Chapter 7 Notes	1	(c) Epstein, 2013	Chapter 7 Notes	2	(c) Epstein, 2013	
CHAPTER 7: PROBABILITY			<i>Example</i> What is the sample space for flipping a fair coin three times?			
7.1: Experiments, Sample Spaces	and Events					
An <i>experiment</i> is an activity with a rolling dice and choosing cards are	an observable result. T all probability experin	ossing coins, nents.				
The result of the experiment is callest of all outcomes or sample point experiment.	ed the <i>outcome</i> or <i>sam</i> s is called the <i>sample</i> s	ple point. The pace of the				
<i>Example</i> What is the sample space for flippi	ng a fair coin? Rolling	g a 6-sided die?	Find the event E where E	= { $x x$ has exactly one he	ad}	
			Find the event E where E	$= \{x x \text{ has two or more holds} \}$	eads}	
An <i>event</i> is a subset of a sample sp or more outcomes that are in the sa <u><i>Example</i></u> What are all possible events for the	ace. That is, an event mple space. e experiment of flipping	can contain one g a fair coin?	Find the event E where E	$= \{x x \text{ has more than 3 he} \}$	eads}	
			A sample space in which ea occurring is called a UNIF	ach of the outcomes has t ORM SAMPLE SPACE.	he same chance of	
<i>Example</i> How many events are possible whe	en a six-sided die is rol	led?	<u>Example</u> A bowl contains the letters uniform sample space?	AGGIES. How many ou	tcomes are in the	

Chapter 7 Notes

3

(c) Epstein, 2013

What is the uniform sample space for rolling two fair six-sided dice?

1~ 1	2~ 1	3~ 1	4~ 1	5~ 1	6~ 1
1~ 2	2~ 2	3~ 2	4~ 2	5~ 2	6~ 2
1~3	2~ 3	<mark>3~</mark> 3	4~ 3	5~ 3	<mark>6∼</mark> 3
1~ 4	2~4	3~ 4	4~ 4	5~ 4	6~ 4
1~5	2~5	<mark>3~</mark> 5	4~ 5	<mark>5~</mark> 5	<mark>6~</mark> 5
1~ 6	2~6	3~ 6	4~ 6	5~ 6	<mark>6~</mark> 6

These sample spaces have all been finite. That is, we can list all the elements. An infinite sample space has to be described; you can't list all the elements:

<u>Example</u>

What is the sample space for the time spent working on a homework set?

Describe the event of spending between one and two hours on a homework set.

(c) Epstein, 2013

7.2 Definition of Probability

The probability of an event, P(E) is a number between 0 and 1, inclusive. If P(E) = 0, then the event *E* is impossible. If P(E) = 1, then the event *E* is certain.

4

The *theoretical probability* of an event *E* occurring is based on the sample space *S* having equally likely outcomes. Then probability of the event *E* occurring is

$$P(E) = \frac{\text{number of outcomes in event E}}{\text{number of outcomes in the sample space}} = \frac{n(E)}{n(S)}$$

Example

Consider flipping a fair coin three times. Find the following probabilities:

(a) Exactly one head is seen.

(b) Two or more heads are seen.

(c) More than 3 heads are seen.