MATH 300
Practice EXAM II
Duration: 120 minutes
LAST NAME: \qquad FIRST NAME:

SECTION NUMBER: \qquad

DIRECTIONS:

1. The use of a calculator, laptop, computer, book, or lecture notes is prohibited.
2. Show all your work neatly and concisely.

THE AGGIE CODE OF HONOR
"An Aggie does not lie, cheat, or steal, or tolerate those who do."

Signature: \qquad

Problem	Points Awarded	Points
1		20
2		10
3		12
4		12
5		12
6		12
7		12
8		100

Problem 1 (2 points each question) CIRCLE the correct answer.
Let X and Y be sets. We say that X is a subset of Y, and write $X \subseteq Y$, if

1. $[x \in X \Longrightarrow x \in Y]$
2. $(\exists x)[x \in X \Longrightarrow x \in Y]$
3. $(\forall x)[x \in X \Longrightarrow x \in Y]$
4. none of the above.

Let X be a set. Then $\emptyset \subseteq X$.

1. TRUE
2. FALSE

Let X, Y, and Z be sets. If $X \subseteq Y$ and $Y \subseteq Z$, then

1. $Z \subseteq X$.
2. $X \subseteq Z$.
3. none of the above.

We say that two sets X and Y are equal, written $X=Y$, if

1. $(X \subseteq Y) \vee(Y \subseteq X)$.
2. $(X \subseteq Y) \wedge(Y \subseteq X)$.
3. none of the above.

Let X be a set. Then,

1. $X \cup \emptyset=X$
2. $X \cup \emptyset=\emptyset$.
3. none of the above.

Let X be a set. Then,

1. $X \cap \emptyset=X$
2. $X \cap \emptyset=\emptyset$.
3. none of the above.

Let X and Y be sets. Then $X \cap Y \subseteq X$.

1. TRUE
2. FALSE

Let X and Y be subsets of a universal set U. Which of the following statements is FALSE.

1. $\bar{U}=\emptyset$,
2. $\bar{\emptyset}=U$.
3. $X-Y=Y \cap \bar{X}$,
4. $\emptyset-X=\emptyset$,
5. $X-\emptyset=X$.
6. $\overline{\bar{X}}=X$
7. none of the above.

For all integers $k, k(k+3)$ is even.

1. TRUE
2. FALSE

For the following problem we recall the definition of the absolute value function

$$
|x|:= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Let $x, y \in \mathbb{R}$. Which of the following statements is FALSE.

1. $|x y|=|y x|$
2. $|x-y|=|y-x|$
3. $|x+y| \leq|x|+|y|$
4. $|x+y|>|x|+|y|$.
5. none of the above.

Problem 2 (10 points) Prove that for all integers $n \geq 1$,

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1}
$$

Problem 3 (12 points) Let $a_{1}=2, a_{2}=4$, and $a_{n+1}=7 a_{n}-10 a_{n-1}$ for all $n \geq 2$. Conjecture a closed formula for a_{n} and prove your result.

Problem 4 (12 points) Prove that for all integers $n \geq 1,3^{2 n}-1$ is divisible by 8 .

Problem 5 (12 points)

1. (7 points) Prove that for all integers $n \geq 1$,

$$
\sum_{k=0}^{n-1} 2^{k}=2^{n}-1
$$

For the next two questions, for $i \in \mathbb{N}$, let p_{i} denote the i th prime number, so that

$$
p_{1}=2, \quad p_{2}=3, \quad p_{3}=5, \ldots
$$

2. (2 points) Given an integer $m \geq 1$, show that $p_{m+1} \leq p_{1} p_{2} \cdots p_{m}+1$.
(Hint: you could show by contradiction that if $1 \leq i \leq m$ then p_{i} does not divide $p_{1} p_{2} \cdots p_{m}+1$.)
3. (3 points) Prove that for all integers $n \geq 1, p_{n} \leq 2^{2^{n-1}}$.
(Hint: You can use question 1. and question 2.)

Problem 6 (10 points) Consider the sets

$$
\begin{aligned}
& A=\{n \in \mathbb{Z} \mid(\exists k \in \mathbb{Z})(n=4 k+1)\}, \\
& B=\{n \in \mathbb{Z} \mid(\exists j \in \mathbb{Z})(n=4 j-7\} .
\end{aligned}
$$

Prove that $A=B$.

Problem 7 (12 points) Let X and Y be subsets of a universal set U. Show that $\overline{X \cap Y}=\bar{X} \cup \bar{Y}$.

Problem 8 (12 points) For this problem you can use the Archimedean principle.

Archimedean Principle: For all real number $x>0$ there exists an integer $n \geq 1$ such that $x<n$.

Let $X_{n}=\left(\frac{2}{n}, 7 n\right]$ for $n \geq 1$.

1. (7 points) Compute $\bigcup_{n=1}^{\infty} X_{n}$.
2. (5 points) Compute $\bigcap_{n=1}^{\infty} X_{n}$.
