
REAL ANALYSIS MATH 608
HOMEWORK #1

Problem 1.
(1) Show that a topological space is T1 if and only if every singleton is closed.
(2) Show that the cofinite topology on an infinite set X is T1 but not T2.

Solution. (1) If the space is T1 then {x} = ∩y,x{Oy}
c where Oy is an open set that contains y but not x.

For the converse, {x}c is an open set that contains any y , x but not x.
(2) By definition every finite set is closed in the cofinite topology, so in particular singletons are closed.

To show that it is not T2, let x, y ∈ X and consider an open set U containing x. Any set that is disjoint
with U must then be included Uc which is finite. Thus any open set containing y and disjoint from
U must be finite; this is not possible since X is infinite and any open set must be infinite.

�

Problem 2.
(1) Show that A is nowhere dense in (X,T ) if and only if for every nonempty open set U, A∩U , U.
(2) Interpret the statement in (1) in the relative topology.

Solution. (1) Let U be a nonempty open set. If A is nowhere dense then (A∩U)◦ = (A)◦∩U◦ = ∅ , U.
For the converse, assume that A is not nowhere dense, then U = (A)◦ is open and nonempty, but
U ⊂ A and thus U ∩A = U.

(2) Since one can verify that A∩U is equal to the closure of A∩U in the relative topology of U, item
(1) says that for any non empty open set U, the subset A∩U of U is not dense in U for the relative
topology on U.

�

Problem 3. Show that a separable metric space is second countable.

Solution. Let {xn}
∞
n=1 be a dense sequence in (X,d). Then {B(xn,q)}n>1,q∈Q is a countable base for the metric

topology. Indeed, if U is an open set that contains x then there is r > 0 such that B(x,r) ⊂ U. Since the
open balls are nonempty open sets, by density of {xn}

∞
n=1 there must be an xn0 ∈ B(x, r

4 ) and by density of the
rational we can certainly find a positive rational q ∈ ( r

4 ,
r
2 ), and hence x ∈ B(xn0 ,q) ⊂ B(x,r) ⊂ U. �

Problem 4 (The Sorgenfrey line or upper limit topology). Let C
def
= {(a,b] : −∞ < a < b <∞}.

(1) Show that C is a base for a topology, denoted Tu, on R such that the sets in C are clopen (i.e. open
and closed).

(2) Show that (R,Tu) is first countable, separable, but not second countable.

Solution. (1) C is a base for a topology since R = ∪a<b∈R(a,b] and one can easily verify (via a case
analysis) that C is stable under intersection. Since

(a,b]c = (−∞,a]∪ (b,∞) = ∪n∈N(a−n,a]∪∪n∈N(b,b+n]
1



it follows that the elements in C are closed (and open by definition).
(2) Since by (1) every open set can be written as ∪i∈I(ai,bi] (wlog disjoint), one can verify that for all

x ∈ R, Bx
def
= {(x− 1

n , x] : n > 1} is a countable local base. It is not second countable. Indeed if B
is a base, since (−∞, x] is open for every x ∈ R, there be a open set Ox ∈ B with sup(Ox) = x and
thus Ox ,Oy whenever x , y. Therefore, any base B would be uncountable. It is immediate that the
density of Q in (R, |·|) implies its density in (X,Tu), and hence (X,Tu) is separable.

�

Problem 5. Let (X, τ) be a topological space and let acc(A) denote the set of accumulation points of A.
Show that

(1) A = A∪acc(A)
(2) x ∈ acc(A) if and only if there exists a net in A \ {x} that converges to x.

Solution. (1) Let x ∈ acc(A) and assume that x ∈ (A)c = (Ac)◦. Thus, there exists an open set U ⊂ Ac

such that x ∈ U and A∩ (U \ {x}) = ∅, a contradiction. Therefore, acc(A) ⊂ A and A∪acc(A) ⊂ A.
We now show that A ⊂ A∪acc(A). If x ∈ A \A and assume that x < acc(A). Then there is an open

set U containing x and such that A∩ (U \ {x}) = ∅. But since x < A, A∩U = ∅ and thus A ⊂ Uc, and
in turn A ⊂ Uc. Since x < Uc we have x < A; a contradiction.

(2) Let x ∈ acc(A). Then for all V ∈ Nx we have V ∩ (A \ {x}) , ∅. Pick xV ∈ A∩V such that xv , x.
Consider the net (xv)V∈Nx ⊂ A. IF V ∈ Nx and U ⊂ V then x , xU ∈ U ⊂ V , i.e. (xv)V∈Nx converges
to x.

Assume now that there exists a net {xα}α∈D in A \ {x} that converges to x. Let V ∈ Nx, then there
exists β ∈ D such that for all α > β, x , xα ∈ V , and hence (A∩V) \ {x} , ∅. Thus, x ∈ acc(A).
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