REAL ANALYSIS MATH 608 HOMEWORK #1

Problem 1.

- (1) Show that a topological space is T_1 if and only if every singleton is closed.
- (2) Show that the cofinite topology on an infinite set is T_1 but not T_2 .

Problem 2.

- (1) Show that A is nowhere dense in (X, \mathcal{T}) if and only if for every nonempty open set $U, \overline{A} \cap U \neq U$.
- (2) Interpret the statement in (1) in the relative topology.

Problem 3. Show that a separable metric space is second countable.

Problem 4 (The Sorgenfrey line or upper limit topology). Let $\mathscr{C} \stackrel{\text{def}}{=} \{(a, b]: -\infty < a < b < \infty\}$.

- (1) Show that \mathscr{C} is a base for a topology, denoted \mathcal{T}_u , on \mathbb{R} such that the sets in \mathscr{C} are clopen (i.e. open and closed).
- (2) Show that $(\mathbb{R}, \mathcal{T}_u)$ is first countable, separable, but not second countable.

Problem 5. Let (X,τ) be a topological space and let acc(A) denote the set of accumulation points of A. Show that

- (1) $\overline{A} = A \cup acc(A)$
- (2) $x \in acc(A)$ if and only if there exists a net in $A \setminus \{x\}$ that converges to x.