
MATH 220 Problems

1 Logical connectives and logical equivalence

Problem 1.1. Show that P ∨ P is logically equivalent to P .

Problem 1.2. Show that P ∧ P is logically equivalent to P .

Problem 1.3. Are the statement forms (P ∧Q) ∧R and P ∧ (Q ∧R) logically equivalent?

Problem 1.4. Are the statement forms (P ∨Q) ∨R and P ∨ (Q ∨R) logically equivalent?

Problem 1.5. Is the statement form (P ∧Q)∨((¬P )∧¬Q) a tautology, a contradiction, or neither?

Problem 1.6. Are the statement forms (P ∨Q) ∧R and P ∨ (Q ∧R) logically equivalent?

Problem 1.7. Show that P ∨ (Q ∧R) is logically equivalent to (P ∨Q) ∧ (P ∨R).

Problem 1.8. Show that P ∧ (Q ∨R) is logically equivalent to (P ∧Q) ∨ (P ∧R).

Problem 1.9. Are the statement forms P =⇒ (Q ∨ R) and (P =⇒ Q) ∨ (P =⇒ R) logically

equivalent?

Problem 1.10. Are the statement forms P =⇒ (Q ∧R) and (P =⇒ Q) ∧ (P =⇒ R) logically

equivalent?

Hint. Try to use Problem 1.7.

Problem 1.11. Show that the statement forms (P ∨Q) =⇒ R and (P =⇒ R)∧ (Q =⇒ R) are

logically equivalent.

Hint. Try to use DeMorgan’s Laws and Problem 1.7.

Problem 1.12. For all the statement forms below write a logically equivalent statement form that

involves only the logical connective ¬ and ∨.
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1. P ∨ (Q ∧R)

2. (P ∨Q) ∧ (P ∨R)

3. P ⇐⇒ Q

Hint. Try to use DeMorgan’s laws.

Problem 1.13. For all the statement forms below write a logically equivalent statement form that

involves only the logical connective ¬ and ∧.

1. P ∧ (Q ∨R)

2. (P ∧Q) ∨ (P ∧R)

3. P ⇐⇒ Q

Hint. Try to use DeMorgan’s laws.

Problem 1.14. Are the statement forms [(¬P ) =⇒ [Q ∧ ¬Q]] and P logically equivalent?

2 Quantifiers

Problem 2.1. What is the truth value of the statement (∀x ∈ R)(∃y ∈ R)(∀z ∈ R)[xy = xz]?

Problem 2.2. What is the truth value of the statement (∃y ∈ R)(∀x ∈ R)(∃z ∈ R)[xy = xz]?

Problem 2.3. Let x0 ∈ (a, b), ` ∈ R and f : (a, x0) ∪ (x0, b) → R. We say that ` is the limit of

f at x0, and we write limx→x0 f(x) = `, if for all ε > 0 there exists δ > 0 such that if x satisfies

0 < |x− x0| < δ then |f(x)− `| < ε. Formally,

lim
x→x0

f(x) = ` ⇐⇒ (∀ε > 0)(∃δ > 0)(∀x)[0 < |x− x0| < δ =⇒ |f(x)− `| < ε].

Negate the statement (∀ε > 0)(∃δ > 0)(∀x)[0 < |x− x0| < δ =⇒ |f(x)− `| < ε].

Problem 2.4. Give the definition of an even number using logical symbols and quantifiers.

Problem 2.5. Give the definition of a prime number using logical symbols and quantifiers.

Problem 2.6. Write a formal mathematical expression that expresses the fact that a given sequence

(xn)n∈N does not have a real limit.
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Problem 2.7. Negate the statement P : (∀n ∈ Z)(∃k ∈ Z)(n2 + n+ 1 = 2k). Try to explain what

P and ¬P mean.

Problem 2.8. Let f be a function from R to R. We say that f is strictly increasing if

(∀x ∈ R)(∀y ∈ R)[(x < y) =⇒ (f(x) < f(y))].

Negate the statement above.

Problem 2.9. Let f be a function from R to R. Define what it means for f to be strictly decreasing

Problem 2.10. Let f be a function from R to R. Write a formal mathematical expression which

expresses the fact that it is not true that f is strictly decreasing or strictly increasing.

Problem 2.11. Define formally what it means that an integer k divides an integer n.

Problem 2.12. Give a formal definition of what it means for a number x to be a rational number.

Problem 2.13. Give a formal definition of what it means for a number x to be a irrational number.

3 Proofs

Problem 3.1. Prove that the equation (E) : 7x− 2 = 0 has a unique solution in R.

Problem 3.2. Prove that the equation (E) : − 3x+ 8 = 0 has a unique solution in R.

Problem 3.3. Let a, b, c ∈ R with a 6= 0. Prove that the equation (E) : ax + b = c has a unique

solution in R.

Problem 3.4. Let a, b, and c be integers. Prove that for all integers m and n, if a divides b and

a divides c, then a divides (bm+ cn).

Problem 3.5. Prove that if m and n are even, then m+ n is even.

Problem 3.6. Prove that if m is even and n is odd, then m+ n is odd.

Problem 3.7. For all m,n ∈ Z, if m is even, then mn is even.

Problem 3.8. Show that for all n ∈ Z, 4n+ 7 is odd.

Problem 3.9. Let n be an integer. If n2 is even, then n is even.
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Problem 3.10. Let n be an integer. If n3 is even, then n is even.

Problem 3.11. For this problem you can use the following fact that will be proven later: 3 does

not divides n if and only if there exists an integer k and an integer i ∈ {1, 2} such that n = 3k+ i.

Prove that for every integer n, if 3 divides n2 then 3 divides n.

Problem 3.12. Prove that there are no integers m and n such that 8m+ 26n = 1.

Problem 3.13. Are there integers m and n such that m2 = 4n+ 3?

Problem 3.14. Let x ∈ R. If for all ε > 0, |x| < 2ε, then x = 0.

Problem 3.15. Prove that
3√

2 is irrational.

Hint. Use Problem 3.10.

Problem 3.16. Show that
√

3 is irrational.

Hint. Use Problem 3.11.

Problem 3.17. Show that log(3) is irrational.

Hint. You can use the the following property of the log function: x = log(3) ⇐⇒ 2x = 3 (no

proof needed) You can also use the binomial formula (no proof needed). Everything else that you

might need needs to be proven.

Problem 3.18. Prove that for all real numbers x and y with y ≥ 0, if x2 ≥ 4y, then x ≥ 2
√
y or

x ≤ −2
√
y.

Problem 3.19. Prove that for all integer k, k(k + 3) is even.

Problem 3.20. Prove that for all integer k, (k + 1)(k + 6) is even.

For the following problems we recall the definition of the absolute value function

|x| :=


x if x ≥ 0

−x if x < 0

Problem 3.21. Show that for all x ∈ R, |x| ≥ 0 with |x| = 0 if and only if x = 0.

Problem 3.22. Prove that for all real numbers x and y, |x− y| = |y − x|.
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Problem 3.23. Prove that for all real numbers x and y, |xy| = |x||y|.

Problem 3.24. Let x ∈ R and M ≥ 0. Show that |x| ≤M ⇐⇒ −M ≤ x ≤M .

Problem 3.25. Prove that for all real numbers x and y, |x+ y| ≤ |x|+ |y|.

Hint. You could use Problem 3.24.

Problem 3.26. Prove that for all x, y, z ∈ R, |x− y| ≤ |x− z|+ |y − z|.

Hint. You could use Problem 3.25.

Problem 3.27. Prove that for all real numbers x and y,
∣∣|x| − |y|∣∣ ≤ |x− y|.

Hint. You could use Problem 3.25.

Problem 3.28. Let x, y be real numbers. Show that

∀ε > 0, x < y + ε ⇐⇒ x ≤ y.

Problem 3.29. Let x, y be real numbers. Show that x > y − ε for all ε > 0 if and only if x ≥ y.

Problem 3.30. Prove that for all real numbers x and y, if x < y, then x < x+y
2 < y.

Problem 3.31. Prove that for all positive real numbers x, the sum of x and its reciprocal is greater

than 2.

Problem 3.32. 1. Prove that for all x, y ∈ R+,
√
xy ≤ x+y

2 .

2. Show that that for all x, y ∈ R+,
√
xy = x+y

2 if and only if x = y

4 Applications of the Principle of Mathematical Induction

Problem 4.1. Prove that for all integers n ≥ 1,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Problem 4.2. Prove that for all integers n ≥ 0,

n∑
k=0

2k = 2n+1 − 1.
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Problem 4.3. Prove that for all integers n ≥ 1,

n∑
k=1

(2k − 1) = n2.

Problem 4.4. Prove that for all integers n ≥ 1,

n∑
k=1

1

k(k + 1)
=

n

n+ 1
.

Problem 4.5. Prove that for all integers n ≥ 1,

n∑
k+1

(2k − 1)2 =
4n3 − n

3
.

Problem 4.6. Conjecture a formula for
∑n

k=1(−1)kk2, for all n ≥ 1 and then prove the formula

is correct using induction.

Problem 4.7. Prove that for all integers n ≥ 1, n < 10n.

Problem 4.8. Prove that for all integers n ≥ 7,
(
4
3

)n
> n.

Problem 4.9. Prove that for all integers n ≥ 1, n3 + 8n+ 9 is divisible by 3.

Problem 4.10. Prove that for all integers n ≥ 1, 32n − 1 is divisible by 8.

Problem 4.11. Prove that for all integers n ≥ 5, n2 < 2n.

Problem 4.12. Prove that for all integers n ≥ 4, 2n < n!.

Problem 4.13. Assuming that (1 + 1
n)n < e, for all n ≥ 1, prove that for all n ≥ 1, n! > (ne )n.

Problem 4.14. Prove that for all positive integers n, 4n − 1 is divisible by 3.

Problem 4.15. Let a1 = 2, and let an+1 = 1
2(an + 3) for all n ≥ 1.

(a) Prove that for all positive integers n, an < an+1.

(b) Prove that for all positive integers n, an < 3.

(c) Prove that for all positive integers n, an = 3− 1
2n−1 .

Problem 4.16. Let r ∈ R with r 6= 1. Prove that

n−1∑
k=0

rk =
1− rn

1− r
.
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Problem 4.17. Prove Bernoulli’s Inequality: Let x > −1. Then for all n ∈ N, (1 + x)n ≥ 1 + nx.

Problem 4.18. Let x, y ∈ R. Prove the binomial theorem: for all integers n ≥ 1,

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk.

Problem 4.19. Let n be an integer. Show that if n is even then nk is even for all k ∈ N.

5 Applications of the Principle of Strong Mathematical Induction

Problem 5.1. For i ∈ N, let pi denote the ith prime number, so that

p1 = 2, p2 = 3, p3 = 5, . . . .

Prove that for all n ∈ N, pn ≤ 22
n−1

.

Hint. For the induction step, given m ∈ N, show that pm+1 ≤ p1p2 · · · pm + 1.

Problem 5.2. Show that the principle of strong mathematical induction implies the principle of

mathematical induction.

Problem 5.3. Show that the principle of mathematical induction implies the principle of strong

mathematical induction.

6 Sequences defined by a recurrence relation

Problem 6.1. Let a1 = 2, a2 = 4, and an+1 = 7an − 10an−1 for all n ≥ 2. Conjecture a closed

formula for an and prove your result.

Problem 6.2. Let a1 = 3, a2 = 4, and an+1 = 1
3(2an + an−1) for all n ≥ 2. Prove that for all

positive integers n, 3 ≤ an ≤ 4.

Problem 6.3. Consider the sequence (an)∞n=1 recursively defined as a1 = 1, a2 = 8 and for all

n ≥ 3, an = an−1 + 2an−2. Show that for all n ≥ 1, an = 3 · 2n−1 + 2(−1)n.

Problem 6.4. Consider the sequence (an)∞n=1 recursively defined as a1 = 2, a2 = 4 and for all

n ≥ 3, an = 3an−1 − 2an−2. For all n ≥ 1, find a closed formula for an.
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7 Set Theory

7.1 Subsets

Problem 7.1. Prove that X ⊆ Y where X = {n ∈ Z | n is a multiple of 6} and Y = {n ∈ Z |

n is even}.

Problem 7.2. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 12k + 11)},

B = {n ∈ Z | (∃j ∈ Z)(n = 4j + 3)}.

(a) Is A ⊆ B? Prove or disprove.

(b) Is B ⊆ A? Prove or disprove.

Problem 7.3. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 4k + 1)},

B = {n ∈ Z | (∃j ∈ Z)(n = 4j − 7}.

Prove that A = B.

Problem 7.4. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 3k)},

B = {n ∈ Z | (∃i, j ∈ Z)(n = 15i+ 12j)}.

Prove that A = B.

Problem 7.5. Prove that X = {n ∈ Z | n+ 5is odd} is the set of all even integers.

7.2 Complements

Problem 7.6. Let A and B be subsets of an ambient set U . Prove that (A − B) ∪ (B − A) =

(A ∪B)− (A ∩B).

7.3 Arbitrary unions and intersections

Problem 7.7. For i ∈ N, let Ai = (−i, i). Compute
⋃∞

i=1Ai.
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Problem 7.8. For i ∈ N, let Ai = (−i, i). Compute
⋂∞

i=1Ai.

Problem 7.9. For i ∈ N, let Ai =
[
0, 1− 1

i

]
. Compute

⋃
i∈NAi.

Problem 7.10. For i ∈ N, let Ai =
[
0, 1− 1

i

]
. Compute

⋂
i∈NAi.

Problem 7.11. Let Xn = ( 2
n , 2n] for every integer n ≥ 1.

1. Compute
⋃∞

n=1Xn.

2. Compute
⋂∞

n=2Xn.

Problem 7.12. Let I be a nonempty set and let {Ai : i ∈ I} be an indexed family of sets. Let X

be a non-empty set. Suppose that for all i ∈ I, X ⊆ Ai. Prove that X ⊆
⋂

i∈I Ai.

Problem 7.13. Let {Ai : i ∈ N} be an indexed family of sets. Assume that for all i ∈ N, Ai+1 ⊆ Ai.

Prove that
⋃

i∈NAi = A1.

Problem 7.14. Let (Xi)i∈I be a collection of subsets of an ambient set U . Show that

⋂
i∈I

Xi =
⋃
i∈I

Xi.

Problem 7.15. Let (Xi)i∈I be a collection of subsets of an ambient set U . Show that

⋃
i∈I

Xi =
⋂
i∈I

Xi.

7.4 More problems

Problem 7.16. Let A = {x+ y
√

2 | x, y ∈ Q} ⊆ R.

(a) Prove that for all x, y ∈ Q, x+ y
√

2 = 0 if and only if x = y = 0.

(b) Prove that for all z1, z2 ∈ A, z1 + z2, z1z2 ∈ A and , for z2 6= 0, z1
z2
∈ A.

Problem 7.17. We say that the sequence of sets (Xn)∞n=1 is increasing, or an ascending chain, if

X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ Xn ⊆ Xn+1 ⊆ . . . . Formally, (Xn)∞n=1 is increasing if

(∀n ∈ N)[Xn ⊆ Xn+1].

Show that the sequence of sets (Xn)∞n=1 is increasing if and only if

(∀n ∈ N)(∀k ∈ N)[(n ≤ k) =⇒ (Xn ⊆ Xk)].
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Problem 7.18. We say that the sequence of sets (Xn)∞n=1 is decreasing, or a descending chain, if

X1 ⊇ X2 ⊇ X3 ⊇ · · · ⊇ Xn ⊇ Xn+1 ⊇ . . . . Formally, (Xn)∞n=1 is increasing if

(∀n ∈ N)[Xn ⊆ Xn+1].

Show that the sequence of sets (Xn)∞n=1 is decreasing if and only if for all n, k ∈ N if n ≤ k then

Xn ⊇ Xk.

Problem 7.19. Let X and Y be subsets of a universal set U . Show that X ∩ Y = X ∪ Y .

8 Functions

8.1 Composition

Problem 8.1. Let f, g : R→ R be defined for all x ∈ R as f(x) = x2 − 3x and g(x) = 5x− 2.

1. Is it possible to define f ◦ g? If it is, what is f ◦ g.

2. Is it possible to define g ◦ f? If it is, what is g ◦ f .

3. Are f ◦ g and g ◦ f equal? (Justify your answer)

Problem 8.2. Let f, g : Z→ Z be defined for all n ∈ Z as f(n) = 2n+ 3 and

g(n) =

 2n− 1 if n is even,

n+ 1 if n is odd.

1. Is it possible to define f ◦ g? If it is, what is f ◦ g.

2. Is it possible to define g ◦ f? If it is, what is g ◦ f .

3. Are f ◦ g and g ◦ f equal? (Justify your answer)

8.2 Injectivity, surjectivity, bijectivity

Problem 8.3. For f : R→ R defined by f(x) = x+ |x|, determine if:

1. f is injective,

2. f is surjective,

3. f is bijective.
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8.3 Composition and injectivity/surjectivity

Problem 8.4. Let W,X, Y be nonempty sets. Let f : W → X, g : X → Y be functions. Show that

if g ◦ f is surjective, then g is surjective.

Problem 8.5. Let W,X, Y be nonempty sets. Let f : W → X, g : X → Y be functions. Show that

if g ◦ f is injective, then f is injective.

Problem 8.6. Let X and Y be nonempty sets and let f : X → Y be a function. Prove that f is

injective if and only if for all sets Z, for all functions h : Z → X and k : Z → X, if f ◦ h = f ◦ k,

then h = k.

Problem 8.7. Let X and Y be nonempty sets and let f : X → Y be a function. Prove that f is

surjective if and only if for all sets Z, for all functions h : Y → Z and k : Y → Z, if h ◦ f = k ◦ f ,

then h = k.

9 Injectivity/surjectivity and invertibility

Problem 9.1. Let X and Y be nonempty sets and f : X → Y be a function. Prove that f is

injective if and only if f is left-invertible.

Problem 9.2. Let X and Y be nonempty sets, and f : X → Y be a function. Suppose that f has

a right-inverse h. Prove that f is surjective.

10 Functions and sets

Problem 10.1. Let X and Y be nonempty sets, and f : X → Y be an injective function. Let A be

a subset of X. Prove that f−1(f(A)) = A.

Problem 10.2. Let X and Y be nonempty sets, and f : X → Y be an surjective function. Let A

be a subset of Y . Prove that f(f−1(A)) = A.

11 Supplementary problems

Problem 11.1. Let f1 : X1 → X2, f2 : X2 → X3, f3 : X3 → X4 and f4 : X4 → X5. Show that

((f4 ◦ f3) ◦ f2) ◦ f1 = f4 ◦ (f3 ◦ (f2 ◦ f1)).
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Problem 11.2. Let X and Y be nonempty sets, and f : X → Y be a function. Prove that f is

surjective then f is right-invertible.

Problem 11.3. Let f1 : X1 → X2, f2 : X2 → X3, f3 : X3 → X4 be three injective functions. Show

that f3 ◦ f2 ◦ f1 is injective.
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