MATH 300

Practice EXAM II
Duration: 75 minutes

LAST NAME: \qquad FIRST NAME:

SECTION NUMBER: \qquad

DIRECTIONS:

1. The use of a calculator, laptop, computer, book, or lecture notes is prohibited.
2. Show all your work neatly and concisely.

THE AGGIE CODE OF HONOR
"An Aggie does not lie, cheat, or steal, or tolerate those who do."

Signature: \qquad

Exercise	Points Awarded	Points
$1-10$		40
11		12
12		12
13		8
14		16
15		100

1. Exercise 1. (4 points) Which of the following statements is a proposition.
(a) $x+1=0$.
(b) $(\exists x)[x+1=0]$.
(c) none of the above.
2. Exercise 2. (4 points) Which of the following statements is a proposition.
(a) $(\forall x)\left[x^{2}+y^{2} \neq 0\right]$.
(b) $(\exists y)(\forall x)\left[x^{2}+y^{2} \neq 0\right]$.
(c) none of the above.
3. Exercise 3. (4 points) Which of the following statements is a predicate.
(a) $(\forall x)\left[x^{2}+y^{2} \neq 0\right]$.
(b) $(\forall x)\left[(x>1) \Longrightarrow\left(x^{2}>4\right)\right]$.
(c) none of the above.
4. Exercise 4. (4 points) Which of the following statements is a predicate.
(a) $(\forall x)\left[x^{2}+1 \neq 0\right]$.
(b) $(x>2) \Longrightarrow\left(y^{4}+x>0\right)$.
(c) none of the above.
5. Exercise 5. (4 points) Let X and Y be sets. By definition $X \cup Y$ is the set
(a) $\{z \mid(z \notin X) \wedge(z \in Y)\}$,
(b) $\{z \mid(z \in X) \vee(z \in Y)\}$,
(c) $\{z \mid(z \notin X) \vee(z \notin Y)\}$,
(d) $\{z \mid(z \in X) \wedge(z \in Y)\}$,
(e) $\{z \mid(z \in X) \wedge(z \notin Y)\}$,
(f) none of the above.
6. Exercise 6. (4 points) Let X and Y be sets. By definition $X \cap Y$ is the set
(a) $\{z \mid(z \notin X) \wedge(z \in Y)\}$,
(b) $\{z \mid(z \in X) \vee(z \in Y)\}$,
(c) $\{z \mid(z \notin X) \vee(z \notin Y)\}$,
(d) $\{z \mid(z \in X) \wedge(z \in Y)\}$,
(e) $\{z \mid(z \in X) \wedge(z \notin Y)\}$,
(f) none of the above.
7. Exercise 7. (4 points) Let X and Y be sets. By definition $X-Y$ is the set
(a) $\{z \mid(z \notin X) \wedge(z \in Y)\}$,
(b) $\{z \mid(z \in X) \vee(z \in Y)\}$,
(c) $\{z \mid(z \notin X) \vee(z \notin Y)\}$,
(d) $\{z \mid(z \in X) \wedge(z \in Y)\}$,
(e) $\{z \mid(z \in X) \wedge(z \notin Y)\}$,
(f) none of the above.
8. Exercise 8. (4 points) Let X and Y be sets. By definition $Y \times X$ is the set
(a) $\{(y, x) \mid(x \in X) \vee(y \in Y)\}$,
(b) $\{(x, y) \mid(x \in X) \vee(y \in Y)\}$,
(c) $\{(x, y) \mid(x \in X) \wedge(y \in Y)\}$,
(d) $\{(y, x) \mid(x \in X) \wedge(y \in Y)\}$,
(e) none of the above.
9. Exercise 9. (4 points) Let $X=\{3,4\}$ and $Y=\{1,2\}$. The Cartesian product $X \times Y$ is
(a) $X \times Y=\{1,2,3,4\}$,
(b) $X \times Y=\{(1,3),(1,4),(2,3),(2,4)\}$,
(c) $X \times Y=\{(3,1),(3,2),(4,1),(4,2)\}$,
(d) $X \times Y=\{(1,2),(3,4)\}$,
(e) none of the above.
10. Exercise 10. (4 points) Let $X=\{2,4\}$. The power set of X is:
(a) $P(X)=\{2,4,\{2,4\}\}$.
(b) $P(X)=\{\emptyset, 2,4,\{2,4\}\}$.
(c) $P(X)=\{\{2\},\{4\},\{2,4\}\}$.
(d) $P(X)=\{\emptyset,\{2\},\{4\},\{2,4\}\}$.
(e) none of the above.
11. Exercise 11. (12 points) Recall that $2^{0}=1$. Prove that for all $n \geq 1$,

$$
\sum_{k=0}^{n-1} 2^{k}=2^{n}-1
$$

12. Exercise 12. (12 points) Consider the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ recursively defined as $a_{1}=2, a_{2}=4$ and for all $n \geq 2, a_{n+1}=4 a_{n}-4 a_{n-1}$. For all $n \geq 1$, find a closed formula for a_{n} and prove that your conjecture is true.
13. Exercise 13. (8 points) Let $X=\{n \in \mathbb{Z} \mid(\exists k \in \mathbb{Z})[n=6 k]\}$ and $Y=\{n \in \mathbb{Z} \mid n$ is even $\}$. Prove that $X \subseteq Y$.
14. Exercise 14. (16 points)
(a) (8 points) Let X and Y be sets. Show that $\overline{X \cup Y}=\bar{X} \cap \bar{Y}$.
(b) (8 points) Let $\left(X_{i}\right)_{i \in I}$ be a collection of sets. Show that $\overline{\bigcap_{i \in I} X_{i}}=\bigcup_{i \in I} \bar{X}_{i}$.
15. Exercise 15. (12 points) For all $n \geq 1$, let $A_{n}=\left[0,2-\frac{1}{n}\right]$.
(a) (2 points) $\bigcup_{n=1}^{\infty} A_{n}=$
(b) (4 points) Prove that your answer to part (a) is correct.
(Hint: Remember that for all $y>0$ there exists an integer $k \geq 1$ such that $0<\frac{1}{k} \leq y$.)
(c) (2 points) $\bigcap_{n=1}^{\infty} A_{n}=$
(d) (4 points) Prove that your answer to part (c) is correct.
