REAL ANALYSIS MATH 608 HOMEWORK #2

Problem 1. Let X and Y be topological spaces and $f: X \to Y$ be a map. Show that f is continuous at $x \in X$ if and only if for every net $(x_{\alpha})_{\alpha \in D}$ converging to x, $(f(x_{\alpha}))_{\alpha \in D}$ converges to f(x).

Solution. Assume that f is continuous at $x \in X$ and let $(x_{\alpha})_{\alpha \in D}$ be a net converging to x. Let $U \in N_{f(x)}$, then by continuity $f^{-1}(U) \in N_x$ and hence $(x_{\alpha})_{\alpha \in D}$ is eventually in $f^{-1}(U)$, which in turn implies that $(f(x_{\alpha}))_{\alpha \in D}$ is eventually in U.

Now, if f is not continuous at x, then there is $U \in \mathcal{N}_{f(x)}$ such that $f^{-1}(U) \notin \mathcal{N}_x$. This implies that x does not belong to the interior of $f^{-1}(U)$, and hence x is in the closure of the complement of $f^{-1}(U)$. Therefore, there is a net $(x_{\alpha})_{\alpha \in D}$ in $f^{-1}(U)^c = f^{-1}(U^c)$ that converges to x, and the net $(f(x_{\alpha}))_{\alpha \in D}$ cannot converge to f(x) since it is never in U.

Problem 2. Let $(x_{\alpha})_{\alpha \in D}$ be a net in a topological space X and $x \in X$. Show that the following assertions are equivalent:

- (1) $(x_{\alpha})_{\alpha \in D}$ converges to x.
- (2) Every subnet of $(x_{\alpha})_{\alpha \in D}$ has a cofinal subnet that converges to x.
- (3) Every subnet of $(x_{\alpha})_{\alpha \in D}$ has a subnet that converges to x.
- (4) Every cofinal subnet of $(x_{\alpha})_{\alpha \in D}$ has a subnet that converges to x.
- (5) Every cofinal subnet of $(x_{\alpha})_{\alpha \in D}$ has a cofinal subnet that converges to x.

Hint: There is essentially only one implication that requires a proof; which one?

Solution. (1) \implies (2) \implies (3) \implies (4) is trivial, as well as (5) \implies (4) and (1) \implies (5). It remains to prove (4) \implies (1). Assume that $(x_{\alpha})_{\alpha \in D}$ does not converge to *x*. Then there is $V \in \mathcal{N}_x$ such that $(x_{\alpha})_{\alpha \in D}$ is frequently in V^c , and hence there is a cofinal subnet which is eventually in V^c , and thus the same is true for all its subnets which certainly cannot converge to *x*.

Problem 3. Let X be a topological space and denote by B(X) (resp. $C_b(X)$) the space of (real or complex valued) bounded (resp. bounded and continuous) functions on X. These spaces are equipped with their natural vector space structure and the metric $d_u(f,g) \stackrel{\text{def}}{=} \sup_{x \in X} |f(x) - g(x)|$.

- (1) Show that d_u is a complete metric on B(X).
- (2) Show that $C_b(X)$ is a closed subspace of B(X) (with respect to the topology induced by the uniform *metric*).
- (3) What can you deduce from (2) regarding the completness of $C_b(X)$?

Solution. (1) That d_u is a metric is elementary (symmetry and definitness is clear, and the triangle inequality is a consequence of the triangle inequality for the module). As for completness, let $(f_n)_n$ be a Cauchy sequence in B(X) with respect to d_u . Then, for all $x \in X$, $(f_n(x))_n$ is a Cauchy sequence of real or complex numbers which is convergent by completness of the fields equipped with the relevant module. Let $f(x) \stackrel{\text{def}}{=} \lim_n f_n(x)$. Then $\lim_n d_u(f_n, f) = 0$. Indeed, for $\varepsilon > 0$ let $N \in \mathbb{N}$ such that $n, k \ge N \implies d_u(f_n, f_k) \le \varepsilon$. Then, for all $x \in X$, and $n, k \ge N$, $|f_n(x) - f_k(x)| \le \varepsilon$. Taking the limit

when $n \to \infty$ we have $|f(x) - f_k(x)| \le \varepsilon$ for all $x \in X$ and all $k \ge N$, i.e. for all $k \ge N$, $d_u(f, f_k) \le \varepsilon$; which proves the claim. *f* is bounded as it is the uniform limit of bounded functions. Indeed, let $N \ge 1$ such that for all $k \ge N$, $d_u(f, f_k) \le 1$, then $\sup_{x \in X} |f(x)| = d_u(f, 0) \le d_u(f, f_N) + d_u(f_N, 0) \le 1 + \sup_{x \in X} |f_N(x)| < \infty$.

- (2) We have already seen above that the uniform limit of a sequence of bounded functions is bounded. But a uniform limit of a sequence of continuous function is also continuous. Indeed, let (f_n)_n be a sequence of continuous functions that converges uniformly to f, and for ε > 0 let N ≥ 1 such that d_u(f, f_N) < ε. For x₀ ∈ X, let U ∈ N_{x0} such that for all x ∈ U, |f_N(x) − f_N(x₀)| ≤ ε. Then, for all x ∈ U |f(x) − f(x₀)| ≤ |f(x) − f_N(x)| + |f_N(x) − f_N(x₀)| + |f_N(x₀) − f(x₀)| ≤ 3ε, and the conclusion follows.
- (3) Since a closed subset of a complete metric space is complete (a Cauchy sequence in closed subset converges to a point (by completness) that remains in the set (by closedness)), it follows from (2) that $C_b(X)$ equipped with the uniform metric is complete.

Problem 4. Let $(x_{\alpha})_{\alpha \in D}$ be a net in a topological space *X*, and for each $\alpha \in (D, \leq)$ let $T_{\alpha} \stackrel{\text{def}}{=} \{x_{\beta} : \beta \ge \alpha\}$ Show that the set of cluster points of $(x_{\alpha})_{\alpha \in D}$ is $\bigcap_{\alpha \in D} \overline{T_{\alpha}}$.

Solution. Let $z \in \bigcap_{\alpha \in D} \overline{T_{\alpha}}$, then for all $\alpha \in D$, $z \in \overline{T_{\alpha}}$ and for all $V \in \mathcal{N}_z$, $V \cap T_{\alpha} \neq \emptyset$. Therefore, for all $\alpha \in D$, there is $\beta \ge \alpha$ such that $x_{\beta} \in V$, i.e. $(x_{\alpha})_{\alpha}$ is frequently in *V*, and thus *z* is a cluster point of $(x_{\alpha})_{\alpha}$.

Now, if *x* is a cluster point of $(x_{\alpha})_{\alpha}$, then for all $V \in \mathcal{N}_x$, all $\alpha \in D$, there is $\beta \ge \alpha$ such that $x_{\beta} \in V$; i.e. for all $\alpha \in D$, $x \in \overline{T_{\alpha}}$ and every cluster point belongs to $\bigcap_{\alpha \in D} \overline{T_{\alpha}}$, which concludes the proof.

Problem 5. A filter on a set X is a collection \mathcal{F} of non-empty subsets of X that is stable under taking supersets and finite intersections. A filter in a topological space is said to converge to a point if it contains the neighborhood system of the point.

- (1) Verify that the neighborhood system of a point in a topological space is a filter.
- (2) Show that a topological space X is Hausdorff if and only every convergent filter in X has a unique *limit.*
- (3) Given a net $(x_{\alpha})_{\alpha \in D}$ in a topological space X, construct a filter \mathcal{F} on X such that, $(x_{\alpha})_{\alpha \in D}$ converges to $x \in X$ if and only if \mathcal{F} converges to $x \in X$.
- (4) Given a filter \mathcal{F} on a topological space X, construct a net $(x_{\alpha})_{\alpha \in D}$ in X such that, $(x_{\alpha})_{\alpha \in D}$ converges to $x \in X$ if and only if \mathcal{F} converges to $x \in X$.

Hint: For (3), think of the tails of the net. For (4), direct the set $\{(x, F) : x \in F \in \mathcal{F}\}$ in an adequate way.

Solution. (1) This is true since the intersection of two open sets is an open set.

- (2) Assume that $x \neq y$, X is Hausdorff and that there is a filter \mathcal{F} that converges to x and to y. Let $U \in \mathcal{N}_x$ and $V \in \mathcal{N}_y$. Since U and V are in \mathcal{F} , so is their intersection which therefore is non empty, a contradiction. Now if X is not Hausdorff, let $x \neq y$ be such that for all neighborhoods V of x and W of y one has $V \cap W \neq \emptyset$. Consider the filter $\mathcal{F} = \{Z \subset X \colon Z \supset V \cap W \text{ for some } V \in \mathcal{N}_x, W \in \mathcal{N}_y\}$. Then \mathcal{F} converges to x and to y.
- (3) Define $\mathcal{F} = \{Z \subset X : \exists \alpha \in D \text{ s.t. } Z \supset T_{\alpha}\}$. \mathcal{F} is a filter because *D* is directed, and the equivalence follows immediately from the definition of \mathcal{F} .
- (4) Direct the set $D = \{(x, F): x \in F \in \mathcal{F}\}$ as follows $(x, F) \leq (y, G) \iff G \subset F$, and define $z_{(x,F)} = x$ for all $(x, F) \in D$. If \mathcal{F} converges to x, then given $V \in \mathcal{N}_x$, $V \in \mathcal{F}$ and hence $(x, V) \in D$. For all $(t, W) \in D$ such that $(x, V) \leq (t, W)$ one has $z_{(t,W)} = t \in W \subset V$, which means that $(z_{\alpha})_{\alpha \in D}$ is eventually in V and

hence converges to *x*. Assume that $(z_{\alpha})_{\alpha \in D}$ converges to *x*. Then given $V \in \mathcal{N}_x$ there is $(t, F) \in D$ such that for all $(t, F) \leq (s, G)$, $z_{(s,G)} \in V$. Since for all $g \in G$, it is plain that $(t, F) \leq (g, F)$, then $z_{(g,F)} = g \in V$, and hence $F \subset V$. Therefore $V \in \mathcal{F}$ and \mathcal{F} converges to *x*.