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1 Logical connectives and equivalences, Boolean Calculus

Problem 1.1. Show that PV P is logically equivalent to P.

Problem 1.2. Show that P A P is logically equivalent to P.

Problem 1.3. Are the statement forms (P A\ Q) AR and P A\ (Q AR) logically equivalent?

Problem 1.4. Are the statement forms (PN Q)V R and PV (QV R) logically equivalent?

Problem 1.5. Is the statement form (P A Q)V ((=P) A =Q) a tautology, a contradiction, or neither?
Problem 1.6. Are the statement forms (PN Q) AR and PV (Q AR) logically equivalent?

Problem 1.7. Show that P\ (Q AR) is logically equivalent to (PN Q) A (PV R).

Problem 1.8. Show that P\ (QV R) is logically equivalent to (PN Q) V (P AR).

Problem 1.9. Are the statement forms P —> (QV R) and (P = Q)V (P = R) logically equivalent?
Problem 1.10. Are the statement forms P =—> (QAR) and (P = Q) A (P = R) logically equivalent?
Hint. Try to use Problem[1.7}

Problem 1.11. Show that the statement forms (PN Q) = R and (P = R) A (Q == R) are logically

equivalent.
Hint. Try to use DeMorgan’s Laws and Problem

Problem 1.12. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective — and V.
1. PV(QAR)
2. (PVQ)AN(PVR)
3. P <= Q

Hint. Try to use DeMorgan’s laws.



Problem 1.13. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective — and .

1. PA(QVR)
2. (PAQ)V(PAR)
3. P<— Q

Hint. Try to use DeMorgan’s laws.

Problem 1.14. Are the statement forms [(—P) = [Q A Q]| and P logically equivalent?

2 Quantifiers

Problem 2.1. Let xo € (a,b), £ € R and f: (a,x0) U (x0,b) — R. We say that { is the limit of [ at xo, and
we write limy_,y, f(x) = ¢, if for all € > 0 there exists 0 > 0 such that if x satisfies 0 < |x — x| < O then

|f(x) —¢| < €. Formally,

lim f(x) =€ <= (Ve >0)(35 > 0)(Vx)[0 < |v x| <& = [F(x)— | <e].

Negate the statement (Ve > 0)(36 > 0)(Vx)[0 < [x—xo| < 0 = |f(x) — 4| < g].

Problem 2.2.

1. Give a possible definition of even numbers using logical symbols, quantifiers, and only the multipli-

cation operation.
2. Negate the definition you gave above.
Problem 2.3.

1. Give a possible definition of a prime number using logical symbols, quantifiers, and only the multipli-

cation operation.
2. Negate the definition you gave above.

Problem 2.4. Write a formal mathematical expression that expresses the fact that a given sequence (x)neN

does not have a real limit.



Problem 2.5. Negate the statement P : (Vn € Z)(Jk € Z)(n* + n+ 1 = 2k). Try to explain what P and —~P

mean.

Problem 2.6. Let f be a function from R to R. We say that f is strictly increasing if

(Wx e R)(Wy e R)[(x <y) = (f(x) <fO))]-
Negate the statement above.
Problem 2.7. Let f be a function from R to R. Define what it means for f to be strictly decreasing

Problem 2.8. Let f be a function from R to R. Write a formal mathematical expression which expresses the

fact that it is not true that f is strictly decreasing or strictly increasing.

Problem 2.9. Define formally what it means that an integer k divides an integer n.

Problem 2.10. Give a formal definition of what it means for a number x to be a rational number.
Problem 2.11. Give a formal definition of what it means for a number x to be a irrational number.
Problem 2.12. What is the truth value of the statement (Vx € R)(Jy € R)(Vz € R)[xy = xz]?

Problem 2.13. What is the truth value of the statement (Jy € R)(Vx € R)(Jz € R)[xy = xz]?

3 Proofs

Problem 3.1. Prove that the equation (E): 7x—2 = 0 has a unique solution in R.
Problem 3.2. Prove that the equation (E): —3x+ 8 = 0 has a unique solution in R.

Problem 3.3. Let a,b,c € R with a # 0. Prove that the equation (E): ax+ b = ¢ has a unique solution in

R.

Problem 3.4. Let a, b, and c be integers. Prove that for all integers m and n, if a divides b and a divides c,

then a divides (bm+ cn).
Problem 3.5. Prove that if m and n are even, then m+ n is even.
Problem 3.6. Prove that if m is even and n is odd, then m +n is odd.

Problem 3.7. Prove that for all m,n € Z, if m is even, then mn is even.



Problem 3.8. Show that for alln € Z, 4n+17 is odd.
Problem 3.9. Let n be an integer. Prove that if n” is even, then n is even.
Problem 3.10. Let n be an integer. Prove that if n® is even, then n is even.

Problem 3.11. For this problem you can use the following fact that will be proven later: 3 does not divides
n if and only if there exists an integer k and an integer i € {1,2} such that n = 3k +i.

Prove that for every integer n, if 3 divides n* then 3 divides n.
Problem 3.12. Prove that there are no integers m and n such that 8m+ 26n = 1.
Problem 3.13.

Are there integers m and n such that m* = 4n+3?

Problem 3.14. Let x € R. Show that if for all € > 0,

x| < 2&, then x = 0.

Problem 3.15. Prove that i@ is irrational.

Problem 3.16.

Problem 3.17.

Show that \/3 is irrational.

Show that log(3) is irrational.

Problem 3.18. Prove that for all real numbers x and y with y > 0, if x> > 4y, then x > 2\ /yorx< —2,/y.

Problem 3.19. Prove that for all integers k, k(k+3) is even.

Problem 3.20. Prove that for all integers k, (k+1)(k+6) is even.

For the following problems we recall the definition of the absolute value function

X ifx>0
|x| :=

—x ifx <0
Problem 3.21. Show that for all x € R, |x| > 0 with |x| = 0 if and only if x = 0.
Problem 3.22. Prove that for all real numbers x and y, |x —y| = |y — x|.
Problem 3.23. Prove that for all real numbers x and y, |xy| = |x||y|.
Problem 3.24. Let x € R and M > 0. Show that |x| <M <— —M < x <M.
Problem 3.25. Prove that for all real numbers x and y, |x+y| < |x| + |y|.
Problem 3.26. Prove that for all x,y,z € R, [x—y| < |x—z|+ [y —z]



Problem 3.27. Prove that for all real numbers x and y, ||x| — |y||

Problem 3.28. Let x,y be real numbers. Show that

< Jx—yl.

VE>0, x<y+€ < x<y.

Problem 3.29. Let x,y be real numbers. Show that x >y — € for all € > 0 if and only if x > y.

Problem 3.30. Prove that for all real numbers x and y, if x <y, then x < % <.

Problem 3.31. Prove that for all positive real numbers x, the sum of x and its reciprocal is greater than 2.

Problem 3.32. 1. Prove that for all x,y € R, \/xy < 2.

2. Show that that for all x,y € R, Xy = % ifandonly ifx =1y

4 Applications of the Principle of Mathematical Induction

Problem 4.1. Prove that for all integers n > 1,

i n+1)(2n+1)'

6

Problem 4.2. Prove that for all integers n > 0,

Z 2k 2n+1

Problem 4.3. Prove that for all integers n > 1,
n
Y (2k—1)
k=1
Problem 4.4. Prove that for all integers n > 1,

1 1 n

,;k(k+1) Tl

Problem 4.5. Prove that for all integers n > 1,

4n3 —n

(2k—17 ==

=

Problem 4.6. Conjecture a formula for Yi_,(—1)*k?, for all n >

using induction.

Problem 4.7. Prove that for all integers n > 1, n < 10™.

1 and then prove the formula is correct



Problem 4.8. Prove that for all integers n > 7, (%)” > n.

Problem 4.9. Prove that for all integers n > 1, n® +8n+9 is divisible by 3.

Problem 4.10. Prove that for all integers n > 1, 3°" — 1 is divisible by 8.

Problem 4.11. Prove that for all integers n > 5, n> < 2".

Problem 4.12. Prove that for all integers n > 4, 2" < n!.

Problem 4.13. Assuming that (1+ %)” <e, foralln> 1, prove that for alln > 1, n! > (%)".
Problem 4.14. Show that for all n > 12 there exist x, € Z and y,, € Z such that n = 3x, + 7y,
Problem 4.15. Prove that for all positive integers n, 4" — 1 is divisible by 3.

Problem 4.16. Let a) = 2, and let a1 = %(an +3) foralln> 1.

(a) Prove that for all positive integers n, a, < anpy1.

(b) Prove that for all positive integers n, a, < 3.

(c) Prove that for all positive integers n, a, =3 — =1

Problem 4.17. Let r € R with r # 1. Prove that
n—1
-7
YAl
1—r

Problem 4.18. Prove Bernoulli’s Inequality: Let x > —1. Then foralln € N, (1+x)" > 1 +nx.

Problem 4.19. Let x,y € R. Prove the binomial theorem: for all integers n > 1,

(x+y)" = i <Z>x"kyk.

k=0
Problem 4.20. Let n be an integer. Show that if n is even then n* is even for all k € N.
S Applications of the Principle of Strong Mathematical Induction
Problem 5.1. Fori €N, let p; denote the ith prime number, so that

p1:2, p2:3, p3:5,....

Prove that for alln € N, p, < 22



Hint. For the induction step, given m € N, show that py1 < p1p2---pm+ 1.

Problem 5.2. Show that the principle of strong mathematical induction implies the principle of mathemati-

cal induction.

Problem 5.3. Show that the principle of mathematical induction implies the principle of strong mathemati-

cal induction.

6 Sequences defined by a recurrence relation

Problem 6.1. Let a; =2, ay =4, and a,+1 = Ta, — 10a,_1 for all n > 2. Conjecture a closed formula for

a, and prove your result.

Problem 6.2. Leta; =3, ay =4, and a, 1 = %(Zan +ay,—1) for all n > 2. Prove that for all positive integers

n 3<a, <4

Problem 6.3. Consider the sequence (ay);;_, recursively defined as ay =1, a, = 8 and for all n > 3,

an = an 1 +2a, 5. Show that foralln > 1, a, =3-2" "' +2(—1)"

Problem 6.4. Consider the sequence (ay);,_, recursively defined as a; =2, a, =4 and for all n > 3,

an =3a,—1 —2a,—». Forall n > 1, find a closed formula for a,,.

7 Set Theory
7.1 Subsets
Problem 7.1. Prove that X CY where X = {n € Z | n is a multiple of 6} and Y = {n € Z | n is even}.

Problem 7.2. Consider the sets

A={neZ|(FkeZ)(n=12k+11)},

B={necZ|(FjeZ)(n=4j+3)}.
(a) Is A C B? Prove or disprove.

(b) Is B C A? Prove or disprove.



Problem 7.3. Consider the sets

A={necZ|(FkecZ)(n=4k+1)},

B={ncZ|(JjeZ)(n=4j-T}.
Prove that A = B.

Problem 7.4. Consider the sets

A={neZ|(GkeZ)(n=3k},

B={necZ|(3i,j€Z)(n=15i+12j)}.
Prove that A = B.

Problem 7.5. Prove that X = {n € Z | n+5 is odd} is the set of all even integers.

7.2 Complements

Problem 7.6. Let A and B be subsets of an ambient set U. Prove that (A—B)U(B—A) = (AUB) —(ANB).

7.3 Arbitrary unions and intersections
Problem 7.7. Fori €N, let A; = (—i,i). Compute |J_, A;.
Problem 7.8. Fori€ N, let A; = (—i,i). Compute (-, A;.
Problem 7.9. Fori €N, let A; = [0,1—1]. Compute ey A:.
Problem 7.10. Fori €N, let A; = [0,1—1]. Compute Ny Ai.
Problem 7.11. Let X, = (%,211] for every integer n > 2.

1. Compute \J,,_, X.

2. Compute (\;_» Xy

Problem 7.12. Let I be a nonempty set and let {A; : i € I} be an indexed family of sets. Let X be a non-empty
set. Suppose that for all i € I, X C A;. Prove that X C (;c;A:.

Problem 7.13. Let {A; : i € N} be an indexed family of sets. Assume that for all i € N, A;; C A;. Prove
that ;e Ai = A1



Problem 7.14. Let (X;)ic; be a collection of subsets of an ambient set U. Show that

A%=UX.

icl icl

Problem 7.15. Let (X;)ic; be a collection of subsets of an ambient set U. Show that

U=,

iel iel
7.4 More problems
Problem 7.16. Let A = {x+yv2|x,y€ O} CR.
(a) Prove that for all x,y € Q, x+yv/2 =0 if and only if x =y = 0.

(b) Prove that for all 71,720 € A, 71 + 72,2122 € A and , for zp # 0, % cA.

n=1

Problem 7.17. We say that the sequence of sets (X,)5_, is increasing, or an ascending chain, if X; C X, C

X3C - CX, CXy1 C.... Formally, (X,)5_, is increasing if
(Vn e N)[X, C Xy11]
Show that the sequence of sets (X,)5_, is increasing if and only if
(VneN)(VkeN)[(n<k) = (X, CXp)].

Problem 7.18. We say that the sequence of sets (X,);_, is decreasing, or a descending chain, if X; 2 X 2
X320+ 2X, D Xyt1 2 .... Formally, (X,)5_, is increasing if
(Vn e N)[X, C Xpp+1].

Show that the sequence of sets (X,);_, is decreasing if and only if for all n,k € N if n < k then X,, 2 Xi.

Problem 7.19. Let X and Y be subsets of a universal set U. Show that X NY = X UY.

8 Functions

8.1 Composition
Problem 8.1. Let f,g: R — R be defined for all x € R as f(x) = x> — 3x and g(x) = 5x — 2.
1. Is it possible to define fog? If it is, what is fog.

10



2. Is it possible to define go f? If it is, what is go f.
3. Are fogand go f equal? (Justify your answer)

Problem 8.2. Let f,g: 7 — 7 be defined for alln € Z as f(n) =2n+3 and

2n—1 ifnis even,

n+1 ifnisodd.

g(n) =

1. Is it possible to define fog? If it is, what is fog.
2. Is it possible to define go f? If it is, what is go f.

3. Are fogand go f equal? (Justify your answer)

8.2 Injectivity, surjectivity, bijectivity

Problem 8.3. For f: R — R defined by f(x) =x+

X

, determine if:
1. fisinjective,
2. f is surjective,

3. fis bijective.

8.3 Composition and injectivity/surjectivity

Problem 8.4. Let W, X,Y be nonempty sets. Let f : W — X, g : X — Y be functions. Show that if go f is

surjective, then g is surjective.

Problem 8.5. Let W, XY be nonempty sets. Let f : W — X, g: X — Y be functions. Show that if go f is

injective, then f is injective.

Problem 8.6. Let X and Y be nonempty sets and let f : X — Y be a function. Prove that f is injective if and

only if for all sets Z, for all functions h:Z — X andk:Z — X, if foh= fok, then h=k.

Problem 8.7. Let X and Y be nonempty sets and let f : X — Y be a function. Prove that f is surjective if

and only if for all sets Z, for all functions h:Y —Zandk:Y — Z, ifho f =ko f, then h=k.

11



9 Injectivity, surjectivity, and one-sided invertibility

Problem 9.1. Let X and Y be nonempty sets and f: X — Y be a function. We say that f is left-invertible
(or admits a left-inverse) if there exists a function g: Y — X such that go f = ix. Prove that f is injective if

and only if f is left-invertible.

Problem 9.2. Let X and Y be nonempty sets, and f: X — Y be a function. We say that f is right-invertible
(or admits a right-inverse) if there exists a function g: Y — X such that f og = iy. Prove that if f has a

right-inverse then f is surjective.

10 Functions and sets

Problem 10.1. Let X and Y be nonempty sets, and f: X — Y be an injective function. Let A be a subset of

X. Prove that f~'(f(A)) = A.

Problem 10.2. Let X and Y be nonempty sets, and f: X — Y be an surjective function. Let A be a subset of

Y. Prove that f(f~'(A)) = A.

11 Supplementary problems

Problem 11.1. Let f1: X1 = X0, r: X0 = X3, f3: X3 =Xy andf4: X4 — Xs5. Show that ((f4of3) sz) of=
Jao(fzo(f20 /1))

Problem 11.2. Let X and Y be nonempty sets, and f: X — Y be a function. Prove that f is surjective then

f is right-invertible.

Problem 11.3. Let f1: X1 — X5, fo: Xo — X3, f3: X3 — X4 be three injective functions. Show that fzo f>0 fi

is injective.
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