MATH 300 Practice EXAM II Duration: 120 minutes

LAST NAME: ______FIRST NAME: _____

SECTION NUMBER: _____

DIRECTIONS:

- 1. The use of a calculator, laptop, computer, book, or lecture notes is prohibited.
- 2. Show all your work neatly and concisely.

THE AGGIE CODE OF HONOR "An Aggie does not lie, cheat, or steal, or tolerate those who do."

Signature: _____

Problem	Points Awarded	Points
1		20
2		10
3		12
4		12
5		12
6		10
7		12
8		12
TOTAL		100

Problem 1 (2 points each question) **CIRCLE the correct answer**. Let X and Y be sets. We say that X is a subset of Y, and write $X \subseteq Y$, if

- 1. $[x \in X \implies x \in Y]$
- 2. $(\exists x)[x \in X \implies x \in Y]$
- 3. $(\forall x)[x \in X \implies x \in Y]$
- 4. none of the above.

Let X be a set. Then $\emptyset \subseteq X$.

- $1. \ TRUE$
- 2. FALSE

Let X, Y, and Z be sets. If $X \subseteq Y$ and $Y \subseteq Z$, then

- 1. $Z \subseteq X$.
- 2. $X \subseteq Z$.
- 3. none of the above.

We say that two sets X and Y are equal, written X = Y, if

- 1. $(X \subseteq Y) \lor (Y \subseteq X)$.
- 2. $(X \subseteq Y) \land (Y \subseteq X)$.
- 3. none of the above.

Let X be a set. Then,

- 1. $X \cup \emptyset = X$
- 2. $X \cup \emptyset = \emptyset$.
- 3. none of the above.

Let X be a set. Then,

- 1. $X \cap \emptyset = X$
- $\textit{2. } X \cap \emptyset = \emptyset.$
- 3. none of the above.

Let X and Y be sets. Then $X \cap Y \subseteq X$.

- 1. TRUE
- 2. FALSE

Let X and Y be subsets of a universal set U. Which of the following statements is FALSE.

- 1. $\overline{U} = \emptyset$,
- 2. $\overline{\emptyset} = U$.
- 3. $X Y = Y \cap \overline{X}$,
- 4. $\emptyset X = \emptyset$,
- 5. $X \emptyset = X$.
- $6. \ \overline{\overline{X}} = X$
- 7. none of the above.

For all integers k, k(k+3) is even.

- $1. \ TRUE$
- 2. FALSE

For the following problem we recall the definition of the absolute value function

$$|x| := \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Let $x, y \in \mathbb{R}$. Which of the following statements is FALSE.

- 1. |xy| = |yx|
- 2. |x y| = |y x|
- 3. $|x+y| \le |x|+|y|$
- 4. |x+y| > |x| + |y|.
- 5. none of the above.

Problem 2 (10 points) Prove that for all integers $n \ge 1$,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Problem 3 (12 points) Let $a_1 = 2$, $a_2 = 4$, and $a_{n+1} = 7a_n - 10a_{n-1}$ for all $n \ge 2$. Conjecture a closed formula for a_n and prove your result.

Problem 4 (12 points) Prove that for all integers $n \ge 1$, $3^{2n} - 1$ is divisible by 8.

Problem 5 (12 points)

1. (7 points) Prove that for all integers $n \ge 1$,

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1.$$

For the next two questions, for $i \in \mathbb{N}$, let p_i denote the *i*th prime number, so that

 $p_1 = 2, \qquad p_2 = 3, \qquad p_3 = 5, \dots$

2. (2 points) Given an integer $m \ge 1$, show that $p_{m+1} \le p_1 p_2 \cdots p_m + 1$. (Hint: you could show by contradiction that if $1 \le i \le m$ then p_i does not divide $p_1 p_2 \cdots p_m + 1$.)

3. (3 points) Prove that for all integers $n \ge 1$, $p_n \le 2^{2^{n-1}}$. (*Hint: You can use question 1. and question 2.*) Problem 6 (10 points) Consider the sets

$$\begin{split} A &= \{n \in \mathbb{Z} \mid (\exists k \in \mathbb{Z}) (n = 4k + 1)\},\\ B &= \{n \in \mathbb{Z} \mid (\exists j \in \mathbb{Z}) (n = 4j - 7\}. \end{split}$$

Prove that A = B.

Problem 7 (12 points) Let X and Y be subsets of a universal set U. Show that $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$.

Problem 8 (12 points) For this problem you can use the Archimedean principle.

Archimedean Principle: For all real number x > 0 there exists an integer $n \ge 1$ such that x < n.

Let $X_n = \left(\frac{2}{n}, 7n\right]$ for $n \ge 1$.

1. (7 points) Compute $\bigcup_{n=1}^{\infty} X_n$.

2. (5 points) Compute $\bigcap_{n=1}^{\infty} X_n$.