _{a} x$ can be rewritten as

Similarly, $y=\ln x\left(\right.$ or $\left.\log _{e} x\right)$ can be rewritten as
Properties of Logarithms
$\log _{a}(x y)=$
$\log _{a}\left(\frac{x}{y}\right)=$
$\log _{a}\left(x^{c}\right)=$
$\log _{a}\left(a^{x}\right)=$
$a^{\log _{a} x}=$

Examples:

1. Compute $\log _{3} \frac{1}{27}$
2. Rewrite \sqrt{x} using exponents.
3. Solve for $x: e^{2 x}+2 x e^{2 x}=0$
4. Solve for $x: 20=4\left(3^{x}\right)$
