REAL ANALYSIS MATH 608
HOMEWORK #1

Problem 1.

(1) Show that a topological space is T if and only if every singleton is closed.
(2) Show that the cofinite topology on an infinite set X is T but not T>.

Solution. (1) If the space is T then {x} = Ny.,{Oy}° where O, is an open set that contains y but not x.
For the converse, {x}¢ is an open set that contains any y # x but not x.
(2) By definition every finite set is closed in the cofinite topology, so in particular singletons are closed.
To show thatitis not 75, let x # y € X and consider an open set U containing x. Any set that is disjoint
with U must then be included U¢ which is finite. Thus any open set containing y and disjoint from
U must be finite; this is not possible since X is infinite and any open set must be infinite.
O

Problem 2.

(1) Show that A is nowhere dense in (X, T) if and only if for every nonempty open set U, ANU # U.
(2) Interpret the statement in (1) in the relative topology.

Solution. (1) Let U be a nonempty open set. If A is nowhere dense then (ANUY =(A)°NU°=0+U.
For the converse, assume that A is not nowhere dense, then U = (A)° is open and nonempty, but
UcAandthus UNA =U.

(2) Since one can verify that AN U is equal to the closure of AN U in the relative topology of U, item
(1) says that for any non empty open set U, the subset AN U of U is not dense in U for the relative
topology on U.

O

Problem 3. Show that a separable metric space is second countable.

Solution. Let {x,} ", be a dense sequence in (X,d). Then {B(x,,q)}:>14cq is a countable base for the metric
topology. Indeed, if U is an open set that contains x then there is r > 0 such that B(x,r) C U. Since the
open balls are nonempty open sets, by density of {x,} 7, there must be an x,, € B(x, 7) and by density of the
rational we can certainly find a positive rational g € (3, 5), and hence x € B(x,,,q) C B(x,r) C U. O

Problem 4 (The Sorgenfrey line or upper limit topology). Let € def {(a,b]: —co<a<b< oo}

(1) Show that € is a base for a topology, denoted T, on R such that the sets in € are clopen (i.e. open
and closed).
(2) Show that (R,T,) is first countable, separable, but not second countable.

Solution. (1) ¥ is a base for a topology since R = U,<per(a,b] and one can easily verify (via a case
analysis) that % is stable under intersection. Since

(a,b] = (—c0,a] U (b,0) = Uyeni(a —n,al U Upen(b,b+n]
1



it follows that the elements in % are closed (and open by definition).

(2) Since by (1) every open set can be written as U;e;(a;, b;] (Wlog disjoint), one can verify that for all

x€R, B, def {(x— %,x]: n > 1} is a countable local base. It is not second countable. Indeed if B

is a base, since (—oo, x] is open for every x € R, there be a open set O, € B with sup(O,) = x and
thus O, # O, whenever x # y. Therefore, any base 8 would be uncountable. It is immediate that the
density of Q in (R, |-|) implies its density in (X,7,), and hence (X,7,) is separable.

m|

Problem 5. Let (X,7) be a topological space and let acc(A) denote the set of accumulation points of A.
Show that

(1) A=AUacc(A)

(2) x € acc(A) if and only if there exists a net in A\ {x} that converges to x.

Solution. (1) Let x € acc(A) and assume that x € (A)¢ = (A°)°. Thus, there exists an open set U C A€
such that x € U and AN (U \ {x}) = 0, a contradiction. Therefore, acc(A) C A and A Uacc(A) C A.
We now show that A ¢ AU acc(A). If xe Z\A and assume that x ¢ acc(A). Then there is an open
set U containing x and such that AN (U \ {x}) = 0. But since x ¢ A, ANU =0 and thus A C U¢, and
inturn A C U°. Since x ¢ U¢ we have x ¢ Z; a contradiction.
(2) Let x € acc(A). Then for all V € N, we have VN (A \{x}) # 0. Pick xy € ANV such that x, # x.
Consider the net (x,)yeny, CA. IFV e N, and U C V then x # xy € U C V, i.e. (x,)yen, converges
to x.
Assume now that there exists a net {x,}q,ep in A \ {x} that converges to x. Let V € N, then there
exists 8 € D such that for all @ > 3, x # x, € V, and hence (AN V)\ {x} # 0. Thus, x € acc(A).
O



