REAL ANALYSIS MATH 608
 HOMEWORK \#10

Problem 1. Let $T \in L(H)$ where H is a Hilbert space.
(1) Show that there is a unique operator $T^{*} \in L(H)$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in H$.
(2) Show that $\operatorname{Ker}(T)=T^{*}(H)^{\perp}$.
(3) Recall that T is unitary iff T is a surjective linear map that preserves the scalar product iff T is an onto isometry.

Show that T is unitary if and only if T is invertible and $T^{-1}=T^{*}$, i.e. $T T^{*}=T^{*} T=I$.
(4) Show that T is unitary if and only if T^{*} is unitary.
(5) Show that a bounded linear map P is an orthogonal projection if and only if $P^{2}=P=P^{*}$.

Hint: For (1) use the representation theorem for Hilbert spaces and the adjoint of an arbitrary operator between Banach spaces.

Solution.

(1) Uniqueness is straightforward.

Given $y \in H$, consider the map $\phi_{y}: x \in H \rightarrow\left\langle P x, y>\in \mathbb{F}\right.$. One can easily verify that ϕ_{y} is a bounded linear form and by Riesz representation theorem there is a unique $z_{y} \in H$ such that $\phi_{y}(x)=<x, z_{y}>$, for all $x \in H$. If we let $P^{*} y=z_{y}$ (which is well-defined by uniqueness), then for all $x, y \in H$ one has $\langle P x, y\rangle=\left\langle x, P^{*} y\right\rangle$.

Another way to prove existence is as follows. Let $T^{*} \stackrel{\text { def }}{=} \Phi^{-1} \circ T^{d} \circ \Phi$ where T^{d} is the adjoint operator (in the Banach space sense) and $\Phi: H \rightarrow H^{*}$ is the anti-linear surjective isometry from Riesz representation theorem, i.e. for all $y^{*} \in H^{*}$ and $h \in H, y^{*}(h)=\left\langle h, \Phi^{-1}\left(y^{*}\right)\right\rangle$. Then, $T^{*}: H \rightarrow H$ is clearly linear and bounded, and it remains to observe that $\left\langle x, T^{*} y\right\rangle=\left\langle x, \Phi^{-1} T^{d} \Phi y\right\rangle=\left(T^{d} \Phi\right)(y)(x)=$ $T^{d}(\Phi(y)(x)=\Phi(y)(T x)=\langle T x, y\rangle$.
(2) Since for all $x, h \in H,\left\langle x, T^{*}(h)\right\rangle=<T x, h>$ the conclusion immediately follows. Indeed, if $x \in$ $\operatorname{ker}(T)$ then $<x, T^{*}(h)>=<0, h>=0$ and hence $\operatorname{ker}(T) \subset T^{*}(H)^{\perp}$, and if $x \in T^{*}(H)^{\perp}$ then $0=<$ $T x, h>$ and $T x \in H^{\perp}=\{0\}$.
(3) If T is invertible and $T^{-1}=T^{*}$, then T is surjective by assumption and for all $\left.x, y \in H,<T x, T y\right\rangle=<$ $\left.x, T^{*} T y\right\rangle=\langle x, y\rangle$, and thus T is unitary.

Assume now that T is unitary. Then $\langle x, y\rangle=\langle T x, T y\rangle=\left\langle x, T^{*} T y\right\rangle$ for all $x, y \in H$ and thus $T^{*} T=I$, i.e. T is left invertible. But we know that T is invertible and hence $T^{-1}=T^{*}$.
(4) Assume that T is unitary. It is easy to see by uniqueness of the adjoint that $I^{*}=I(\langle I x, y\rangle=\langle x, I y\rangle)$ and $(A B)^{*}=B^{*} A^{*}\left(\langle A B x, y\rangle=\left\langle B x, A^{*} y\right\rangle=\left\langle x, B^{*} A^{*} y\right\rangle\right)$. Since by assumption T^{*} is invertible and $T T^{*}=I$, after taking adjoints we have that $\left(T T^{*}\right)^{*}=T^{* *} T^{*}=I^{*}=I$, and hence $\left(T^{*}\right)^{-1}=\left(T^{*}\right)^{*}$, i.e. T^{*} is unitary.

Another proof is as follows. Since T is unitary it preserves the scalar product, and one has $\left.<T^{*} x, T^{*} y\right\rangle=\left\langle T T^{*}, T T^{*} y\right\rangle=\langle x, y\rangle$, and T preserves the scalar product. Moreover, since T^{*} is surjective (because invertible when T is unitary) it follows that T^{*} is unitary.

Yet another proof uses the definition of T^{*} in terms of the Banach space adjoint and goes as follows: If T is unitary, we know that T^{*} is invertible and thus surjective. It remains to show that T^{*}
preserve the scalar product. But

$$
\begin{aligned}
<T^{*} x, T^{*} y>_{H} & =<\Phi^{-1} T^{d} \Phi x, \Phi^{-1} T^{d} \Phi y>_{H} \text { (definition of the adjoint) } \\
& =<T^{d} \Phi x, T^{d} \Phi y>_{H^{*}}\left(\text { definition of }<\cdot, \cdot>_{H^{*}}\right) \\
& =<\Phi x, \Phi y>_{H^{*}}\left(T^{d}: H^{*} \rightarrow H^{*} \text { is an isometry since } T: H \rightarrow H \text { is }\right) \\
& =<x, y>_{H}\left(\text { definition of }<\cdot, \cdot>_{H^{*}}\right) .
\end{aligned}
$$

For the converse, observe that

$$
\left\langle T^{*} x, y\right\rangle=\overline{\left\langle y, T^{*} x\right\rangle}=\overline{\langle T y, x\rangle}=\langle x, T y\rangle,
$$

and it follows from uniqueness of the adjoint that $\left(T^{*}\right)^{*}=T$. Therefore, if T^{*} is unitary, then by the previous implication $\left(T^{*}\right)^{*}=T$ is unitary.

We could also say that since T^{*} is unitary it preserves the scalar product and $T^{*} T^{* *}=T^{* *} T^{*}=I$, and one has $\langle T x, T y\rangle=\left\langle T^{*} T x, T^{*} T y\right\rangle=\left\langle T^{*} T^{* *} x, T^{*} T^{* *} y\right\rangle=\langle x, y\rangle$, and T preserves the scalar product. Moreover, since T^{*} is surjective (because invertible when T is unitary) it follows that T^{*} is unitary.

Feel free to find other proofs.
(5) If $P^{2}=P=P^{*}$ then by (2) $\operatorname{ker}(P)=P(H)^{\perp}$, i.e. $\operatorname{ker}(P) \perp P(H)$ and P is an orthogonal projection. Assume now that P is an orthogonal projection, then $P(H) \perp \operatorname{ker}(P)$, and

$$
\langle P x, y\rangle=\langle P x, y-P y\rangle+\langle P x, P y\rangle=\langle P x, P y\rangle=\langle P x-x, P y\rangle+\langle x, P y\rangle=\langle x, P y\rangle,
$$

and by uniqueness of the adjoint we conclude that $P^{*}=P$.

Problem 2 (Reflexivity of L_{p}-spaces).
(1) Let X, Y be Banach spaces. Show that if $T: X \rightarrow Y$ is a surjective isometry then the dual operator $T^{*}: Y^{*} \rightarrow X^{*}$ is a surjective isometry.
(2) Show that, for every $p \in(1, \infty)$ and measure $\mu, L_{p}(\mu)$ is reflexive.

Hint: For (2) use (1) and the representations theorems for $L_{p}(\mu)$ spaces to define a surjective isometry between $L_{p}(\mu)$ and $L_{p}(\mu)^{* *}$, and verify that this map coincides with the canonical isometric embedding of $L_{p}(\mu)$ into $L_{p}(\mu)^{* *}$.

Solution.

(1) T^{*} is clearly linear and $\left|T^{*}\left(y^{*}\right)(x)\right|=\left|y^{*}(T x)\right| \leqslant\left\|y^{*}\right\| \cdot\|T\| \cdot\|x\|$ and hence $\left\|T^{*}\right\| \leqslant\|T\|$. Given $\varepsilon>0$ and $x \in X$ with $\|x\|=1$ such that $\|T x\| \geqslant(1-\varepsilon)\|T\|$. By Hahn-Banach theorem we can pick $y^{*} \in Y^{*}$ such that $\left\|y^{*}\right\|=1$ and $y^{*}(T x)=\|T x\|$, then $\left|T^{*}\left(y^{*}\right)(x)\right|=\left|y^{*}(T x)\right|=\|T x\| \geqslant(1-\varepsilon)\|T\|$, and hence $\left\|T^{*}\right\| \geqslant(1-\varepsilon)\|T\|$. Letting $\varepsilon \rightarrow 0$ we conclude that $\|T\|=\left\|T^{*}\right\|$. Now, since $T\left(B_{X}\right)=B_{Y}$ as T is an onto isometry we have

$$
\left\|T^{*}\left(y^{*}\right)\right\|=\sup _{x \in B_{X}}\left\|T^{*}\left(y^{*}\right)(x)\right\|=\sup _{x \in B_{X}}\left|y^{*}(T(x))\right|=\sup _{y \in T\left(B_{X}\right)}\left\|y^{*}(y)\right\|=\sup _{y \in B_{Y}}\left\|y^{*}(y)\right\|=\left\|y^{*}\right\|,
$$

and T^{*} is an isometry. To show surjectivity of T^{*}, let $x^{*} \in X^{*}$ and put $y^{*}=x^{*} \circ T^{-1}$. Then

$$
T^{*}\left(y^{*}\right)=y^{*} \circ T=x^{*} \circ T^{-1} \circ T=x^{*} .
$$

(2) Let $\frac{1}{p}+\frac{1}{q}=1$ with $p, q \in(1, \infty)$, and $\Phi_{p}: L_{q} \rightarrow L_{p}^{*}, \Phi_{q}: L_{p} \rightarrow L_{q}^{*}$ be the surjective isometries given by Riesz representation theorem. We will show that $\delta=\left(\Phi_{p}^{-1}\right)^{*} \circ \Phi_{q}$ where δ is the canonical isometric
embedding $\delta: L_{p} \rightarrow L_{p}^{* *}$ defined by $\delta(f)\left(y^{*}\right)=y^{*}(f)$. Note that $\left(\Phi_{p}^{-1}\right)^{d} \circ \Phi_{q}$ is clearly linear and surjective (by (1)). For any $f \in L_{p}$, and $y^{*} \in L_{p}^{*}$, it follows from the definition of the adjoint that

$$
\left(\left(\Phi_{p}^{-1}\right)^{*} \circ \Phi_{q}\right)(f)\left(y^{*}\right)=\left(\Phi_{p}^{-1}\right)^{*}\left(\Phi_{q}(f)\right)\left(y^{*}\right)=\Phi_{q}(f)\left(\Phi_{p}^{-1}\left(y^{*}\right)\right)
$$

and since by definition of Φ_{q} and Φ_{p} we have

$$
\Phi_{q}(f)\left(\Phi_{p}^{-1}\left(y^{*}\right)\right)=\int f \Phi_{p}^{-1}\left(y^{*}\right) d \mu=y^{*}(f)
$$

the conclusion follows.

Problem 3.

(1) Let $1<p<q<\infty$ and $f \in L_{p, \infty}(\mu) \cap L_{q, \infty}(\mu)$. Show that $f \in L_{r}(\mu)$ for all $r \in(p, q)$ and if $\frac{1}{r}=\frac{1-\theta}{p}+\frac{\theta}{q}$

$$
\|f\|_{r} \leqslant\left(\frac{r}{r-p}+\frac{r}{q-r}\right)^{\frac{1}{r}}\|f\|_{p, \infty}^{1-\theta} \cdot\|f\|_{q, \infty}^{\theta} .
$$

(2) Deduce from assertion (1) the case $p_{0}=p_{1}=p \in(1, \infty)$ and $p \leqslant q_{0}<q_{1}<\infty$ of the Marcinkiewicz interpolation theorem.
(3) (Bonus question) Did you have to use the sublinearity of the map T and the condition $p \leqslant q_{0}<q_{1}<\infty$ in (2)?
Hint: For (1) use that $\|f\|_{r}^{r}=r \int_{0}^{\infty} t^{r-1} \mu\{|f|>t\} d t$ and split the integral at $t_{0}=\|f\|_{q, \infty}^{q /(q-p)}\|f\|_{p, \infty}^{-p /(q-p)}$.

Solution.

(1) Let f_{*} denote the distribution function of f, i.e. $f_{*}(t) \stackrel{\operatorname{def}}{=} \mu(\{|f|>t\})$ and recall that by definition $t^{s} f_{*}(t) \leqslant\|f\|_{s, \infty}^{s}$ for all t, s. Then,

$$
\begin{aligned}
\|f\|_{r}^{r} & =r \int_{0}^{\infty} t^{r-1} f_{*}(t) d t \\
& \leqslant r \int_{0}^{\infty} t^{r-1} \min \left\{\frac{\|f\|_{p, \infty}^{p}}{t^{p}}, \frac{\|f\|_{q, \infty}^{q}}{t^{q}}\right\} d t .
\end{aligned}
$$

$$
\begin{array}{rl}
\|f\|_{r}^{r} & \leqslant r \int_{0}^{t_{0}} t^{r-1} \min \left\{\frac{\|f\|_{p, \infty}^{p}}{t^{p}}, \frac{\|f\|_{q, \infty}^{q}}{t^{q}}\right\} d t+r \int_{t_{0}}^{\infty} t^{r-1} \min \left\{\frac{\|f\|_{p, \infty}^{p}}{t^{p}}, \frac{\|f\|_{, \infty}^{q}}{t^{q}}\right\} d t \\
& \leqslant r \int_{0}^{t_{0}} t^{r-1-p}\|f\|_{p, \infty}^{p}+r \int_{t_{0}}^{\infty} t^{r-1-q}\|f\|_{q, \infty}^{q} \\
& =\frac{r}{r-p}\|f\|_{p, \infty}^{p} t_{0}^{r-p}+\frac{r}{q-r}\|f\|_{q, \infty}^{q} t_{0}^{r-q}(\text { since } p<r<q) \\
& =\frac{r}{r-p}\|f\|_{p, \infty}^{p-p \frac{r-p}{q-p}} \cdot\|f\|_{q, \infty}^{q-p-p} \\
q-p-p & r \\
q-r
\end{array} f\left\|_{q, \infty}^{q+q-q} \frac{r-p}{q-p} \cdot\right\| f \|_{q, \infty}^{-\frac{r-q}{q-p}}\left(\text { by definition of } t_{0}\right) . .
$$

An elementary computation shows that $r \theta=q \frac{p-r}{p-q}$ and $r(1-\theta)=p \frac{q-r}{q-p}$, but $p-p \frac{r-p}{q-p}=p\left(1-\frac{r-p}{q-p}\right)=$ $p \frac{q-p-r+p}{q-p}=p \frac{q-r}{q-p}, q+q \frac{r-q}{q-p}=q \frac{q-p+r-q}{q-p}=q \frac{r-p}{q-p}$. Collecting terms and taking the r-th root gives the desired inequality.
(2) Assume that T maps L_{p} to $L_{q_{0}, \infty}$ and to $L_{q_{1}, \infty}$, then for all $f \in L_{p}, T(f) \in L_{q_{0}, \infty} \cap L_{q_{1}, \infty}$ and by (1) $T(f) \in L_{q_{t}}$ where $\frac{1}{q_{t}}=\frac{1-t}{q_{0}}+\frac{t}{q_{1}}$ with

$$
\|T f\|_{q_{t}} \leqslant\left(\frac{q_{t}}{q_{t}-q_{0}}+\frac{q_{t}}{q_{1}-q_{t}}\right)^{\frac{1}{q_{t}}}\|T f\|_{q_{0}, \infty}^{1-t} \cdot\|T f\|_{q_{1}, \infty}^{t} \leqslant A_{t} C_{0}^{1-t}\|f\|_{p}^{1-t} C_{1}^{t}\|f\|_{p}^{t}=A_{t} C_{0}^{1-t} C_{1}^{t}\|f\|_{p},
$$

where $A_{t}:=\frac{q_{t}}{q_{t}-q_{0}}+\frac{q_{t}}{q_{1}-q_{t}}, C_{0}:=\left\|T: L_{p} \rightarrow L_{q_{0}, \infty}\right\|$ and $C_{1}:=\left\|T: L_{p} \rightarrow L_{q_{1}, \infty}\right\|$.
(3) No and no. These conditions are needed in the other cases.

