MATH 300 Practice EXAM II

Duration: 75 minutes

LAST NAME:	_FIRST NAME:		
SECTION NUMI	BER:		
DIRECTIONS:			
1. The use of a calculator, laptop, computer, book, or lecture notes is prohibited.			
2. Show all your work neatly and concisely.			
	THE AGGIE CODE OF HONOR		
"An Aggie does	s not lie, cheat, or steal, or tolerate those who do."		
	Signature:		

Exercise	Points Awarded	Points
1-10		40
11		12
12		12
13		8
14		16
15		12
TOTAL		100

- 1. Exercise 1. (4 points) Which of the following statements is a proposition.
 - (a) x + 1 = 0.
 - (b) $(\exists x)[x+1=0].$
 - (c) none of the above.
- 2. Exercise 2. (4 points) Which of the following statements is a proposition.
 - (a) $(\forall x)[x^2 + y^2 \neq 0]$.
 - (b) $(\exists y)(\forall x)[x^2 + y^2 \neq 0].$
 - (c) none of the above.
- 3. Exercise 3. (4 points) Which of the following statements is a predicate.
 - (a) $(\forall x)[x^2 + y^2 \neq 0]$.
 - (b) $(\forall x)[(x > 1) \implies (x^2 > 4)].$
 - (c) none of the above.
- 4. Exercise 4. (4 points) Which of the following statements is a predicate.
 - (a) $(\forall x)[x^2 + 1 \neq 0]$.
 - (b) $(x > 2) \implies (y^4 + x > 0)$.
 - (c) none of the above.
- 5. Exercise 5. (4 points) Let X and Y be sets. By definition $X \cup Y$ is the set
 - (a) $\{z \mid (z \notin X) \land (z \in Y)\},\$
 - (b) $\{z \mid (z \in X) \lor (z \in Y)\},\$
 - (c) $\{z \mid (z \notin X) \lor (z \notin Y)\},\$
 - (d) $\{z \mid (z \in X) \land (z \in Y)\},\$
 - (e) $\{z \mid (z \in X) \land (z \notin Y)\},\$
 - (f) none of the above.
- 6. Exercise 6. (4 points) Let X and Y be sets. By definition $X \cap Y$ is the set
 - (a) $\{z \mid (z \notin X) \land (z \in Y)\},\$
 - (b) $\{z \mid (z \in X) \lor (z \in Y)\},\$
 - (c) $\{z \mid (z \notin X) \lor (z \notin Y)\},\$
 - (d) $\{z \mid (z \in X) \land (z \in Y)\},\$
 - (e) $\{z \mid (z \in X) \land (z \notin Y)\},\$
 - (f) none of the above.

- 7. Exercise 7. (4 points) Let X and Y be sets. By definition X Y is the set
 - (a) $\{z \mid (z \notin X) \land (z \in Y)\},\$
 - (b) $\{z \mid (z \in X) \lor (z \in Y)\},\$
 - (c) $\{z \mid (z \notin X) \lor (z \notin Y)\},\$
 - (d) $\{z \mid (z \in X) \land (z \in Y)\},\$
 - (e) $\{z \mid (z \in X) \land (z \notin Y)\},\$
 - (f) none of the above.
- 8. Exercise 8. (4 points) Let X and Y be sets. By definition $Y \times X$ is the set
 - (a) $\{(y, x) \mid (x \in X) \lor (y \in Y)\},\$
 - (b) $\{(x,y) \mid (x \in X) \lor (y \in Y)\},\$
 - (c) $\{(x,y) \mid (x \in X) \land (y \in Y)\},\$
 - (d) $\{(y, x) \mid (x \in X) \land (y \in Y)\},\$
 - (e) none of the above.
- 9. Exercise 9. (4 points) Let $X = \{3,4\}$ and $Y = \{1,2\}$. The Cartesian product $X \times Y$ is
 - (a) $X \times Y = \{1, 2, 3, 4\},\$
 - (b) $X \times Y = \{(1,3), (1,4), (2,3), (2,4)\},\$
 - (c) $X \times Y = \{(3,1), (3,2), (4,1), (4,2)\},\$
 - (d) $X \times Y = \{(1,2), (3,4)\},\$
 - (e) none of the above.
- 10. Exercise 10. (4 points) Let $X = \{2, 4\}$. The power set of X is:
 - (a) $P(X) = \{2, 4, \{2, 4\}\}.$
 - (b) $P(X) = \{\emptyset, 2, 4, \{2, 4\}\}.$
 - (c) $P(X) = \{\{2\}, \{4\}, \{2,4\}\}.$
 - (d) $P(X) = \{\emptyset, \{2\}, \{4\}, \{2, 4\}\}.$
 - (e) none of the above.

11. Exercise 11. (12 points) Recall that $2^0 = 1$. Prove that for all $n \ge 1$,

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1.$$

12. Exercise 12. (12 points) Consider the sequence $(a_n)_{n=1}^{\infty}$ recursively defined as $a_1 = 2$, $a_2 = 4$ and for all $n \geq 2$, $a_{n+1} = 4a_n - 4a_{n-1}$. For all $n \geq 1$, find a closed formula for a_n and prove that your conjecture is true.

13. Exercise 13. (8 points) Let $X = \{n \in \mathbb{Z} \mid (\exists k \in \mathbb{Z})[n=6k]\}$ and $Y = \{n \in \mathbb{Z} \mid n \text{ is even}\}$. Prove that $X \subseteq Y$.

- 14. Exercise 14. (16 points)
 - (a) (8 points) Let X and Y be sets. Show that $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$.

(b) (8 points) Let $(X_i)_{i \in I}$ be a collection of sets. Show that $\overline{\bigcap_{i \in I} X_i} = \bigcup_{i \in I} \overline{X}_i$.

- 15. Exercise 15. (12 points) For all $n \ge 1$, let $A_n = \left[0, 2 \frac{1}{n}\right]$.
 - (a) (2 points) $\bigcup_{n=1}^{\infty} A_n =$
 - (b) (4 points) Prove that your answer to part (a) is correct. (Hint: Remember that for all y>0 there exists an integer $k\geq 1$ such that $0<\frac{1}{k}\leq y$.)

- (c) (2 points) $\bigcap_{n=1}^{\infty} A_n =$
- (d) (4 points) Prove that your answer to part (c) is correct.