Section 1.4: Graphing (PREP WORK)

Using a graphing calculator or online at desmos.com/calculator, draw the graph of the following functions (Sketch all graphs in the space below each question. Use a window $X=-3 \cdots 3, Y=$ $-10 \cdots 10$):
$Y_{1}=X^{2}$
$Y_{2}=X^{2}+3$
$Y_{3}=X^{2}+6$
$Y_{4}=X^{2}-3$
$Y_{5}=X^{2}-6$
Explain how the constant at the end affects the graph of $f(x)=x^{2}$.

Draw the graph of the following functions (use a window $X=-5 \cdots 5, Y=-10 \cdots 10$):
$Y_{1}=X^{2}$
$Y_{2}=(X+2)^{2}$
$Y_{3}=(X+4)^{2}$
$Y_{4}=(X-2)^{2}$
$Y_{5}=(X-4)^{2}$
Explain how the constant inside the parentheses affects the graph of $f(x)=x^{2}$.

Draw the graph of $Y_{1}=X^{2}$ and $Y_{2}=-X^{2}$. How does the negative sign affect the graph?

Draw the graph of $Y_{1}=\ln (X)$ and $Y_{2}=\ln (-X)$. How does the negative sign inside the parentheses affect the graph?

Graphs often use a Logarithmic Scale. Solve the following equations explicitly for y (NOTE: use properties of exponents to simplify!):

1. $\log _{10} y=m x+b \quad$ 2. $\log _{10} y=m\left(\log _{10} x\right)+b$

Section 1.4: Graphing

Shifting/Reflecting Functions

From your prep work:
The graph of $y=f(x)+C$ shifts the graph of $f(x)$:

The graph of $y=f(x+C)$ shifts the graph of $f(x)$:

The graph of $y=-f(x)$

The graph of $y=f(-x)$

Vertical and horizontal stretching and compressing (trig functions only):

Logarithmic Scales

Since much of biology deals at the molecular/microscopic level, graphs can be difficult to illustrate. For example, masses at the microbial level can be measured in picograms (10^{-9} grams), nanograms (10^{-6} grams), and micrograms (10^{-3} grams). This is where logarithmic scales come in handy. Consider the above masses:
(NOTE: for a more in-depth discussion of scaling and measurement, see the following website: https://www.cell.com/current-biology/pdf/S0960-9822(08)01411-5.pdf)

Examples:

1. Sketch the graph of $f(x)=-(x-2)^{2}+3$. Describe how this graph is transformed from an appropriate "parent function".
2. Use logarithmic transformations to obtain linear equations. Sketch the graph on an appropriate logarithmic plot:
(a) $R=200 r^{-4}$
(b) $P=60\left(2^{t / 4}\right)$
