Section 3.1: Limits (PREP WORK)

The first historic problem of Calculus (the tangent line)

Go to the website www.math.tamu.edu/ \sim dmanuel/math151/tangent.gif, which shows the function $f(x)=x^{2}$ and the tangent line through the point $(1,1)$. Explain what a tangent line is and why you cannot state exactly the slope of the line based on the given information.

Let $f(x)=x^{2}$. Find the slope of the line which passes through the following points:
a) $x=1$ and $x=2$
b) $x=1$ and $x=1.5$
c) $x=1$ and $x=1.1$

Section 3.1: Limits

Definition/Idea: $\lim _{x \rightarrow a} f(x)=L$ means
$\lim _{x \rightarrow a^{-}} f(x)=L:$
$\lim _{x \rightarrow a^{+}} f(x)=L:$

Examples:
$\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x-4} \quad \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \quad \lim _{x \rightarrow 4} \frac{x^{2}-5 x-4}{x-4}$

Laws for Calculating Limits: Suppose $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then...
$\lim _{x \rightarrow a}(f(x) \pm g(x))=$
$\lim _{x \rightarrow a}(c \cdot f(x))=$
$\lim _{x \rightarrow a}(f(x) \cdot g(x))=$
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$

PROVIDED

$\lim _{x \rightarrow a}(f(x))^{n}=$

Two Key Limits:

$\lim _{x \rightarrow a} c=\quad \quad \lim _{x \rightarrow a} x=$

How to Use these Laws (then see that you don't have to):
Algebraically evaluate $\lim _{x \rightarrow 1} x^{3}-3 x^{2}+6$

Algebraically evaluate $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x-4}$.

Algebraically evaluate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$

If $f(x)= \begin{cases}1+2 x & \text { if } x<2 \\ 3 & \text { if } x=2, \text { algebraically evaluate } \lim _{x \rightarrow 2} f(x) \\ \frac{11}{2}-\frac{1}{4} x & \text { if } x>2\end{cases}$

Algebraically evaluate $\lim _{x \rightarrow 4} \frac{\frac{1}{x}-\frac{1}{4}}{x-4}$

