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11 Supplementary problems 12

1 Logical connectives and equivalences, Boolean Calculus

Problem 1.1. Show that P∨P is logically equivalent to P.

Problem 1.2. Show that P∧P is logically equivalent to P.

Problem 1.3. Are the statement forms (P∧Q)∧R and P∧ (Q∧R) logically equivalent?

Problem 1.4. Are the statement forms (P∨Q)∨R and P∨ (Q∨R) logically equivalent?

Problem 1.5. Is the statement form (P∧Q)∨ ((¬P)∧¬Q) a tautology, a contradiction, or neither?

Problem 1.6. Are the statement forms (P∨Q)∧R and P∨ (Q∧R) logically equivalent?

Problem 1.7. Show that P∨ (Q∧R) is logically equivalent to (P∨Q)∧ (P∨R).

Problem 1.8. Show that P∧ (Q∨R) is logically equivalent to (P∧Q)∨ (P∧R).

Problem 1.9. Are the statement forms P =⇒ (Q∨R) and (P =⇒ Q)∨ (P =⇒ R) logically equivalent?

Problem 1.10. Are the statement forms P =⇒ (Q∧R) and (P =⇒ Q)∧ (P =⇒ R) logically equivalent?

Hint. Try to use Problem 1.7.

Problem 1.11. Show that the statement forms (P∨Q) =⇒ R and (P =⇒ R)∧ (Q =⇒ R) are logically

equivalent.

Hint. Try to use DeMorgan’s Laws and Problem 1.7.

Problem 1.12. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective ¬ and ∨.

1. P∨ (Q∧R)

2. (P∨Q)∧ (P∨R)

3. P ⇐⇒ Q

Hint. Try to use DeMorgan’s laws.
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Problem 1.13. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective ¬ and ∧.

1. P∧ (Q∨R)

2. (P∧Q)∨ (P∧R)

3. P ⇐⇒ Q

Hint. Try to use DeMorgan’s laws.

Problem 1.14. Are the statement forms [(¬P) =⇒ [Q∧¬Q]] and P logically equivalent?

2 Quantifiers

Problem 2.1. Let x0 ∈ (a,b), ` ∈ R and f : (a,x0)∪ (x0,b)→ R. We say that ` is the limit of f at x0, and

we write limx→x0 f (x) = `, if for all ε > 0 there exists δ > 0 such that if x satisfies 0 < |x− x0| < δ then

| f (x)− `|< ε . Formally,

lim
x→x0

f (x) = ` ⇐⇒ (∀ε > 0)(∃δ > 0)(∀x)[0 < |x− x0|< δ =⇒ | f (x)− `|< ε].

Negate the statement (∀ε > 0)(∃δ > 0)(∀x)[0 < |x− x0|< δ =⇒ | f (x)− `|< ε].

Problem 2.2.

1. Give a possible definition of even numbers using logical symbols, quantifiers, and only the multipli-

cation operation.

2. Negate the definition you gave above.

Problem 2.3.

1. Give a possible definition of a prime number using logical symbols, quantifiers, and only the multipli-

cation operation.

2. Negate the definition you gave above.

Problem 2.4. Write a formal mathematical expression that expresses the fact that a given sequence (xn)n∈N

does not have a real limit.
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Problem 2.5. Negate the statement P : (∀n ∈ Z)(∃k ∈ Z)(n2 +n+1 = 2k). Try to explain what P and ¬P

mean.

Problem 2.6. Let f be a function from R to R. We say that f is strictly increasing if

(∀x ∈ R)(∀y ∈ R)[(x < y) =⇒ ( f (x)< f (y))].

Negate the statement above.

Problem 2.7. Let f be a function from R to R. Define what it means for f to be strictly decreasing

Problem 2.8. Let f be a function from R to R. Write a formal mathematical expression which expresses the

fact that it is not true that f is strictly decreasing or strictly increasing.

Problem 2.9. Define formally what it means that an integer k divides an integer n.

Problem 2.10. Give a formal definition of what it means for a number x to be a rational number.

Problem 2.11. Give a formal definition of what it means for a number x to be a irrational number.

Problem 2.12. What is the truth value of the statement (∀x ∈ R)(∃y ∈ R)(∀z ∈ R)[xy = xz]?

Problem 2.13. What is the truth value of the statement (∃y ∈ R)(∀x ∈ R)(∃z ∈ R)[xy = xz]?

3 Proofs

Problem 3.1. Prove that the equation (E) : 7x−2 = 0 has a unique solution in R.

Problem 3.2. Prove that the equation (E) : −3x+8 = 0 has a unique solution in R.

Problem 3.3. Let a,b,c ∈ R with a 6= 0. Prove that the equation (E) : ax+b = c has a unique solution in

R.

Problem 3.4. Let a, b, and c be integers. Prove that for all integers m and n, if a divides b and a divides c,

then a divides (bm+ cn).

Problem 3.5. Prove that if m and n are even, then m+n is even.

Problem 3.6. Prove that if m is even and n is odd, then m+n is odd.

Problem 3.7. Prove that for all m,n ∈ Z, if m is even, then mn is even.
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Problem 3.8. Show that for all n ∈ Z, 4n+7 is odd.

Problem 3.9. Let n be an integer. Prove that if n2 is even, then n is even.

Problem 3.10. Let n be an integer. Prove that if n3 is even, then n is even.

Problem 3.11. For this problem you can use the following fact that will be proven later: 3 does not divides

n if and only if there exists an integer k and an integer i ∈ {1,2} such that n = 3k+ i.

Prove that for every integer n, if 3 divides n2 then 3 divides n.

Problem 3.12. Prove that there are no integers m and n such that 8m+26n = 1.

Problem 3.13. Are there integers m and n such that m2 = 4n+3?

Problem 3.14. Let x ∈ R. Show that if for all ε > 0, |x|< 2ε , then x = 0.

Problem 3.15. Prove that 3√2 is irrational.

Problem 3.16. Show that
√

3 is irrational.

Problem 3.17. Show that log(3) is irrational.

Problem 3.18. Prove that for all real numbers x and y with y > 0, if x2 > 4y, then x > 2
√

y or x 6−2
√

y.

Problem 3.19. Prove that for all integers k, k(k+3) is even.

Problem 3.20. Prove that for all integers k, (k+1)(k+6) is even.

For the following problems we recall the definition of the absolute value function

|x| :=


x if x > 0

−x if x < 0

Problem 3.21. Show that for all x ∈ R, |x|> 0 with |x|= 0 if and only if x = 0.

Problem 3.22. Prove that for all real numbers x and y, |x− y|= |y− x|.

Problem 3.23. Prove that for all real numbers x and y, |xy|= |x||y|.

Problem 3.24. Let x ∈ R and M > 0. Show that |x|6 M ⇐⇒ −M 6 x 6 M.

Problem 3.25. Prove that for all real numbers x and y, |x+ y|6 |x|+ |y|.

Problem 3.26. Prove that for all x,y,z ∈ R, |x− y|6 |x− z|+ |y− z|.
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Problem 3.27. Prove that for all real numbers x and y,
∣∣|x|− |y|∣∣6 |x− y|.

Problem 3.28. Let x,y be real numbers. Show that

∀ε > 0, x < y+ ε ⇐⇒ x 6 y.

Problem 3.29. Let x,y be real numbers. Show that x > y− ε for all ε > 0 if and only if x > y.

Problem 3.30. Prove that for all real numbers x and y, if x < y, then x < x+y
2 < y.

Problem 3.31. Prove that for all positive real numbers x, the sum of x and its reciprocal is greater than 2.

Problem 3.32. 1. Prove that for all x,y ∈ R+,
√

xy 6 x+y
2 .

2. Show that that for all x,y ∈ R+,
√

xy = x+y
2 if and only if x = y

4 Applications of the Principle of Mathematical Induction

Problem 4.1. Prove that for all integers n > 1,

n

∑
k=1

k2 =
n(n+1)(2n+1)

6
.

Problem 4.2. Prove that for all integers n > 0,

n

∑
k=0

2k = 2n+1−1.

Problem 4.3. Prove that for all integers n > 1,

n

∑
k=1

(2k−1) = n2.

Problem 4.4. Prove that for all integers n > 1,

n

∑
k=1

1
k(k+1)

=
n

n+1
.

Problem 4.5. Prove that for all integers n > 1,

n

∑
k+1

(2k−1)2 =
4n3−n

3
.

Problem 4.6. Conjecture a formula for ∑
n
k=1(−1)kk2, for all n > 1 and then prove the formula is correct

using induction.

Problem 4.7. Prove that for all integers n > 1, n < 10n.

6



Problem 4.8. Prove that for all integers n > 7,
(4

3

)n
> n.

Problem 4.9. Prove that for all integers n > 1, n3 +8n+9 is divisible by 3.

Problem 4.10. Prove that for all integers n > 1, 32n−1 is divisible by 8.

Problem 4.11. Prove that for all integers n > 5, n2 < 2n.

Problem 4.12. Prove that for all integers n > 4, 2n < n!.

Problem 4.13. Assuming that (1+ 1
n)

n < e, for all n > 1, prove that for all n > 1, n! > (n
e )

n.

Problem 4.14. Show that for all n > 12 there exist xn ∈ Z and yn ∈ Z such that n = 3xn +7yn

Problem 4.15. Prove that for all positive integers n, 4n−1 is divisible by 3.

Problem 4.16. Let a1 = 2, and let an+1 =
1
2(an +3) for all n > 1.

(a) Prove that for all positive integers n, an < an+1.

(b) Prove that for all positive integers n, an < 3.

(c) Prove that for all positive integers n, an = 3− 1
2n−1 .

Problem 4.17. Let r ∈ R with r 6= 1. Prove that

n−1

∑
k=0

rk =
1− rn

1− r
.

Problem 4.18. Prove Bernoulli’s Inequality: Let x >−1. Then for all n ∈ N, (1+ x)n > 1+nx.

Problem 4.19. Let x,y ∈ R. Prove the binomial theorem: for all integers n > 1,

(x+ y)n =
n

∑
k=0

(
n
k

)
xn−kyk.

Problem 4.20. Let n be an integer. Show that if n is even then nk is even for all k ∈ N.

5 Applications of the Principle of Strong Mathematical Induction

Problem 5.1. For i ∈ N, let pi denote the ith prime number, so that

p1 = 2, p2 = 3, p3 = 5, . . . .

Prove that for all n ∈ N, pn 6 22n−1
.
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Hint. For the induction step, given m ∈ N, show that pm+1 6 p1 p2 · · · pm +1.

Problem 5.2. Show that the principle of strong mathematical induction implies the principle of mathemati-

cal induction.

Problem 5.3. Show that the principle of mathematical induction implies the principle of strong mathemati-

cal induction.

6 Sequences defined by a recurrence relation

Problem 6.1. Let a1 = 2, a2 = 4, and an+1 = 7an−10an−1 for all n > 2. Conjecture a closed formula for

an and prove your result.

Problem 6.2. Let a1 = 3, a2 = 4, and an+1 =
1
3(2an+an−1) for all n > 2. Prove that for all positive integers

n, 3 6 an 6 4.

Problem 6.3. Consider the sequence (an)
∞
n=1 recursively defined as a1 = 1, a2 = 8 and for all n > 3,

an = an−1 +2an−2. Show that for all n > 1, an = 3 ·2n−1 +2(−1)n.

Problem 6.4. Consider the sequence (an)
∞
n=1 recursively defined as a1 = 2, a2 = 4 and for all n > 3,

an = 3an−1−2an−2. For all n > 1, find a closed formula for an.

7 Set Theory

7.1 Subsets

Problem 7.1. Prove that X ⊆ Y where X = {n ∈ Z | n is a multiple of 6} and Y = {n ∈ Z | n is even}.

Problem 7.2. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 12k+11)},

B = {n ∈ Z | (∃ j ∈ Z)(n = 4 j+3)}.

(a) Is A⊆ B? Prove or disprove.

(b) Is B⊆ A? Prove or disprove.
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Problem 7.3. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 4k+1)},

B = {n ∈ Z | (∃ j ∈ Z)(n = 4 j−7}.

Prove that A = B.

Problem 7.4. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 3k)},

B = {n ∈ Z | (∃i, j ∈ Z)(n = 15i+12 j)}.

Prove that A = B.

Problem 7.5. Prove that X = {n ∈ Z | n+5 is odd} is the set of all even integers.

7.2 Complements

Problem 7.6. Let A and B be subsets of an ambient set U. Prove that (A−B)∪ (B−A) = (A∪B)− (A∩B).

7.3 Arbitrary unions and intersections

Problem 7.7. For i ∈ N, let Ai = (−i, i). Compute
⋃

∞
i=1 Ai.

Problem 7.8. For i ∈ N, let Ai = (−i, i). Compute
⋂

∞
i=1 Ai.

Problem 7.9. For i ∈ N, let Ai =
[
0,1− 1

i

]
. Compute

⋃
i∈N Ai.

Problem 7.10. For i ∈ N, let Ai =
[
0,1− 1

i

]
. Compute

⋂
i∈N Ai.

Problem 7.11. Let Xn = (2
n ,2n] for every integer n > 2.

1. Compute
⋃

∞
n=2 Xn.

2. Compute
⋂

∞
n=2 Xn.

Problem 7.12. Let I be a nonempty set and let {Ai : i∈ I} be an indexed family of sets. Let X be a non-empty

set. Suppose that for all i ∈ I, X ⊆ Ai. Prove that X ⊆
⋂

i∈I Ai.

Problem 7.13. Let {Ai : i ∈ N} be an indexed family of sets. Assume that for all i ∈ N, Ai+1 ⊆ Ai. Prove

that
⋃

i∈N Ai = A1.
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Problem 7.14. Let (Xi)i∈I be a collection of subsets of an ambient set U. Show that

⋂
i∈I

Xi =
⋃
i∈I

X i.

Problem 7.15. Let (Xi)i∈I be a collection of subsets of an ambient set U. Show that

⋃
i∈I

Xi =
⋂
i∈I

X i.

7.4 More problems

Problem 7.16. Let A = {x+ y
√

2 | x,y ∈ Q} ⊆ R.

(a) Prove that for all x,y ∈ Q, x+ y
√

2 = 0 if and only if x = y = 0.

(b) Prove that for all z1,z2 ∈ A, z1 + z2,z1z2 ∈ A and , for z2 6= 0, z1
z2
∈ A.

Problem 7.17. We say that the sequence of sets (Xn)
∞
n=1 is increasing, or an ascending chain, if X1 ⊆ X2 ⊆

X3 ⊆ ·· · ⊆ Xn ⊆ Xn+1 ⊆ . . . . Formally, (Xn)
∞
n=1 is increasing if

(∀n ∈ N)[Xn ⊆ Xn+1].

Show that the sequence of sets (Xn)
∞
n=1 is increasing if and only if

(∀n ∈ N)(∀k ∈ N)[(n 6 k) =⇒ (Xn ⊆ Xk)].

Problem 7.18. We say that the sequence of sets (Xn)
∞
n=1 is decreasing, or a descending chain, if X1 ⊇ X2 ⊇

X3 ⊇ ·· · ⊇ Xn ⊇ Xn+1 ⊇ . . . . Formally, (Xn)
∞
n=1 is increasing if

(∀n ∈ N)[Xn ⊆ Xn+1].

Show that the sequence of sets (Xn)
∞
n=1 is decreasing if and only if for all n,k ∈ N if n 6 k then Xn ⊇ Xk.

Problem 7.19. Let X and Y be subsets of a universal set U. Show that X ∩Y = X ∪Y .

8 Functions

8.1 Composition

Problem 8.1. Let f ,g : R→ R be defined for all x ∈ R as f (x) = x2−3x and g(x) = 5x−2.

1. Is it possible to define f ◦g? If it is, what is f ◦g.
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2. Is it possible to define g◦ f ? If it is, what is g◦ f .

3. Are f ◦g and g◦ f equal? (Justify your answer)

Problem 8.2. Let f ,g : Z→ Z be defined for all n ∈ Z as f (n) = 2n+3 and

g(n) =

 2n−1 if n is even,

n+1 if n is odd.

1. Is it possible to define f ◦g? If it is, what is f ◦g.

2. Is it possible to define g◦ f ? If it is, what is g◦ f .

3. Are f ◦g and g◦ f equal? (Justify your answer)

8.2 Injectivity, surjectivity, bijectivity

Problem 8.3. For f : R→ R defined by f (x) = x+ |x|, determine if:

1. f is injective,

2. f is surjective,

3. f is bijective.

8.3 Composition and injectivity/surjectivity

Problem 8.4. Let W,X ,Y be nonempty sets. Let f : W → X, g : X → Y be functions. Show that if g ◦ f is

surjective, then g is surjective.

Problem 8.5. Let W,X ,Y be nonempty sets. Let f : W → X, g : X → Y be functions. Show that if g ◦ f is

injective, then f is injective.

Problem 8.6. Let X and Y be nonempty sets and let f : X →Y be a function. Prove that f is injective if and

only if for all sets Z, for all functions h : Z→ X and k : Z→ X, if f ◦h = f ◦ k, then h = k.

Problem 8.7. Let X and Y be nonempty sets and let f : X → Y be a function. Prove that f is surjective if

and only if for all sets Z, for all functions h : Y → Z and k : Y → Z, if h◦ f = k ◦ f , then h = k.
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9 Injectivity, surjectivity, and one-sided invertibility

Problem 9.1. Let X and Y be nonempty sets and f : X → Y be a function. We say that f is left-invertible

(or admits a left-inverse) if there exists a function g : Y → X such that g◦ f = iX . Prove that f is injective if

and only if f is left-invertible.

Problem 9.2. Let X and Y be nonempty sets, and f : X → Y be a function. We say that f is right-invertible

(or admits a right-inverse) if there exists a function g : Y → X such that f ◦ g = iY . Prove that if f has a

right-inverse then f is surjective.

10 Functions and sets

Problem 10.1. Let X and Y be nonempty sets, and f : X → Y be an injective function. Let A be a subset of

X. Prove that f−1( f (A)) = A.

Problem 10.2. Let X and Y be nonempty sets, and f : X →Y be an surjective function. Let A be a subset of

Y . Prove that f ( f−1(A)) = A.

11 Supplementary problems

Problem 11.1. Let f1 : X1→X2, f2 : X2→X3, f3 : X3→X4 and f4 : X4→X5. Show that (( f4◦ f3)◦ f2)◦ f1 =

f4 ◦ ( f3 ◦ ( f2 ◦ f1)).

Problem 11.2. Let X and Y be nonempty sets, and f : X → Y be a function. Prove that f is surjective then

f is right-invertible.

Problem 11.3. Let f1 : X1→X2, f2 : X2→X3, f3 : X3→X4 be three injective functions. Show that f3◦ f2◦ f1

is injective.
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