MATH 300 Problems without solutions

F. Baudier (Texas A\&M University)

August 30, 2023

Contents

1 Logical connectives and equivalences, Boolean Calculus 2
2 Quantifiers 3
3 Proofs 4
4 Applications of the Principle of Mathematical Induction 6
5 Applications of the Principle of Strong Mathematical Induction 7
6 Sequences defined by a recurrence relation 8
$7 \quad$ Set Theory 8
7.1 Subsets 8
7.2 Complements 9
7.3 Arbitrary unions and intersections 9
7.4 More problems 10
8 Functions 10
8.1 Composition 10
8.2 Injectivity, surjectivity, bijectivity 11
8.3 Composition and injectivity/surjectivity 11
9 Injectivity, surjectivity, and one-sided invertibility 12
10 Functions and sets 12

1 Logical connectives and equivalences, Boolean Calculus

Problem 1.1. Show that $P \vee P$ is logically equivalent to P.

Problem 1.2. Show that $P \wedge P$ is logically equivalent to P.

Problem 1.3. Are the statement forms $(P \wedge Q) \wedge R$ and $P \wedge(Q \wedge R)$ logically equivalent?

Problem 1.4. Are the statement forms $(P \vee Q) \vee R$ and $P \vee(Q \vee R)$ logically equivalent?

Problem 1.5. Is the statement form $(P \wedge Q) \vee((\neg P) \wedge \neg Q)$ a tautology, a contradiction, or neither?

Problem 1.6. Are the statement forms $(P \vee Q) \wedge R$ and $P \vee(Q \wedge R)$ logically equivalent?

Problem 1.7. Show that $P \vee(Q \wedge R)$ is logically equivalent to $(P \vee Q) \wedge(P \vee R)$.

Problem 1.8. Show that $P \wedge(Q \vee R)$ is logically equivalent to $(P \wedge Q) \vee(P \wedge R)$.

Problem 1.9. Are the statement forms $P \Longrightarrow(Q \vee R)$ and $(P \Longrightarrow Q) \vee(P \Longrightarrow R)$ logically equivalent?

Problem 1.10. Are the statement forms $P \Longrightarrow(Q \wedge R)$ and $(P \Longrightarrow Q) \wedge(P \Longrightarrow R)$ logically equivalent?

Hint. Try to use Problem 1.7

Problem 1.11. Show that the statement forms $(P \vee Q) \Longrightarrow R$ and $(P \Longrightarrow R) \wedge(Q \Longrightarrow R)$ are logically equivalent.

Hint. Try to use DeMorgan's Laws and Problem 1.7

Problem 1.12. For all the statement forms below write a logically equivalent statement form that involves only the logical connective \neg and \vee.

1. $P \vee(Q \wedge R)$
2. $(P \vee Q) \wedge(P \vee R)$
3. $P \Longleftrightarrow Q$

Hint. Try to use DeMorgan's laws.

Problem 1.13. For all the statement forms below write a logically equivalent statement form that involves only the logical connective \neg and \wedge.

1. $P \wedge(Q \vee R)$
2. $(P \wedge Q) \vee(P \wedge R)$
3. $P \Longleftrightarrow Q$

Hint. Try to use DeMorgan's laws.

Problem 1.14. Are the statement forms $[(\neg P) \Longrightarrow[Q \wedge \neg Q]]$ and P logically equivalent?

2 Quantifiers

Problem 2.1. Let $x_{0} \in(a, b), \ell \in \mathbb{R}$ and $f:\left(a, x_{0}\right) \cup\left(x_{0}, b\right) \rightarrow \mathbb{R}$. We say that ℓ is the limit of f at x_{0}, and we write $\lim _{x \rightarrow x_{0}} f(x)=\ell$, if for all $\varepsilon>0$ there exists $\delta>0$ such that if x satisfies $0<\left|x-x_{0}\right|<\delta$ then $|f(x)-\ell|<\varepsilon$. Formally,

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell \Longleftrightarrow(\forall \varepsilon>0)(\exists \delta>0)(\forall x)\left[0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-\ell|<\varepsilon\right]
$$

Negate the statement $(\forall \varepsilon>0)(\exists \delta>0)(\forall x)\left[0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-\ell|<\varepsilon\right]$.

Problem 2.2.

1. Give a possible definition of even numbers using logical symbols, quantifiers, and only the multiplication operation.
2. Negate the definition you gave above.

Problem 2.3.

1. Give a possible definition of a prime number using logical symbols, quantifiers, and only the multiplication operation.
2. Negate the definition you gave above.

Problem 2.4. Write a formal mathematical expression that expresses the fact that a given sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not have a real limit.

Problem 2.5. Negate the statement $P:(\forall n \in \mathbb{Z})(\exists k \in \mathbb{Z})\left(n^{2}+n+1=2 k\right)$. Try to explain what P and $\neg P$ mean.

Problem 2.6. Let f be a function from \mathbb{R} to \mathbb{R}. We say that f is strictly increasing if

$$
(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})[(x<y) \Longrightarrow(f(x)<f(y))] .
$$

Negate the statement above.
Problem 2.7. Let f be a function from \mathbb{R} to \mathbb{R}. Define what it means for f to be strictly decreasing
Problem 2.8. Let f be a function from \mathbb{R} to \mathbb{R}. Write a formal mathematical expression which expresses the fact that it is not true that f is strictly decreasing or strictly increasing.

Problem 2.9. Define formally what it means that an integer k divides an integer n.

Problem 2.10. Give a formal definition of what it means for a number x to be a rational number.
Problem 2.11. Give a formal definition of what it means for a number x to be a irrational number.
Problem 2.12. What is the truth value of the statement $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})[x y=x z]$?
Problem 2.13. What is the truth value of the statement $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(\exists z \in \mathbb{R})[x y=x z]$?

3 Proofs

Problem 3.1. Prove that the equation $(E): 7 x-2=0$ has a unique solution in \mathbb{R}.
Problem 3.2. Prove that the equation $(E):-3 x+8=0$ has a unique solution in \mathbb{R}.
Problem 3.3. Let $a, b, c \in \mathbb{R}$ with $a \neq 0$. Prove that the equation $(E): a x+b=c$ has a unique solution in \mathbb{R}.

Problem 3.4. Let a, b, and c be integers. Prove that for all integers m and n, if a divides b and a divides c, then a divides $(b m+c n)$.

Problem 3.5. Prove that if m and n are even, then $m+n$ is even.
Problem 3.6. Prove that if m is even and n is odd, then $m+n$ is odd.
Problem 3.7. Prove that for all $m, n \in \mathbb{Z}$, if m is even, then $m n$ is even.

Problem 3.8. Show that for all $n \in \mathbb{Z}, 4 n+7$ is odd.

Problem 3.9. Let n be an integer. Prove that if n^{2} is even, then n is even.

Problem 3.10. Let n be an integer. Prove that if n^{3} is even, then n is even.

Problem 3.11. For this problem you can use the following fact that will be proven later: 3 does not divides n if and only if there exists an integer k and an integer $i \in\{1,2\}$ such that $n=3 k+i$.

Prove that for every integer n, if 3 divides n^{2} then 3 divides n.

Problem 3.12. Prove that there are no integers m and n such that $8 m+26 n=1$.
Problem 3.13. Are there integers m and n such that $m^{2}=4 n+3$?

Problem 3.14. Let $x \in \mathbb{R}$. Show that if for all $\varepsilon>0,|x|<2 \varepsilon$, then $x=0$.

Problem 3.15. Prove that $\sqrt[3]{2}$ is irrational.

Problem 3.16. Show that $\sqrt{3}$ is irrational.

Problem 3.17. Show that $\log (3)$ is irrational.
Problem 3.18. Prove that for all real numbers x and y with $y \geqslant 0$, if $x^{2} \geqslant 4 y$, then $x \geqslant 2 \sqrt{y}$ or $x \leqslant-2 \sqrt{y}$.

Problem 3.19. Prove that for all integers $k, k(k+3)$ is even.

Problem 3.20. Prove that for all integers $k,(k+1)(k+6)$ is even.

For the following problems we recall the definition of the absolute value function

$$
|x|:= \begin{cases}x & \text { if } x \geqslant 0 \\ -x & \text { if } x<0\end{cases}
$$

Problem 3.21. Show that for all $x \in \mathbb{R},|x| \geqslant 0$ with $|x|=0$ if and only if $x=0$.

Problem 3.22. Prove that for all real numbers x and $y,|x-y|=|y-x|$.

Problem 3.23. Prove that for all real numbers x and $y,|x y|=|x||y|$.

Problem 3.24. Let $x \in \mathbb{R}$ and $M \geqslant 0$. Show that $|x| \leqslant M \Longleftrightarrow-M \leqslant x \leqslant M$.

Problem 3.25. Prove that for all real numbers x and $y,|x+y| \leqslant|x|+|y|$.

Problem 3.26. Prove that for all $x, y, z \in \mathbb{R},|x-y| \leqslant|x-z|+|y-z|$.

Problem 3.27. Prove that for all real numbers x and $y,||x|-|y|| \leqslant|x-y|$.
Problem 3.28. Let x, y be real numbers. Show that

$$
\forall \varepsilon>0, x<y+\varepsilon \Longleftrightarrow x \leqslant y .
$$

Problem 3.29. Let x, y be real numbers. Show that $x>y-\varepsilon$ for all $\varepsilon>0$ if and only if $x \geqslant y$.
Problem 3.30. Prove that for all real numbers x and y, if $x<y$, then $x<\frac{x+y}{2}<y$.
Problem 3.31. Prove that for all positive real numbers x, the sum of x and its reciprocal is greater than 2 .
Problem 3.32. 1. Prove that for all $x, y \in \mathbb{R}^{+}, \sqrt{x y} \leqslant \frac{x+y}{2}$.
2. Show that that for all $x, y \in \mathbb{R}^{+}, \sqrt{x y}=\frac{x+y}{2}$ if and only if $x=y$

4 Applications of the Principle of Mathematical Induction

Problem 4.1. Prove that for all integers $n \geqslant 1$,

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Problem 4.2. Prove that for all integers $n \geqslant 0$,

$$
\sum_{k=0}^{n} 2^{k}=2^{n+1}-1
$$

Problem 4.3. Prove that for all integers $n \geqslant 1$,

$$
\sum_{k=1}^{n}(2 k-1)=n^{2} .
$$

Problem 4.4. Prove that for all integers $n \geqslant 1$,

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1} .
$$

Problem 4.5. Prove that for all integers $n \geqslant 1$,

$$
\sum_{k+1}^{n}(2 k-1)^{2}=\frac{4 n^{3}-n}{3}
$$

Problem 4.6. Conjecture a formula for $\sum_{k=1}^{n}(-1)^{k} k^{2}$, for all $n \geqslant 1$ and then prove the formula is correct using induction.

Problem 4.7. Prove that for all integers $n \geqslant 1, n<10^{n}$.

Problem 4.8. Prove that for all integers $n \geqslant 7,\left(\frac{4}{3}\right)^{n}>n$.
Problem 4.9. Prove that for all integers $n \geqslant 1, n^{3}+8 n+9$ is divisible by 3 .
Problem 4.10. Prove that for all integers $n \geqslant 1,3^{2 n}-1$ is divisible by 8 .
Problem 4.11. Prove that for all integers $n \geqslant 5, n^{2}<2^{n}$.
Problem 4.12. Prove that for all integers $n \geqslant 4,2^{n}<n$!.

Problem 4.13. Assuming that $\left(1+\frac{1}{n}\right)^{n}<e$, for all $n \geqslant 1$, prove that for all $n \geqslant 1, n!>\left(\frac{n}{e}\right)^{n}$.
Problem 4.14. Show that for all $n \geqslant 12$ there exist $x_{n} \in \mathbb{Z}$ and $y_{n} \in \mathbb{Z}$ such that $n=3 x_{n}+7 y_{n}$

Problem 4.15. Prove that for all positive integers $n, 4^{n}-1$ is divisible by 3 .
Problem 4.16. Let $a_{1}=2$, and let $a_{n+1}=\frac{1}{2}\left(a_{n}+3\right)$ for all $n \geqslant 1$.
(a) Prove that for all positive integers $n, a_{n}<a_{n+1}$.
(b) Prove that for all positive integers $n, a_{n}<3$.
(c) Prove that for all positive integers $n, a_{n}=3-\frac{1}{2^{n-1}}$.

Problem 4.17. Let $r \in \mathbb{R}$ with $r \neq 1$. Prove that

$$
\sum_{k=0}^{n-1} r^{k}=\frac{1-r^{n}}{1-r} .
$$

Problem 4.18. Prove Bernoulli's Inequality: Let $x>-1$. Then for all $n \in \mathbb{N},(1+x)^{n} \geqslant 1+n x$.

Problem 4.19. Let $x, y \in \mathbb{R}$. Prove the binomial theorem: for all integers $n \geqslant 1$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} .
$$

Problem 4.20. Let n be an integer. Show that if n is even then n^{k} is even for all $k \in \mathbb{N}$.

5 Applications of the Principle of Strong Mathematical Induction

Problem 5.1. For $i \in \mathbb{N}$, let p_{i} denote the ith prime number, so that

$$
p_{1}=2, \quad p_{2}=3, \quad p_{3}=5, \ldots
$$

Prove that for all $n \in \mathbb{N}, p_{n} \leqslant 2^{2^{n-1}}$.

Hint. For the induction step, given $m \in \mathbb{N}$, show that $p_{m+1} \leqslant p_{1} p_{2} \cdots p_{m}+1$.
Problem 5.2. Show that the principle of strong mathematical induction implies the principle of mathematical induction.

Problem 5.3. Show that the principle of mathematical induction implies the principle of strong mathematical induction.

6 Sequences defined by a recurrence relation

Problem 6.1. Let $a_{1}=2, a_{2}=4$, and $a_{n+1}=7 a_{n}-10 a_{n-1}$ for all $n \geqslant 2$. Conjecture a closed formula for a_{n} and prove your result.

Problem 6.2. Let $a_{1}=3, a_{2}=4$, and $a_{n+1}=\frac{1}{3}\left(2 a_{n}+a_{n-1}\right)$ for all $n \geqslant 2$. Prove that for all positive integers $n, 3 \leqslant a_{n} \leqslant 4$.

Problem 6.3. Consider the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ recursively defined as $a_{1}=1, a_{2}=8$ and for all $n \geqslant 3$, $a_{n}=a_{n-1}+2 a_{n-2}$. Show that for all $n \geqslant 1, a_{n}=3 \cdot 2^{n-1}+2(-1)^{n}$.

Problem 6.4. Consider the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ recursively defined as $a_{1}=2, a_{2}=4$ and for all $n \geqslant 3$, $a_{n}=3 a_{n-1}-2 a_{n-2}$. For all $n \geqslant 1$, find a closed formula for a_{n}.

7 Set Theory

7.1 Subsets

Problem 7.1. Prove that $X \subseteq Y$ where $X=\{n \in \mathbb{Z} \mid n$ is a multiple of 6$\}$ and $Y=\{n \in \mathbb{Z} \mid n$ is even $\}$.
Problem 7.2. Consider the sets

$$
\begin{aligned}
A & =\{n \in \mathbb{Z} \mid(\exists k \in \mathbb{Z})(n=12 k+11)\}, \\
B & =\{n \in \mathbb{Z} \mid(\exists j \in \mathbb{Z})(n=4 j+3)\} .
\end{aligned}
$$

(a) Is $A \subseteq B$? Prove or disprove.
(b) Is $B \subseteq A$? Prove or disprove.

Problem 7.3. Consider the sets

$$
\begin{aligned}
A & =\{n \in \mathbb{Z} \mid(\exists k \in \mathbb{Z})(n=4 k+1)\}, \\
B & =\{n \in \mathbb{Z} \mid(\exists j \in \mathbb{Z})(n=4 j-7\}
\end{aligned}
$$

Prove that $A=B$.

Problem 7.4. Consider the sets

$$
\begin{aligned}
A & =\{n \in \mathbb{Z} \mid(\exists k \in \mathbb{Z})(n=3 k)\} \\
B & =\{n \in \mathbb{Z} \mid(\exists i, j \in \mathbb{Z})(n=15 i+12 j)\}
\end{aligned}
$$

Prove that $A=B$.

Problem 7.5. Prove that $X=\{n \in \mathbb{Z} \mid n+5$ is odd $\}$ is the set of all even integers.

7.2 Complements

Problem 7.6. Let A and B be subsets of an ambient set U. Prove that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$.

7.3 Arbitrary unions and intersections

Problem 7.7. For $i \in \mathbb{N}$, let $A_{i}=(-i, i)$. Compute $\bigcup_{i=1}^{\infty} A_{i}$.

Problem 7.8. For $i \in \mathbb{N}$, let $A_{i}=(-i, i)$. Compute $\bigcap_{i=1}^{\infty} A_{i}$.
Problem 7.9. For $i \in \mathbb{N}$, let $A_{i}=\left[0,1-\frac{1}{i}\right]$. Compute $\bigcup_{i \in \mathbb{N}} A_{i}$.

Problem 7.10. For $i \in \mathbb{N}$, let $A_{i}=\left[0,1-\frac{1}{i}\right]$. Compute $\bigcap_{i \in \mathbb{N}} A_{i}$.
Problem 7.11. Let $X_{n}=\left(\frac{2}{n}, 2 n\right]$ for every integer $n \geqslant 2$.

1. Compute $\bigcup_{n=2}^{\infty} X_{n}$.
2. Compute $\bigcap_{n=2}^{\infty} X_{n}$.

Problem 7.12. Let I be a nonempty set and let $\left\{A_{i}: i \in I\right\}$ be an indexed family of sets. Let X be a non-empty set. Suppose that for all $i \in I, X \subseteq A_{i}$. Prove that $X \subseteq \bigcap_{i \in I} A_{i}$.

Problem 7.13. Let $\left\{A_{i}: i \in \mathbb{N}\right\}$ be an indexed family of sets. Assume that for all $i \in \mathbb{N}, A_{i+1} \subseteq A_{i}$. Prove that $\bigcup_{i \in \mathbb{N}} A_{i}=A_{1}$.

Problem 7.14. Let $\left(X_{i}\right)_{i \in I}$ be a collection of subsets of an ambient set U. Show that

$$
\overline{\bigcap_{i \in I} X_{i}}=\bigcup_{i \in I} \bar{X}_{i} .
$$

Problem 7.15. Let $\left(X_{i}\right)_{i \in I}$ be a collection of subsets of an ambient set U. Show that

$$
\overline{\bigcup_{i \in I} X_{i}}=\bigcap_{i \in I} \bar{X}_{i} .
$$

7.4 More problems

Problem 7.16. Let $A=\{x+y \sqrt{2} \mid x, y \in Q\} \subseteq \mathbb{R}$.
(a) Prove that for all $x, y \in Q, x+y \sqrt{2}=0$ if and only if $x=y=0$.
(b) Prove that for all $z_{1}, z_{2} \in A, z_{1}+z_{2}, z_{1} z_{2} \in A$ and, for $z_{2} \neq 0, \frac{z_{1}}{z_{2}} \in A$.

Problem 7.17. We say that the sequence of sets $\left(X_{n}\right)_{n=1}^{\infty}$ is increasing, or an ascending chain, if $X_{1} \subseteq X_{2} \subseteq$ $X_{3} \subseteq \cdots \subseteq X_{n} \subseteq X_{n+1} \subseteq \ldots$. Formally, $\left(X_{n}\right)_{n=1}^{\infty}$ is increasing if

$$
(\forall n \in \mathbb{N})\left[X_{n} \subseteq X_{n+1}\right]
$$

Show that the sequence of sets $\left(X_{n}\right)_{n=1}^{\infty}$ is increasing if and only if

$$
(\forall n \in \mathbb{N})(\forall k \in \mathbb{N})\left[(n \leqslant k) \Longrightarrow\left(X_{n} \subseteq X_{k}\right)\right] .
$$

Problem 7.18. We say that the sequence of sets $\left(X_{n}\right)_{n=1}^{\infty}$ is decreasing, or a descending chain, if $X_{1} \supseteq X_{2} \supseteq$ $X_{3} \supseteq \cdots \supseteq X_{n} \supseteq X_{n+1} \supseteq \ldots$. Formally, $\left(X_{n}\right)_{n=1}^{\infty}$ is increasing if

$$
(\forall n \in \mathbb{N})\left[X_{n} \subseteq X_{n+1}\right] .
$$

Show that the sequence of sets $\left(X_{n}\right)_{n=1}^{\infty}$ is decreasing if and only if for all $n, k \in \mathbb{N}$ if $n \leqslant k$ then $X_{n} \supseteq X_{k}$.
Problem 7.19. Let X and Y be subsets of a universal set U. Show that $\overline{X \cap Y}=\bar{X} \cup \bar{Y}$.

8 Functions

8.1 Composition

Problem 8.1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined for all $x \in \mathbb{R}$ as $f(x)=x^{2}-3 x$ and $g(x)=5 x-2$.

1. Is it possible to define $f \circ g$? If it is, what is $f \circ g$.
2. Is it possible to define $g \circ f$? If it is, what is $g \circ f$.
3. Are $f \circ g$ and $g \circ f$ equal? (Justify your answer)

Problem 8.2. Let $f, g: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined for all $n \in \mathbb{Z}$ as $f(n)=2 n+3$ and

$$
g(n)= \begin{cases}2 n-1 & \text { if } n \text { is even } \\ n+1 & \text { if } n \text { is odd }\end{cases}
$$

1. Is it possible to define $f \circ g$? If it is, what is $f \circ g$.
2. Is it possible to define $g \circ f$? If it is, what is $g \circ f$.
3. Are $f \circ g$ and $g \circ f$ equal? (Justify your answer)

8.2 Injectivity, surjectivity, bijectivity

Problem 8.3. For $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x+|x|$, determine if:

1. f is injective,
2. f is surjective,
3. f is bijective.

8.3 Composition and injectivity/surjectivity

Problem 8.4. Let W, X, Y be nonempty sets. Let $f: W \rightarrow X, g: X \rightarrow Y$ be functions. Show that if $g \circ f$ is surjective, then g is surjective.

Problem 8.5. Let W, X, Y be nonempty sets. Let $f: W \rightarrow X, g: X \rightarrow Y$ be functions. Show that if $g \circ f$ is injective, then f is injective.

Problem 8.6. Let X and Y be nonempty sets and let $f: X \rightarrow Y$ be a function. Prove that f is injective if and only if for all sets Z, for all functions $h: Z \rightarrow X$ and $k: Z \rightarrow X$, if $f \circ h=f \circ k$, then $h=k$.

Problem 8.7. Let X and Y be nonempty sets and let $f: X \rightarrow Y$ be a function. Prove that f is surjective if and only if for all sets Z, for all functions $h: Y \rightarrow Z$ and $k: Y \rightarrow Z$, if $h \circ f=k \circ f$, then $h=k$.

9 Injectivity, surjectivity, and one-sided invertibility

Problem 9.1. Let X and Y be nonempty sets and $f: X \rightarrow Y$ be a function. We say that f is left-invertible (or admits a left-inverse) if there exists a function $g: Y \rightarrow X$ such that $g \circ f=i_{X}$. Prove that f is injective if and only if f is left-invertible.

Problem 9.2. Let X and Y be nonempty sets, and $f: X \rightarrow Y$ be a function. We say that f is right-invertible (or admits a right-inverse) if there exists a function $g: Y \rightarrow X$ such that $f \circ g=i_{Y}$. Prove that if f has a right-inverse then f is surjective.

10 Functions and sets

Problem 10.1. Let X and Y be nonempty sets, and $f: X \rightarrow Y$ be an injective function. Let A be a subset of X. Prove that $f^{-1}(f(A))=A$.

Problem 10.2. Let X and Y be nonempty sets, and $f: X \rightarrow Y$ be an surjective function. Let A be a subset of Y. Prove that $f\left(f^{-1}(A)\right)=A$.

11 Supplementary problems

Problem 11.1. Let $f_{1}: X_{1} \rightarrow X_{2}, f_{2}: X_{2} \rightarrow X_{3}, f_{3}: X_{3} \rightarrow X_{4}$ and $f_{4}: X_{4} \rightarrow X_{5}$. Show that $\left(\left(f_{4} \circ f_{3}\right) \circ f_{2}\right) \circ f_{1}=$ $f_{4} \circ\left(f_{3} \circ\left(f_{2} \circ f_{1}\right)\right)$.

Problem 11.2. Let X and Y be nonempty sets, and $f: X \rightarrow Y$ be a function. Prove that f is surjective then f is right-invertible.

Problem 11.3. Let $f_{1}: X_{1} \rightarrow X_{2}, f_{2}: X_{2} \rightarrow X_{3}, f_{3}: X_{3} \rightarrow X_{4}$ be three injective functions. Show that $f_{3} \circ f_{2} \circ f_{1}$ is injective.

