REAL ANALYSIS MATH 608 HOMEWORK \#10

Problem 1. Let $T \in L(H)$ where H is a Hilbert space.
(1) Show that there is a unique operator $T^{*} \in L(H)$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in H$.
(2) Show that $\operatorname{Ker}(T)=T^{*}(H)^{\perp}$.
(3) Show that T is unitary if and only if $T^{-1}=T^{*}$.
(4) Show that a bounded linear map P is an orthogonal projection if and only if $P^{2}=P=P^{*}$.

Hint: For (1) use the representation theorem for Hilbert spaces and the adjoint of an arbitrary operator between Banach spaces.

Problem 2 (Reflexivity of L_{p}-spaces).
(1) Let X, Y be Banach spaces. Show that if $T: X \rightarrow Y$ is a surjective isometry then the dual operator $T^{*}: Y^{*} \rightarrow X^{*}$ is a surjective isometry.
(2) Show that, for every $p \in(1, \infty)$ and measure $\mu, L_{p}(\mu)$ is reflexive.

Hint: For (2) use (1) and the representations theorems for $L_{p}(\mu)$ spaces to define a surjective isometry between $L_{p}(\mu)$ and $L_{p}(\mu)^{* *}$, and verufy that this map coincides with the canonical isometric embedding of $L_{p}(\mu)$ into $L_{p}(\mu)^{* *}$.

Problem 3.

(1) Let $1<p<q<\infty$ and $f \in L_{p, \infty}(\mu) \cap L_{q, \infty}(\mu)$. Show that $f \in L_{r}(\mu)$ for all $r \in(p, q)$ and if $\frac{1}{r}=\frac{1-\theta}{p}+\frac{\theta}{q}$

$$
\|f\|_{r} \leqslant\left(\frac{r}{r-p}+\frac{r}{q-r}\right)^{\frac{1}{r}}\|f\|_{p, \infty}^{1-\theta} \cdot\|f\|_{q, \infty}^{\theta} .
$$

(2) Deduce from assertion (1) the case $p_{0}=p_{1}=p \in(1, \infty)$ and $p \leqslant q_{0}<q_{1}<\infty$ of the Marcinkiewicz interpolation theorem.
(3) (Bonus question) Did you have to use the sublinearity of the map T and the condition $p \leqslant q_{0}<q_{1}<\infty$ in (2)?
Hint: For (1) use that $\|f\|_{r}^{r}=r \int_{0}^{\infty} t^{r-1} \mu\{|f|>t\} d t$ and split the integral at $\beta=\|f\|_{q, \infty}^{q /(q-p)}\|f\|_{p, \infty}^{-p /(q-p)}$.

