REAL ANALYSIS MATH 608 HOMEWORK #10

Problem 1. Let $T \in L(H)$ where H is a Hilbert space.

- (1) Show that there is a unique operator $T^* \in L(H)$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$.
- (2) Show that $Ker(T) = T^*(H)^{\perp}$.
- (3) Show that T is unitary if and only if $T^{-1} = T^*$.
- (4) Show that a bounded linear map P is an orthogonal projection if and only if $P^2 = P = P^*$.

Hint: For (1) use the representation theorem for Hilbert spaces and the adjoint of an arbitrary operator between Banach spaces.

Problem 2 (Reflexivity of *L_p*-spaces).

- (1) Let X, Y be Banach spaces. Show that if $T: X \to Y$ is a surjective isometry then the dual operator $T^*: Y^* \to X^*$ is a surjective isometry.
- (2) Show that, for every $p \in (1, \infty)$ and measure μ , $L_p(\mu)$ is reflexive.

Hint: For (2) use (1) and the representations theorems for $L_p(\mu)$ spaces to define a surjective isometry between $L_p(\mu)$ and $L_p(\mu)^{**}$, and verufy that this map coincides with the canonical isometric embedding of $L_p(\mu)$ into $L_p(\mu)^{**}$.

Problem 3.

(1) Let $1 and <math>f \in L_{p,\infty}(\mu) \cap L_{q,\infty}(\mu)$. Show that $f \in L_r(\mu)$ for all $r \in (p,q)$ and if $\frac{1}{r} = \frac{1-\theta}{p} + \frac{\theta}{q}$

$$||f||_r \leq \left(\frac{r}{r-p} + \frac{r}{q-r}\right)^{\frac{1}{r}} ||f||_{p,\infty}^{1-\theta} \cdot ||f||_{q,\infty}^{\theta}.$$

- (2) Deduce from assertion (1) the case $p_0 = p_1 = p \in (1, \infty)$ and $p \leq q_0 < q_1 < \infty$ of the Marcinkiewicz interpolation theorem.
- (3) (Bonus question) Did you have to use the sublinearity of the map T and the condition $p \le q_0 < q_1 < \infty$ in (2)?

Hint: For (1) use that $||f||_r^r = r \int_0^\infty t^{r-1} \mu\{|f| > t\} dt$ and split the integral at $\beta = ||f||_{q,\infty}^{q/(q-p)} ||f||_{p,\infty}^{-p/(q-p)}$.