REAL ANALYSIS MATH 608 HOMEWORK #1

Problem 1.

- (1) Show that a topological space is T_1 if and only if every singleton is closed.
- (2) Show that the cofinite topology on an infinite set X is T_1 but not T_2 .
- Solution. (1) If the space is T_1 then $\{x\} = \bigcap_{y \neq x} \{O_y\}^c$ where O_y is an open set that contains y but not x. For the converse, $\{x\}^c$ is an open set that contains any $y \neq x$ but not x.
 - (2) By definition every finite set is closed in the cofinite topology, so in particular singletons are closed. To show that it is not T_2 , let $x \neq y \in X$ and consider an open set U containing x. Any set that is disjoint with U must then be included U^c which is finite. Thus any open set containing y and disjoint from U must be finite; this is not possible since X is infinite and any open set must be infinite.

Problem 2.

- (1) Show that A is nowhere dense in (X, \mathcal{T}) if and only if for every nonempty open set $U, \overline{A} \cap U \neq U$. (2) Interpret the statement in (1) in the relative topology.
- Solution. (1) Let U be a nonempty open set. If A is nowhere dense then $(\overline{A} \cap U)^{\circ} = (\overline{A})^{\circ} \cap U^{\circ} = \emptyset \neq U$. For the converse, assume that A is not nowhere dense, then $U = (\overline{A})^{\circ}$ is open and nonempty, but $U \subset \overline{A}$ and thus $U \cap \overline{A} = U$.
 - (2) Since one can verify that A ∩ U is equal to the closure of A ∩ U in the relative topology of U, item
 (1) says that for any non empty open set U, the subset A ∩ U of U is not dense in U for the relative topology on U.

Problem 3. Show that a separable metric space is second countable.

Solution. Let $\{x_n\}_{n=1}^{\infty}$ be a dense sequence in (X, d). Then $\{B(x_n, q)\}_{n \ge 1, q \in \mathbb{Q}}$ is a countable base for the metric topology. Indeed, if *U* is an open set that contains *x* then there is r > 0 such that $B(x, r) \subset U$. Since the open balls are nonempty open sets, by density of $\{x_n\}_{n=1}^{\infty}$ there must be an $x_{n_0} \in B(x, \frac{r}{4})$ and by density of the rational we can certainly find a positive rational $q \in (\frac{r}{4}, \frac{r}{2})$, and hence $x \in B(x_{n_0}, q) \subset B(x, r) \subset U$.

Problem 4 (The Sorgenfrey line or upper limit topology). Let $\mathscr{C} \stackrel{\text{def}}{=} \{(a, b]: -\infty < a < b < \infty\}$.

- (1) Show that \mathscr{C} is a base for a topology, denoted \mathcal{T}_u , on \mathbb{R} such that the sets in \mathscr{C} are clopen (i.e. open and closed).
- (2) Show that $(\mathbb{R}, \mathcal{T}_u)$ is first countable, separable, but not second countable.
- Solution. (1) \mathscr{C} is a base for a topology since $\mathbb{R} = \bigcup_{a < b \in \mathbb{R}} (a, b]$ and one can easily verify (via a case analysis) that \mathscr{C} is stable under intersection. Since

$$(a,b]^{c} = (-\infty,a] \cup (b,\infty) = \bigcup_{n \in \mathbb{N}} (a-n,a] \cup \bigcup_{n \in \mathbb{N}} (b,b+n]$$

it follows that the elements in \mathscr{C} are closed (and open by definition).

(2) Since by (1) every open set can be written as ∪_{i∈I}(a_i, b_i] (wlog disjoint), one can verify that for all x ∈ ℝ, B_x def = {(x - 1/n, x]: n ≥ 1} is a countable local base. It is not second countable. Indeed if B is a base, since (-∞, x] is open for every x ∈ ℝ, there be a open set O_x ∈ B with sup(O_x) = x and thus O_x ≠ O_y whenever x ≠ y. Therefore, any base B would be uncountable. It is immediate that the density of Q in (ℝ, |·|) implies its density in (X, T_u), and hence (X, T_u) is separable.

Problem 5. Let (X,τ) be a topological space and let acc(A) denote the set of accumulation points of A. Show that

- (1) $A = A \cup acc(A)$
- (2) $x \in acc(A)$ if and only if there exists a net in $A \setminus \{x\}$ that converges to x.
- Solution. (1) Let $x \in acc(A)$ and assume that $x \in (\overline{A})^c = (A^c)^\circ$. Thus, there exists an open set $U \subset A^c$ such that $x \in U$ and $A \cap (U \setminus \{x\}) = \emptyset$, a contradiction. Therefore, $acc(A) \subset \overline{A}$ and $A \cup acc(A) \subset \overline{A}$. We now show that $\overline{A} \subset A \cup acc(A)$. If $x \in \overline{A} \setminus A$ and assume that $x \notin acc(A)$. Then there is an open set U containing x and such that $A \cap (U \setminus \{x\}) = \emptyset$. But since $x \notin A, A \cap U = \emptyset$ and thus $A \subset U^c$, and in turn $\overline{A} \subset U^c$. Since $x \notin U^c$ we have $x \notin \overline{A}$; a contradiction.
 - (2) Let $x \in acc(A)$. Then for all $V \in N_x$ we have $V \cap (A \setminus \{x\}) \neq \emptyset$. Pick $x_V \in A \cap V$ such that $x_v \neq x$. Consider the net $(x_v)_{V \in N_x} \subset A$. IF $V \in N_x$ and $U \subset V$ then $x \neq x_U \in U \subset V$, i.e. $(x_v)_{V \in N_x}$ converges to x.

Assume now that there exists a net $\{x_{\alpha}\}_{\alpha \in D}$ in $A \setminus \{x\}$ that converges to x. Let $V \in \mathcal{N}_x$, then there exists $\beta \in D$ such that for all $\alpha \ge \beta$, $x \ne x_{\alpha} \in V$, and hence $(A \cap V) \setminus \{x\} \ne \emptyset$. Thus, $x \in acc(A)$.