
REAL ANALYSIS MATH 608
HOMEWORK #10

Problem 1. Let T ∈ L(H) where H is a Hilbert space.

(1) Show that there is a unique operator T ∗ ∈ L(H) such that < T x,y >=< x,T ∗y > for all x,y ∈ H.
(2) Show that Ker(T ) = T ∗(H)⊥.
(3) Recall that T is unitary iff T is a surjective linear map that preserves the scalar product iff T is an

onto isometry.
Show that T is unitary if and only if T is invertible and T−1 = T ∗, i.e. TT ∗ = T ∗T = I .

(4) Show that T is unitary if and only if T ∗ is unitary.
(5) Show that a bounded linear map P is an orthogonal projection if and only if P2 = P = P∗.

Hint: For (1) use the representation theorem for Hilbert spaces and the adjoint of an arbitrary operator
between Banach spaces.

Solution.

(1) Uniqueness is straightforward.
Given y ∈H, consider the map φy : x ∈H→< Px,y>∈ F. One can easily verify that φy is a bounded

linear form and by Riesz representation theorem there is a unique zy ∈ H such that φy(x) =< x,zy >,
for all x ∈ H. If we let P∗y = zy (which is well-defined by uniqueness), then for all x,y ∈ H one has
< Px,y >=< x,P∗y >.

Another way to prove existence is as follows. Let T ∗ def
= Φ−1◦T d ◦Φ where T d is the adjoint opera-

tor (in the Banach space sense) and Φ : H→H∗ is the anti-linear surjective isometry from Riesz rep-
resentation theorem, i.e. for all y∗ ∈H∗ and h ∈H, y∗(h) =< h,Φ−1(y∗)>. Then, T ∗ : H→H is clearly
linear and bounded, and it remains to observe that < x,T ∗y >=< x,Φ−1T dΦy >= (T dΦ)(y)(x) =

T d(Φ(y)(x) = Φ(y)(T x) =< T x,y >.
(2) Since for all x,h ∈ H, < x,T ∗(h) >=< T x,h > the conclusion immediately follows. Indeed, if x ∈

ker(T ) then < x,T ∗(h) >=< 0,h >= 0 and hence ker(T ) ⊂ T ∗(H)⊥, and if x ∈ T ∗(H)⊥ then 0 =<
T x,h > and T x ∈ H⊥ = {0}.

(3) If T is invertible and T−1 = T ∗, then T is surjective by assumption and for all x,y ∈ H, < T x,Ty >=<
x,T ∗Ty >=< x,y >, and thus T is unitary.

Assume now that T is unitary. Then < x,y >=< T x,Ty >=< x,T ∗Ty > for all x,y ∈ H and thus
T ∗T = I, i.e. T is left invertible. But we know that T is invertible and hence T−1 = T ∗.

(4) Assume that T is unitary. It is easy to see by uniqueness of the adjoint that I∗ = I (< Ix,y>=< x, Iy>)
and (AB)∗ = B∗A∗ ( < ABx,y >=< Bx,A∗y >=< x,B∗A∗y >). Since by assumption T ∗ is invertible
and TT ∗ = I, after taking adjoints we have that (TT ∗)∗ = T ∗∗T ∗ = I∗ = I, and hence (T ∗)−1 = (T ∗)∗,
i.e. T ∗ is unitary.

Another proof is as follows. Since T is unitary it preserves the scalar product, and one has
< T ∗x,T ∗y >=< TT ∗,TT ∗y >=< x,y >, and T preserves the scalar product. Moreover, since T ∗ is
surjective (because invertible when T is unitary) it follows that T ∗ is unitary.

Yet another proof uses the definition of T ∗ in terms of the Banach space adjoint and goes as
follows: If T is unitary, we know that T ∗ is invertible and thus surjective. It remains to show that T ∗
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preserve the scalar product. But

< T ∗x,T ∗y >H =< Φ−1T dΦx,Φ−1T dΦy >H (definition of the adjoint)

=< T dΦx,T dΦy >H∗ (definition of < ·, · >H∗)

=< Φx,Φy >H∗ (T d : H∗→ H∗ is an isometry since T : H→ H is)
=< x,y >H (definition of < ·, · >H∗).

For the converse, observe that

< T ∗x,y >= < y,T ∗x > = < Ty, x > =< x,Ty >,

and it follows from uniqueness of the adjoint that (T ∗)∗ = T . Therefore, if T ∗ is unitary, then by the
previous implication (T ∗)∗ = T is unitary.

We could also say that since T ∗ is unitary it preserves the scalar product and T ∗T ∗∗ = T ∗∗T ∗ = I,
and one has < T x,Ty >=< T ∗T x,T ∗Ty >=< T ∗T ∗∗x,T ∗T ∗∗y >=< x,y >, and T preserves the scalar
product. Moreover, since T ∗ is surjective (because invertible when T is unitary) it follows that T ∗ is
unitary.

Feel free to find other proofs.
(5) If P2 = P = P∗ then by (2) ker(P) = P(H)⊥, i.e. ker(P) ⊥ P(H) and P is an orthogonal projection.

Assume now that P is an orthogonal projection, then P(H) ⊥ ker(P), and

< Px,y >=< Px,y−Py > + < Px,Py >=< Px,Py >=< Px− x,Py > + < x,Py >=< x,Py >,

and by uniqueness of the adjoint we conclude that P∗ = P.
�

Problem 2 (Reflexivity of Lp-spaces).
(1) Let X,Y be Banach spaces. Show that if T : X→ Y is a surjective isometry then the dual operator

T ∗ : Y∗→ X∗ is a surjective isometry.
(2) Show that, for every p ∈ (1,∞) and measure µ, Lp(µ) is reflexive.

Hint: For (2) use (1) and the representations theorems for Lp(µ) spaces to define a surjective isometry
between Lp(µ) and Lp(µ)∗∗, and verify that this map coincides with the canonical isometric embedding of
Lp(µ) into Lp(µ)∗∗.

Solution.

(1) T ∗ is clearly linear and |T ∗(y∗)(x)| = |y∗(T x)| 6 ‖y∗‖ · ‖T‖ · ‖x‖ and hence ‖T ∗‖ 6 ‖T‖. Given ε > 0
and x ∈ X with ‖x‖ = 1 such that ‖T x‖ > (1− ε)‖T‖. By Hahn-Banach theorem we can pick y∗ ∈ Y∗

such that ‖y∗‖ = 1 and y∗(T x) = ‖T x‖, then |T ∗(y∗)(x)| = |y∗(T x)| = ‖T x‖ > (1− ε)‖T‖, and hence
‖T ∗‖ > (1− ε)‖T‖. Letting ε→ 0 we conclude that ‖T‖ = ‖T ∗‖. Now, since T (BX) = BY as T is an
onto isometry we have

‖T ∗(y∗)‖ = sup
x∈BX

‖T ∗(y∗)(x)‖ = sup
x∈BX

|y∗(T (x))| = sup
y∈T (BX)

‖y∗(y)‖ = sup
y∈BY

‖y∗(y)‖ = ‖y∗‖,

and T ∗ is an isometry. To show surjectivity of T ∗, let x∗ ∈ X∗ and put y∗ = x∗ ◦T−1. Then

T ∗(y∗) = y∗ ◦T = x∗ ◦T−1 ◦T = x∗.

(2) Let 1
p + 1

q = 1 with p,q ∈ (1,∞), and Φp : Lq→ L∗p, Φq : Lp→ L∗q be the surjective isometries given by
Riesz representation theorem. We will show that δ = (Φ−1

p )∗ ◦Φq where δ is the canonical isometric
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embedding δ : Lp → L∗∗p defined by δ( f )(y∗) = y∗( f ). Note that (Φ−1
p )d ◦Φq is clearly linear and

surjective (by (1)). For any f ∈ Lp, and y∗ ∈ L∗p, it follows from the definition of the adjoint that

((Φ−1
p )∗ ◦Φq)( f )(y∗) = (Φ−1

p )∗(Φq( f ))(y∗) = Φq( f )(Φ−1
p (y∗)),

and since by definition of Φq and Φp we have

Φq( f )(Φ−1
p (y∗)) =

∫
f Φ−1

p (y∗)dµ = y∗( f ),

the conclusion follows.

�

Problem 3.
(1) Let 1 < p < q <∞ and f ∈ Lp,∞(µ)∩Lq,∞(µ). Show that f ∈ Lr(µ) for all r ∈ (p,q) and if 1

r = 1−θ
p + θ

q

‖ f ‖r 6
(

r
r− p

+
r

q− r

) 1
r

‖ f ‖1−θp,∞ · ‖ f ‖
θ
q,∞.

(2) Deduce from assertion (1) the case p0 = p1 = p ∈ (1,∞) and p 6 q0 < q1 <∞ of the Marcinkiewicz
interpolation theorem.

(3) (Bonus question) Did you have to use the sublinearity of the map T and the condition p6 q0 < q1 <∞
in (2)?

Hint: For (1) use that ‖ f ‖rr = r
∫ ∞

0 tr−1µ{| f | > t}dt and split the integral at t0 = ‖ f ‖q/(q−p)
q,∞ ‖ f ‖−p/(q−p)

p,∞ .

Solution.

(1) Let f∗ denote the distribution function of f , i.e. f∗(t)
def
= µ({| f | > t}) and recall that by definition

ts f∗(t) 6 ‖ f ‖ss,∞ for all t, s. Then,

‖ f ‖rr = r
∫ ∞

0
tr−1 f∗(t)dt

6 r
∫ ∞

0
tr−1 min

‖ f ‖
p
p,∞

tp ,
‖ f ‖qq,∞

tq

dt.

Observe now that
‖ f ‖pp,∞

tp 6
‖ f ‖qq,∞

tq if and only if t 6
(
‖ f ‖qq,∞
‖ f ‖pp,∞

) 1
q−p

:= t0. Then,

‖ f ‖rr 6 r
∫ t0

0
tr−1 min

‖ f ‖
p
p,∞

tp ,
‖ f ‖qq,∞

tq

dt + r
∫ ∞

t0
tr−1 min

‖ f ‖
p
p,∞

tp ,
‖ f ‖qq,∞

tq

dt

6 r
∫ t0

0
tr−1−p‖ f ‖pp,∞+ r

∫ ∞

t0
tr−1−q‖ f ‖qq,∞

=
r

r− p
‖ f ‖pp,∞tr−p

0 +
r

q− r
‖ f ‖qq,∞tr−q

0 ( since p < r < q)

=
r

r− p
‖ f ‖

p−p r−p
q−p

p,∞ · ‖ f ‖
q r−p

q−p
q,∞ +

r
q− r

‖ f ‖
q+q r−q

q−p
q,∞ · ‖ f ‖

−p r−q
q−p

q,∞ ( by definition of t0).
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An elementary computation shows that rθ = q p−r
p−q and r(1− θ) = p q−r

q−p , but p− p r−p
q−p = p(1− r−p

q−p ) =

p q−p−r+p
q−p = p q−r

q−p , q + q r−q
q−p = q q−p+r−q

q−p = q r−p
q−p . Collecting terms and taking the r-th root gives the

desired inequality.
(2) Assume that T maps Lp to Lq0,∞ and to Lq1,∞, then for all f ∈ Lp, T ( f ) ∈ Lq0,∞ ∩ Lq1,∞ and by (1)

T ( f ) ∈ Lqt where 1
qt

= 1−t
q0

+ t
q1

with

‖T f ‖qt 6

(
qt

qt −q0
+

qt

q1−qt

) 1
qt

‖T f ‖1−t
q0,∞
· ‖T f ‖tq1,∞

6 AtC1−t
0 ‖ f ‖

1−t
p Ct

1‖ f ‖
t
p = AtC1−t

0 Ct
1‖ f ‖p,

where At := qt
qt−q0

+
qt

q1−qt
, C0 := ‖T : Lp→ Lq0,∞‖ and C1 := ‖T : Lp→ Lq1,∞‖.

(3) No and no. These conditions are needed in the other cases.
�
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