REAL ANALYSIS MATH 608
HOMEWORK #10

Problem 1. Let T € L(H) where H is a Hilbert space.

(1)
(2)
(3)

(4)
(5)

Show that there is a unique operator T* € L(H) such that < Tx,y >=< x,T"y > for all x,y € H.
Show that Ker(T) = T*(H)*.
Recall that T is unitary iff T is a surjective linear map that preserves the scalar product iff T is an
onto isometry.

Show that T is unitary if and only if T is invertible and T™' = T*, i.e. TT*=T*T =1 .
Show that T is unitary if and only if T* is unitary.
Show that a bounded linear map P is an orthogonal projection if and only if P> = P = P*.

Hint: For (1) use the representation theorem for Hilbert spaces and the adjoint of an arbitrary operator
between Banach spaces.

Solution.

(1)

2)

3)

“4)

Uniqueness is straightforward.

Giveny € H, consider the map ¢, : x€ H —< Px,y >€F. One can easily verify that ¢, is a bounded
linear form and by Riesz representation theorem there is a unique z, € H such that ¢,(x) =< x,z, >,
for all x € H. If we let P*y = z, (which is well-defined by uniqueness), then for all x,y € H one has
< Px,y>=<x,P"y>.

Another way to prove existence is as follows. Let T* © o-10790® where T is the adjoint opera-
tor (in the Banach space sense) and ®: H — H* is the anti-linear surjective isometry from Riesz rep-
resentation theorem, i.e. forall y* € H* and h € H, y*(h) =< h, o! (y*) >. Then, T*: H — H is clearly
linear and bounded, and it remains to observe that < x,T*y >=< x,®~! T¢®y >= (T¢D)(y)(x) =
TY@y)(x) = DYNTx) =< Tx,y >.

Since for all x,h € H, < x,T*(h) >=< Tx,h > the conclusion immediately follows. Indeed, if x €
ker(T) then < x,T*(h) >=< 0,h >= 0 and hence ker(T) c T*(H)*, and if x € T*(H)* then 0 =<
Tx,h>and Tx € H+ ={0).

If T is invertible and 7~' = T*, then T is surjective by assumption and for all x,ye H, < Tx, Ty >=<
x,T*Ty >=< x,y >, and thus T is unitary.

Assume now that T is unitary. Then < x,y >=<Tx,Ty >=< x,T*Ty > for all x,y € H and thus

T*T =1, 1i.e. T is left invertible. But we know that 7T is invertible and hence T~ = T*.
Assume that 7 is unitary. It is easy to see by uniqueness of the adjoint that I* =1 (< Ix,y >=< x,1y >)
and (AB)" = B*A* ( < ABx,y >=< Bx,A*y >=< x,B*A*y >). Since by assumption 7~ is invertible
and TT* = I, after taking adjoints we have that (TT*)* = T**T* = I* = I, and hence (T*)~! = (T*)",
i.e. T™ is unitary.

Another proof is as follows. Since T is unitary it preserves the scalar product, and one has
<T*x,T*y >=<TT*,TT"y >=< x,y >, and T preserves the scalar product. Moreover, since T* is
surjective (because invertible when 7 is unitary) it follows that 7* is unitary.

Yet another proof uses the definition of 7" in terms of the Banach space adjoint and goes as
follows: If T is unitary, we know that 7* is invertible and thus surjective. It remains to show that 7*
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preserve the scalar product. But
<T*x,T*y >p =< O ' T0x, ®~' T¢®y >y (definition of the adjoint)
=< T4®x, T*®y >p- (definition of < -,- >p-)
=< Ox, Dy >z (T¢: H* — H* is an isometry since T: H — H is)
=< x,y > (definition of < -, >pg~).

For the converse, observe that

<T*x,y>=<y,T*x>=<Ty,x>=<x,Ty>,

and it follows from uniqueness of the adjoint that (7*)* = T. Therefore, if T* is unitary, then by the
previous implication (7%)* = T is unitary.

We could also say that since T* is unitary it preserves the scalar product and 7*T** = T**T* =1,
and one has < Tx, Ty >=<T*Tx,T*Ty >=<T*T**x,T*T*y >=< x,y >, and T preserves the scalar
product. Moreover, since 7™ is surjective (because invertible when 7 is unitary) it follows that T* is
unitary.

Feel free to find other proofs.

(5) If P2 = P = P* then by (2) ker(P) = P(H)*, i.e. ker(P) L P(H) and P is an orthogonal projection.
Assume now that P is an orthogonal projection, then P(H) L ker(P), and

< Px,y >=< Px,y— Py >+ < Px,Py >=< Px,Py >=< Px—x,Py > + < x, Py >=< x, Py >,

and by uniqueness of the adjoint we conclude that P* = P.

Problem 2 (Reflexivity of L,-spaces).
(1) Let X,Y be Banach spaces. Show that if T: X — Y is a surjective isometry then the dual operator
T*: Y* — X" is a surjective isometry.
(2) Show that, for every p € (1,00) and measure y, L,(u) is reflexive.

Hint: For (2) use (1) and the representations theorems for L,(u) spaces to define a surjective isometry
between L,(u) and L,(u)™, and verify that this map coincides with the canonical isometric embedding of

L,(u) into Ly (u)**.

Solution.

(1) T* is clearly linear and |T™(y*)(x)| = [y* (Tl < [ly*[l - IT]l - ||lx|| and hence ||IT*|| < IT]|. Given &> 0
and x € X with ||x|| = 1 such that ||Tx|| > (1 —&)||T||. By Hahn-Banach theorem we can pick y* € Y*
such that |[y*|| = 1 and y*(Tx) = ||T x|, then |T*(y*)(x)| = y*(Tx)| = ||Tx]| = (1 —¢&)||T||, and hence
IT*|| = (1 —¢)||T||. Letting € — 0 we conclude that ||T|| = ||T*||. Now, since T(Bx) = By as T is an
onto isometry we have

IT* (YOI = sup IT* )OI = sup |y (T(x)| = sup [[y* Wl = sup [ly* Wl = Iy"Il;
xeBy xeBy yeT (Bx) yEBy

and T* is an isometry. To show surjectivity of 7*, let x* € X* and put y* = x* o T~!. Then
T*(y )=y ol =x"oT 'oT =x"
(2) Let % + 611 =1withp,ge(l,00),and ®,: L, > L,,, ®,;: L, — L, be the surjective isometries given by

Riesz representation theorem. We will show that 6 = (d);l )" o ®, where ¢ is the canonical isometric
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embedding 6: L, — L;“,* defined by 6(f)(y*) = y*(f). Note that (CI);l)d o @, is clearly linear and
surjective (by (1)). For any f € L,, and y* € L}, it follows from the definition of the adjoint that

(@, 0 DN = (@) (@(NOY) = Dy(NHD,' ),
and since by definition of ®, and ®, we have
D (D@, (V) = f fO,'0Mdu =y (),

the conclusion follows.

Problem 3.
(1) Let 1 < p< g <ooand f € Ly eo(it) N Lgoo(tt). Show that f € L) for all r € (p,q) and if 1 = 1779 + g

IIfIIr\(—+—) [Vl Vil
r-p 4q

(2) Deduce from assertion (1) the case po = p1 = p € (1,00) and p < qo < q1 < o of the Marcinkiewicz
interpolation theorem.

(3) (Bonus question) Did you have to use the sublinearity of the map T and the condition p < qo < g1 <0
in(2)?

Hint: For (1) use that ||f]|. = rfo ~'u{|f| > t}dt and split the integral at fo = ||f||q/(" p)||f||pp/(‘1 25

Solution.

(1) Let f. denote the distribution function of f, i.e. f.(?) def u({lf] > 1}) and recall that by definition
(1) <|Ifll} o for all 7, 5. Then,

WAL = r fo 71 £ (s
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Observe now that

-

r=p

-p 9= r +q 2 P
= —Ilfllpoo" ’ Mfllg o +Ellfllqoo“ z Wfllgeo™ ”(by definition of 19).
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An elementary computation shows that 76 = q% and r(1-6) = p%, but p — p% =p(1- %) =
p% = p;’%}r), q+ q% = q% = q%. Collecting terms and taking the r-th root gives the
desired inequality.

(2) Assume that 7 maps L, to Ly, and to L, «, then for all f € L,, T(f) € Lyy,c0 N Ly, 0 and by (1)

1 Ity t oy
T(f) € L, where = ta with

q: q:

1
qt
IT flg, < ( + ) IT fllge o - IT £1l, 0 < ACo~ AN, CIANL, = ACE CHILA s
q—4q90 4q1—4:

where A; = qﬁ’qo + ﬁ, Co:=|IT: L, > Ly lland C; :=|IT: L, = Ly, oll-

(3) No and no. These conditions are needed in the other cases.




