MATH 300 Problems without solutions

F. Baudier (Texas A&M University)

August 30, 2023

Contents

1	Logical connectives and equivalences, Boolean Calculus	2
2	Quantifiers	3
3	Proofs	4
4	Applications of the Principle of Mathematical Induction	6
5	Applications of the Principle of Strong Mathematical Induction	7
6	Sequences defined by a recurrence relation	8
7	Set Theory	8
	7.1 Subsets	8
	7.2 Complements	9
	7.3 Arbitrary unions and intersections	9
	7.4 More problems	10
8	Functions	10
	8.1 Composition	10
	8.2 Injectivity, surjectivity, bijectivity	11
	8.3 Composition and injectivity/surjectivity	11
9	Injectivity, surjectivity, and one-sided invertibility	12
10	Functions and sets	12

11 Supplementary problems

1 Logical connectives and equivalences, Boolean Calculus

Problem 1.1. Show that $P \lor P$ is logically equivalent to P.

Problem 1.2. Show that $P \wedge P$ is logically equivalent to P.

Problem 1.3. Are the statement forms $(P \land Q) \land R$ and $P \land (Q \land R)$ logically equivalent?

Problem 1.4. Are the statement forms $(P \lor Q) \lor R$ and $P \lor (Q \lor R)$ logically equivalent?

Problem 1.5. *Is the statement form* $(P \land Q) \lor ((\neg P) \land \neg Q)$ *a tautology, a contradiction, or neither?*

Problem 1.6. Are the statement forms $(P \lor Q) \land R$ and $P \lor (Q \land R)$ logically equivalent?

Problem 1.7. Show that $P \lor (Q \land R)$ is logically equivalent to $(P \lor Q) \land (P \lor R)$.

Problem 1.8. Show that $P \land (Q \lor R)$ is logically equivalent to $(P \land Q) \lor (P \land R)$.

Problem 1.9. Are the statement forms $P \implies (Q \lor R)$ and $(P \implies Q) \lor (P \implies R)$ logically equivalent?

Problem 1.10. Are the statement forms $P \implies (Q \land R)$ and $(P \implies Q) \land (P \implies R)$ logically equivalent?

Hint. Try to use Problem 1.7.

Problem 1.11. Show that the statement forms $(P \lor Q) \implies R$ and $(P \implies R) \land (Q \implies R)$ are logically equivalent.

Hint. Try to use DeMorgan's Laws and Problem 1.7.

Problem 1.12. For all the statement forms below write a logically equivalent statement form that involves only the logical connective \neg and \lor .

- 1. $P \lor (Q \land R)$
- 2. $(P \lor Q) \land (P \lor R)$
- 3. $P \iff Q$

Hint. Try to use DeMorgan's laws.

Problem 1.13. For all the statement forms below write a logically equivalent statement form that involves only the logical connective \neg and \land .

- 1. $P \land (Q \lor R)$
- 2. $(P \land Q) \lor (P \land R)$
- 3. $P \iff Q$

Hint. Try to use DeMorgan's laws.

Problem 1.14. Are the statement forms $[(\neg P) \implies [Q \land \neg Q]]$ and P logically equivalent?

2 Quantifiers

Problem 2.1. Let $x_0 \in (a,b)$, $\ell \in \mathbb{R}$ and $f: (a,x_0) \cup (x_0,b) \to \mathbb{R}$. We say that ℓ is the limit of f at x_0 , and we write $\lim_{x\to x_0} f(x) = \ell$, if for all $\varepsilon > 0$ there exists $\delta > 0$ such that if x satisfies $0 < |x - x_0| < \delta$ then $|f(x) - \ell| < \varepsilon$. Formally,

$$\lim_{x \to x_0} f(x) = \ell \iff (\forall \varepsilon > 0) (\exists \delta > 0) (\forall x) [0 < |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon].$$

Negate the statement $(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x) [0 < |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon].$

Problem 2.2.

- 1. Give a possible definition of even numbers using logical symbols, quantifiers, and only the multiplication operation.
- 2. Negate the definition you gave above.

Problem 2.3.

- 1. Give a possible definition of a prime number using logical symbols, quantifiers, and only the multiplication operation.
- 2. Negate the definition you gave above.

Problem 2.4. Write a formal mathematical expression that expresses the fact that a given sequence $(x_n)_{n \in \mathbb{N}}$ does not have a real limit.

Problem 2.5. Negate the statement $P : (\forall n \in \mathbb{Z})(\exists k \in \mathbb{Z})(n^2 + n + 1 = 2k)$. Try to explain what P and $\neg P$ mean.

Problem 2.6. Let f be a function from \mathbb{R} to \mathbb{R} . We say that f is strictly increasing if

 $(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) [(x < y) \implies (f(x) < f(y))].$

Negate the statement above.

Problem 2.7. Let f be a function from \mathbb{R} to \mathbb{R} . Define what it means for f to be strictly decreasing

Problem 2.8. Let f be a function from \mathbb{R} to \mathbb{R} . Write a formal mathematical expression which expresses the fact that it is not true that f is strictly decreasing or strictly increasing.

Problem 2.9. Define formally what it means that an integer k divides an integer n.

Problem 2.10. *Give a formal definition of what it means for a number x to be a rational number.*

Problem 2.11. *Give a formal definition of what it means for a number x to be a irrational number.*

Problem 2.12. What is the truth value of the statement $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})[xy = xz]$?

Problem 2.13. What is the truth value of the statement $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(\exists z \in \mathbb{R})[xy = xz]$?

3 Proofs

Problem 3.1. *Prove that the equation* (E): 7x - 2 = 0 *has a unique solution in* \mathbb{R} *.*

Problem 3.2. Prove that the equation (E): -3x+8=0 has a unique solution in \mathbb{R} .

Problem 3.3. Let $a, b, c \in \mathbb{R}$ with $a \neq 0$. Prove that the equation (E): ax + b = c has a unique solution in \mathbb{R} .

Problem 3.4. Let a, b, and c be integers. Prove that for all integers m and n, if a divides b and a divides c, then a divides (bm + cn).

Problem 3.5. *Prove that if m and n are even, then* m + n *is even.*

Problem 3.6. *Prove that if m is even and n is odd, then* m + n *is odd.*

Problem 3.7. *Prove that for all* $m, n \in \mathbb{Z}$ *, if* m *is even, then* mn *is even.*

Problem 3.8. Show that for all $n \in \mathbb{Z}$, 4n + 7 is odd.

Problem 3.9. Let *n* be an integer. Prove that if n^2 is even, then *n* is even.

Problem 3.10. Let *n* be an integer. Prove that if n^3 is even, then *n* is even.

Problem 3.11. For this problem you can use the following fact that will be proven later: 3 does not divides n if and only if there exists an integer k and an integer $i \in \{1,2\}$ such that n = 3k + i. Prove that for every integer n, if 3 divides n^2 then 3 divides n.

Problem 3.12. *Prove that there are no integers m and n such that* 8m + 26n = 1.

Problem 3.13. Are there integers m and n such that $m^2 = 4n + 3$?

Problem 3.14. Let $x \in \mathbb{R}$. Show that if for all $\varepsilon > 0$, $|x| < 2\varepsilon$, then x = 0.

Problem 3.15. Prove that $\sqrt[3]{2}$ is irrational.

Problem 3.16. Show that $\sqrt{3}$ is irrational.

Problem 3.17. Show that log(3) is irrational.

Problem 3.18. Prove that for all real numbers x and y with $y \ge 0$, if $x^2 \ge 4y$, then $x \ge 2\sqrt{y}$ or $x \le -2\sqrt{y}$.

Problem 3.19. *Prove that for all integers k,* k(k+3) *is even.*

Problem 3.20. *Prove that for all integers k,* (k+1)(k+6) *is even.*

For the following problems we recall the definition of the absolute value function

$$|x| := \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Problem 3.21. Show that for all $x \in \mathbb{R}$, $|x| \ge 0$ with |x| = 0 if and only if x = 0.

Problem 3.22. *Prove that for all real numbers x and y,* |x - y| = |y - x|*.*

Problem 3.23. *Prove that for all real numbers x and y,* |xy| = |x||y|.

Problem 3.24. Let $x \in \mathbb{R}$ and $M \ge 0$. Show that $|x| \le M \iff -M \le x \le M$.

Problem 3.25. *Prove that for all real numbers x and y,* $|x+y| \leq |x|+|y|$.

Problem 3.26. *Prove that for all* $x, y, z \in \mathbb{R}$, $|x - y| \leq |x - z| + |y - z|$.

Problem 3.27. Prove that for all real numbers x and y, $||x| - |y|| \leq |x - y|$.

Problem 3.28. Let *x*, *y* be real numbers. Show that

$$\forall \varepsilon > 0, \ x < y + \varepsilon \iff x \leqslant y$$

Problem 3.29. Let *x*, *y* be real numbers. Show that $x > y - \varepsilon$ for all $\varepsilon > 0$ if and only if $x \ge y$.

Problem 3.30. *Prove that for all real numbers x and y, if* x < y*, then* $x < \frac{x+y}{2} < y$ *.*

Problem 3.31. Prove that for all positive real numbers x, the sum of x and its reciprocal is greater than 2.

Problem 3.32. *1. Prove that for all* $x, y \in \mathbb{R}^+$, $\sqrt{xy} \leq \frac{x+y}{2}$.

2. Show that that for all $x, y \in \mathbb{R}^+$, $\sqrt{xy} = \frac{x+y}{2}$ if and only if x = y

4 Applications of the Principle of Mathematical Induction

Problem 4.1. *Prove that for all integers* $n \ge 1$ *,*

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Problem 4.2. *Prove that for all integers* $n \ge 0$ *,*

$$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$$

Problem 4.3. *Prove that for all integers* $n \ge 1$ *,*

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

Problem 4.4. *Prove that for all integers* $n \ge 1$ *,*

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

Problem 4.5. *Prove that for all integers* $n \ge 1$ *,*

$$\sum_{k+1}^{n} (2k-1)^2 = \frac{4n^3 - n}{3}.$$

Problem 4.6. Conjecture a formula for $\sum_{k=1}^{n} (-1)^k k^2$, for all $n \ge 1$ and then prove the formula is correct using induction.

Problem 4.7. *Prove that for all integers* $n \ge 1$, $n < 10^n$.

Problem 4.8. *Prove that for all integers* $n \ge 7$, $\left(\frac{4}{3}\right)^n > n$.

Problem 4.9. *Prove that for all integers* $n \ge 1$, $n^3 + 8n + 9$ *is divisible by* 3.

Problem 4.10. Prove that for all integers $n \ge 1$, $3^{2n} - 1$ is divisible by 8.

Problem 4.11. *Prove that for all integers* $n \ge 5$, $n^2 < 2^n$.

Problem 4.12. *Prove that for all integers* $n \ge 4$, $2^n < n!$.

Problem 4.13. Assuming that $(1+\frac{1}{n})^n < e$, for all $n \ge 1$, prove that for all $n \ge 1$, $n! > (\frac{n}{e})^n$.

Problem 4.14. Show that for all $n \ge 12$ there exist $x_n \in \mathbb{Z}$ and $y_n \in \mathbb{Z}$ such that $n = 3x_n + 7y_n$

Problem 4.15. *Prove that for all positive integers n,* $4^n - 1$ *is divisible by* 3.

Problem 4.16. Let $a_1 = 2$, and let $a_{n+1} = \frac{1}{2}(a_n + 3)$ for all $n \ge 1$.

- (a) Prove that for all positive integers $n, a_n < a_{n+1}$.
- (b) Prove that for all positive integers $n, a_n < 3$.
- (c) Prove that for all positive integers n, $a_n = 3 \frac{1}{2^{n-1}}$.

Problem 4.17. Let $r \in \mathbb{R}$ with $r \neq 1$. Prove that

$$\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}$$

Problem 4.18. *Prove Bernoulli's Inequality: Let* x > -1*. Then for all* $n \in \mathbb{N}$ *,* $(1+x)^n \ge 1 + nx$ *.*

Problem 4.19. Let $x, y \in \mathbb{R}$. Prove the binomial theorem: for all integers $n \ge 1$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Problem 4.20. Let *n* be an integer. Show that if *n* is even then n^k is even for all $k \in \mathbb{N}$.

5 Applications of the Principle of Strong Mathematical Induction

Problem 5.1. For $i \in \mathbb{N}$, let p_i denote the *i*th prime number, so that

$$p_1 = 2, \qquad p_2 = 3, \qquad p_3 = 5, \dots$$

Prove that for all $n \in \mathbb{N}$ *,* $p_n \leq 2^{2^{n-1}}$ *.*

Hint. For the induction step, given $m \in \mathbb{N}$, show that $p_{m+1} \leq p_1 p_2 \cdots p_m + 1$.

Problem 5.2. *Show that the principle of strong mathematical induction implies the principle of mathematical induction.*

Problem 5.3. Show that the principle of mathematical induction implies the principle of strong mathematical induction.

6 Sequences defined by a recurrence relation

Problem 6.1. Let $a_1 = 2$, $a_2 = 4$, and $a_{n+1} = 7a_n - 10a_{n-1}$ for all $n \ge 2$. Conjecture a closed formula for a_n and prove your result.

Problem 6.2. Let $a_1 = 3$, $a_2 = 4$, and $a_{n+1} = \frac{1}{3}(2a_n + a_{n-1})$ for all $n \ge 2$. Prove that for all positive integers $n, 3 \le a_n \le 4$.

Problem 6.3. Consider the sequence $(a_n)_{n=1}^{\infty}$ recursively defined as $a_1 = 1$, $a_2 = 8$ and for all $n \ge 3$, $a_n = a_{n-1} + 2a_{n-2}$. Show that for all $n \ge 1$, $a_n = 3 \cdot 2^{n-1} + 2(-1)^n$.

Problem 6.4. Consider the sequence $(a_n)_{n=1}^{\infty}$ recursively defined as $a_1 = 2$, $a_2 = 4$ and for all $n \ge 3$, $a_n = 3a_{n-1} - 2a_{n-2}$. For all $n \ge 1$, find a closed formula for a_n .

7 Set Theory

7.1 Subsets

Problem 7.1. *Prove that* $X \subseteq Y$ *where* $X = \{n \in \mathbb{Z} \mid n \text{ is a multiple of } 6\}$ *and* $Y = \{n \in \mathbb{Z} \mid n \text{ is even}\}$.

Problem 7.2. Consider the sets

$$A = \{ n \in \mathbb{Z} \mid (\exists k \in \mathbb{Z}) (n = 12k + 11) \},\$$
$$B = \{ n \in \mathbb{Z} \mid (\exists j \in \mathbb{Z}) (n = 4j + 3) \}.$$

(a) Is $A \subseteq B$? Prove or disprove.

(b) Is $B \subseteq A$? Prove or disprove.

Problem 7.3. Consider the sets

$$A = \{n \in \mathbb{Z} \mid (\exists k \in \mathbb{Z}) (n = 4k + 1)\},\$$
$$B = \{n \in \mathbb{Z} \mid (\exists j \in \mathbb{Z}) (n = 4j - 7\}.\$$

Prove that A = B*.*

Problem 7.4. Consider the sets

$$A = \{n \in \mathbb{Z} \mid (\exists k \in \mathbb{Z})(n = 3k)\},$$
$$B = \{n \in \mathbb{Z} \mid (\exists i, j \in \mathbb{Z})(n = 15i + 12j)\}.$$

Prove that A = B*.*

Problem 7.5. *Prove that* $X = \{n \in \mathbb{Z} \mid n+5 \text{ is odd}\}$ *is the set of all even integers.*

7.2 Complements

Problem 7.6. Let A and B be subsets of an ambient set U. Prove that $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.

7.3 Arbitrary unions and intersections

Problem 7.7. For $i \in \mathbb{N}$, let $A_i = (-i, i)$. Compute $\bigcup_{i=1}^{\infty} A_i$.

Problem 7.8. For $i \in \mathbb{N}$, let $A_i = (-i, i)$. Compute $\bigcap_{i=1}^{\infty} A_i$.

Problem 7.9. For $i \in \mathbb{N}$, let $A_i = [0, 1 - \frac{1}{i}]$. Compute $\bigcup_{i \in \mathbb{N}} A_i$.

Problem 7.10. For $i \in \mathbb{N}$, let $A_i = \begin{bmatrix} 0, 1 - \frac{1}{i} \end{bmatrix}$. Compute $\bigcap_{i \in \mathbb{N}} A_i$.

Problem 7.11. Let $X_n = (\frac{2}{n}, 2n]$ for every integer $n \ge 2$.

- 1. Compute $\bigcup_{n=2}^{\infty} X_n$.
- 2. Compute $\bigcap_{n=2}^{\infty} X_n$.

Problem 7.12. Let I be a nonempty set and let $\{A_i : i \in I\}$ be an indexed family of sets. Let X be a non-empty set. Suppose that for all $i \in I$, $X \subseteq A_i$. Prove that $X \subseteq \bigcap_{i \in I} A_i$.

Problem 7.13. Let $\{A_i : i \in \mathbb{N}\}$ be an indexed family of sets. Assume that for all $i \in \mathbb{N}$, $A_{i+1} \subseteq A_i$. Prove that $\bigcup_{i \in \mathbb{N}} A_i = A_1$.

Problem 7.14. Let $(X_i)_{i \in I}$ be a collection of subsets of an ambient set U. Show that

$$\bigcap_{i\in I} X_i = \bigcup_{i\in I} \overline{X}_i.$$

Problem 7.15. Let $(X_i)_{i \in I}$ be a collection of subsets of an ambient set U. Show that

$$\bigcup_{i\in I} X_i = \bigcap_{i\in I} \overline{X}_i.$$

7.4 More problems

Problem 7.16. *Let* $A = \{x + y\sqrt{2} \mid x, y \in Q\} \subseteq \mathbb{R}$ *.*

(a) Prove that for all $x, y \in Q$, $x + y\sqrt{2} = 0$ if and only if x = y = 0.

(b) Prove that for all $z_1, z_2 \in A$, $z_1 + z_2, z_1z_2 \in A$ and , for $z_2 \neq 0$, $\frac{z_1}{z_2} \in A$.

Problem 7.17. We say that the sequence of sets $(X_n)_{n=1}^{\infty}$ is increasing, or an ascending chain, if $X_1 \subseteq X_2 \subseteq X_3 \subseteq \cdots \subseteq X_n \subseteq X_{n+1} \subseteq \cdots$. Formally, $(X_n)_{n=1}^{\infty}$ is increasing if

$$(\forall n \in \mathbb{N})[X_n \subseteq X_{n+1}].$$

Show that the sequence of sets $(X_n)_{n=1}^{\infty}$ is increasing if and only if

$$(\forall n \in \mathbb{N})(\forall k \in \mathbb{N})[(n \leq k) \implies (X_n \subseteq X_k)].$$

Problem 7.18. We say that the sequence of sets $(X_n)_{n=1}^{\infty}$ is decreasing, or a descending chain, if $X_1 \supseteq X_2 \supseteq X_3 \supseteq \cdots \supseteq X_n \supseteq X_{n+1} \supseteq \cdots$ Formally, $(X_n)_{n=1}^{\infty}$ is increasing if

$$(\forall n \in \mathbb{N})[X_n \subseteq X_{n+1}].$$

Show that the sequence of sets $(X_n)_{n=1}^{\infty}$ is decreasing if and only if for all $n, k \in \mathbb{N}$ if $n \leq k$ then $X_n \supseteq X_k$.

Problem 7.19. Let X and Y be subsets of a universal set U. Show that $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$.

8 **Functions**

8.1 Composition

Problem 8.1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined for all $x \in \mathbb{R}$ as $f(x) = x^2 - 3x$ and g(x) = 5x - 2.

1. Is it possible to define $f \circ g$? If it is, what is $f \circ g$.

- 2. Is it possible to define $g \circ f$? If it is, what is $g \circ f$.
- *3.* Are $f \circ g$ and $g \circ f$ equal? (Justify your answer)

Problem 8.2. Let $f,g: \mathbb{Z} \to \mathbb{Z}$ be defined for all $n \in \mathbb{Z}$ as f(n) = 2n + 3 and

$$g(n) = \begin{cases} 2n-1 & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$$

- *1. Is it possible to define* $f \circ g$? *If it is, what is* $f \circ g$.
- 2. Is it possible to define $g \circ f$? If it is, what is $g \circ f$.
- *3.* Are $f \circ g$ and $g \circ f$ equal? (Justify your answer)

8.2 Injectivity, surjectivity, bijectivity

Problem 8.3. For $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + |x|, determine if:

- 1. f is injective,
- 2. f is surjective,
- 3. f is bijective.

8.3 Composition and injectivity/surjectivity

Problem 8.4. Let W, X, Y be nonempty sets. Let $f : W \to X$, $g : X \to Y$ be functions. Show that if $g \circ f$ is surjective, then g is surjective.

Problem 8.5. Let W, X, Y be nonempty sets. Let $f : W \to X$, $g : X \to Y$ be functions. Show that if $g \circ f$ is injective, then f is injective.

Problem 8.6. Let X and Y be nonempty sets and let $f : X \to Y$ be a function. Prove that f is injective if and only if for all sets Z, for all functions $h : Z \to X$ and $k : Z \to X$, if $f \circ h = f \circ k$, then h = k.

Problem 8.7. Let X and Y be nonempty sets and let $f : X \to Y$ be a function. Prove that f is surjective if and only if for all sets Z, for all functions $h : Y \to Z$ and $k : Y \to Z$, if $h \circ f = k \circ f$, then h = k.

9 Injectivity, surjectivity, and one-sided invertibility

Problem 9.1. Let X and Y be nonempty sets and $f: X \to Y$ be a function. We say that f is left-invertible (or admits a left-inverse) if there exists a function $g: Y \to X$ such that $g \circ f = i_X$. Prove that f is injective if and only if f is left-invertible.

Problem 9.2. Let X and Y be nonempty sets, and $f: X \to Y$ be a function. We say that f is right-invertible (or admits a right-inverse) if there exists a function $g: Y \to X$ such that $f \circ g = i_Y$. Prove that if f has a right-inverse then f is surjective.

10 Functions and sets

Problem 10.1. Let X and Y be nonempty sets, and $f: X \to Y$ be an injective function. Let A be a subset of X. Prove that $f^{-1}(f(A)) = A$.

Problem 10.2. Let X and Y be nonempty sets, and $f: X \to Y$ be an surjective function. Let A be a subset of Y. Prove that $f(f^{-1}(A)) = A$.

11 Supplementary problems

Problem 11.1. Let $f_1: X_1 \to X_2$, $f_2: X_2 \to X_3$, $f_3: X_3 \to X_4$ and $f_4: X_4 \to X_5$. Show that $((f_4 \circ f_3) \circ f_2) \circ f_1 = f_4 \circ (f_3 \circ (f_2 \circ f_1))$.

Problem 11.2. Let X and Y be nonempty sets, and $f: X \to Y$ be a function. Prove that f is surjective then f is right-invertible.

Problem 11.3. Let $f_1: X_1 \to X_2$, $f_2: X_2 \to X_3$, $f_3: X_3 \to X_4$ be three injective functions. Show that $f_3 \circ f_2 \circ f_1$ is injective.