WEEK 14A REVIEW (8.5 and 8.6)

Many natural and social phenomena produce a continuous distribution with a bell-shaped curve.

Every bell-shaped (NORMAL) curve has the following properties:

- Its peak occurs directly above the mean, μ
- The curve is symmetric about a vertical line through μ The curve never touches the x-axis. It extends indefinitely in both directions.
- The area between the curve and the x-axis is always 1 (total probability is 1).

The probability that a data value will fall between $x=a$ and $x=b$ is given by the area under the curve between $x=a$ and $x=b$.

The standard normal curve has $\mu=0$ and $\sigma=1$ and uses Z

Calculator commands are

- normalcdf (a, b, μ, σ) to get $P(a \leq x \leq b)$
- $\operatorname{invNorm}(p, \mu, \sigma)$ to get the c value for $p=P(x \leq c)$

Example: Given that Z is the standard normal variable, find
(a) $P(Z>0.65)$

(b) $P(Z<1)$

(c) $P(-1.2<Z<0)$

(d) a value of d such that $P(Z \leq d)=0.25$

(e) a value of e such that $P(Z \geq e)=0.35$

(f) a value of f such that $P(-f \leq Z \leq f)=0.72$

Example: Suppose that the course scores are normally distributed with a mean of 73 and a standard deviation of 12 .
(a) What is the probability that a student earns a C by scoring between 70 and 80 ?

(b) What is the minimum exam grade required for a student to score in the $90^{\text {th }}$ percentile?

(c) What grades bracket the middle 50% of the students?

