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(11 Supplementary problems| 39

1 Logical connectives and equivalences, Boolean Calculus

Problem 1.1. Show that PV P is logically equivalent to P.

Solution of Problem We write the truth table for PV P. O
PV P
T
F

Problem 1.2. Show that P A P is logically equivalent to P.

Solution of Problem[1.2] We write the truth table for P A P. O

P|P|PAP

T

F|F F

Problem 1.3. Are the statement forms (P A Q) AR and P A\ (Q AR) logically equivalent?

Solution of Problem We write a truth table for (PAQ) AR and PA(QAR):

0 PAQ | OAR | (PAQ)AR | PA(QAR)
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Since the columns corresponding to (P A Q) AR and P A (Q AR) are identical, the two statement forms are

Q

equivalent. O



Problem 1.4. Are the statement forms (PN Q)V R and PV (QV R) logically equivalent?

Solution of Problem We write a truth table for (PV Q) VR and PV (QVR):

=

P|O PVQ | QVR | (PVQ)VR | PV(QVR)
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Since the columns corresponding to (PV Q) VR and PV (Q V R) are identical, the two statement forms are

equivalent. 0
Problem 1.5. Is the statement form (P A Q)V ((=P) A —=Q) a tautology, a contradiction, or neither?

Solution of Problem We write a truth table for (PAQ)V ((—=P) A—Q):

P|Q|PAQ | (=P)A=Q | (PAQ)V((=P)A-Q)
T | T T F T
T | F F F F
F| T F F F
F | F F T T

Since (PAQ)V ((—P) A—Q) is neither always true nor always false, the statement form is neither a tautology

nor a contradiction. O
Problem 1.6. Are the statement forms (PN Q) AR and PV (Q AR) logically equivalent?

Solution of Problem[I.6] We write a truth table for (PV Q) AR and PV (Q AR):



P|Q|R|PVQ | QAR | (PVO)AR | PV(QAR)
T|T|T T T T T
T |T)|F T F F T
T | F | T T F T T
T |F|F T F F T
F\|\T|T T T T T
F|T|F T F F F
F | F | T F F F F
F|F|F F F F F
Since the columns corresponding to (PV Q) AR and PV (Q A R) differ (in the second and fourth rows), the

two statements are not logically equivalent. O
Problem 1.7. Show that P\ (Q AR) is logically equivalent to (PN Q) A (PV R).

Solution of Problem We write a truth table for PV (QAR) and (PV Q) A (PVR):

P|Q|R|PVQ|PVR| (PVQ)A(PVR) | PV(QAR)
T T| T T T T
T|T|F| T T T T
T|F|T| T T T T
T|F|F| T T T T
F|T|T| T T T T
F|T|F| T F F F
F|F|T| F T F F
F|F|F| F F F F

Since the columns corresponding to PV (QAR) and (PV Q) A (PV R) are identical, the two statement

forms are equivalent. O
Problem 1.8. Show that P\ (QV R) is logically equivalent to (PN Q) V (P AR).

Solution of Problem We write a truth table for PA (QVR) and (PAQ)V (PAR):
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Since the columns corresponding to P A (QV R) and (P A Q) V (P AR) are identical, the two statement

forms are equivalent.

O]

Problem 1.9. Are the statement forms P —> (QVR) and (P = Q)V (P = R) logically equivalent?

Solution of Problem[I.9, We could write a truth table for P = (QVR) and (P = Q)V (P = R):

P|Q|R|QVR|P= Q|P = R|P = (QVR) | (P = Q)V(P = R)
T T T T T T
T |T|F T T F T T
T |F | T T F T T T
T | F|F F F F F F
F\|\T|T T T T T T
F|T|F T T T T T
F|\F|T T T T T T
F|F|F F T T T T
Since the columns corresponding to P —> (QVR) and (P = Q) V (P = R) are identical, the two

statements are logically equivalent.

An alternate proof would go as follows:

while

P = (QVR)=(-P)V(QVR)=(-P)VQVR



(P = Q)V(P = R)=((-=P)VQ)V((=P)VR)

(=P)V (-P)VQVR

(~P)VQVR

and thus P = (QVR)=(P = Q)V(P = R). O
Problem 1.10. Are the statement forms P —> (QAR) and (P — Q) A (P = R) logically equivalent?
Hint. Try to use Problem[1.7}

Solution of Problem We could write a truth table for P = (QAR) and (P = Q) A (P = R):

PO/ R|ONR|P= Q| P =R OAR) | (P = Q)A(P = R)
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Since the columns corresponding to P = (QAR) and (P = Q) A (P = R) are identical, the two

statements are logically equivalent.

An alternate proof (assuming we know the result from Problem [I.7]) would go as follows:

P — (QAR) = (~P)V(QAR) = ((-P)V Q) A((-P) VR)

while

(P = QN (P = R)=((-P)VQ)A((=P)VR)

and thus P = (QAR)= (P = Q)N (P = R). O



Problem 1.11. Show that the statement forms (PV Q) => R and (P = R) A (Q == R) are logically

equivalent.
Hint. Try to use DeMorgan’s Laws and Problem

Solution of Problem[I.11] We could write a truth table for (PV Q) = Rand (P = R)A(Q = R):

P|O|R|PVQ|Q=R|P=R|(PVQ) = R| (P = R)A(Q = R)
T T| T T T T
T|T|F| T F F F F
T|F|T| T T T T T
T|F|F| T T F F F
F|T|T| T T T T T
F|T|F| T F T F F
F|F|T| F T T T T
F|F|F| F T T T T

Since the columns corresponding to (PV Q) = R and (P = R) A(Q = R) are identical, the two
statements are logically equivalent.

An alternate proof (assuming we know DeMorgan’s laws and the result from Problem would go as

follows:
(PVQ) = R=(~(PVQ)VR) = ((-P)A=Q) VR
= ((-P)VR)A((~Q) VR)
while
(P = R)A(Q = R)=((=P)VR)A((~Q)VR)
and thus (PVQ) =— R=(P = Q)A(P = R). O

Problem 1.12. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective — and V.

1. PV(QAR)



2. (PVQ)AN(PVR)
3. P <= Q

Hint. Try to use DeMorgan’s laws.

Solution of Problem[T12) 1. PV (QAR) =PV —((=Q)V (-R))
2. (PVQ)A(PVR) = ~((~(PVQ))V~(PVR))

3. P= 0=(P = Q)N (Q = P)=((=P)VQ)A((—Q)VP) =~((=((=P)VQ))V~((—Q) VP))
O

Problem 1.13. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective — and .
1. PA(QVR)
2. (PANQ)V(PAR)
3. P<— Q
Hint. Try to use DeMorgan’s laws.
Solution of Problem[I.13] 1. PA(QVR)=PA—((—Q)A(—R))
2. (PAQ)V(PAR) = ~((=(PAQ)) A=(PAR))

3P = 0= (P = Q)A(Q = P)=((-P)VQ) A((<Q)V P) = (~((~~P) A=Q)) A=((~~Q) A
P) = (~(PA~Q)) A~(QA~P)

Problem 1.14. Are the statement forms [(—P) = [Q A Q]| and P logically equivalent?

2 Quantifiers

Problem 2.1. Let xy € (a,b), L € R and f: (a,xp) U (x9,b) — R. We say that { is the limit of f at xo, and
we write limy_,y, f(x) = ¢, if for all € > 0 there exists & > 0 such that if x satisfies 0 < |x —xo| < O then

|f(x) —¢| < €. Formally,

lim f(x) =€ <= (V& >0)(38 > 0)(¥x)[0 < |x—xo| < & = |f(x)—{] < €].

X—X0

Negate the statement (Ve > 0)(36 > 0)(Vx)[0 < [x—xo| < 0 = |f(x) —{| < g].



Hint. Remember that (P = Q) =P A Q. O

Solution of Problem|2.1

(Te > 0)(V8 > 0)(T)[(0 < [x—x0| < 8) A (|f(x) — 1] > €))].

Problem 2.2.

1. Give a possible definition of even numbers using logical symbols, quantifiers, and only the multipli-

cation operation.

2. Negate the definition you gave above.

Solution of Problem 2.2}
1.
xiseven <= (x€Z)A(Fk € Z)(x = 2k)
2.
xisnoteven <= (x¢Z)V (Vk € Z)(x # 2k)
O
Problem 2.3.

1. Give a possible definition of a prime number using logical symbols, quantifiers, and only the multipli-

cation operation.
2. Negate the definition you gave above.

Solution of Problem[2.3]

xis a prime number <= [(x e N)A(x# ) A[(VmeN)(VneN)x=mn = ((m=1)V(n=1))]].

xisnot a prime number <= [(x¢N)V(x=1)V[(EFmeN)(IneN)(x=mn)A(m>1)A(n>1)].



O]

Problem 2.4. Write a formal mathematical expression that expresses the fact that a given sequence (X)neN

does not have a real limit.

Solution of Problem 2.4
(VL eR)(Je > 0)(VN € N)(In = N)(|x, —£| > €)
O

Problem 2.5. Negate the statement P : (Vn € 7)(3k € Z)(n> +n+ 1 = 2k). Try to explain what P and —P

mean.

Solution of Problem[2.3} —P : (3n € Z)(Vk € Z)(n* +n+ 1 # 2k). P means that for every integer n the
integer n> +n+ 1 is even. —P means that there exists an integer n such that the integer n> 4+ n+ 1 is not

even. O

Problem 2.6. Let f be a function from R to R. We say that f is strictly increasing if

(Vx e R)(Vy e R)[(x <y) = (f(x) <f(»))]-

Negate the statement above.

Solution of Problem
(I eR)(Fy eR)[(x <y)A(f(x) = f(¥)].

O]
Problem 2.7. Let f be a function from R to R. Define what it means for f to be strictly decreasing
Solution of Problem 2.7}
f is strictly decreasing <= (Vx e R)(Vy e R)[(x <y) = (f(x) > f(»))].
O]

Problem 2.8. Let f be a function from R to R. Write a formal mathematical expression which expresses the

fact that it is not true that f is strictly decreasing or strictly increasing.

10



Solution of Problem If itis not true that f is strictly decreasing or strictly increasing then f is not strictly

decreasing and not strictly decreasing. Formally, it can be expressed with the following statement:

(B e R)(Fy e B)[(x <y) A (f(x) SFODIAIEw e R)Bz € R)[(w <2) A(f(w) = f(2))]]-

O
Problem 2.9. Define formally what it means that an integer k divides an integer n.
Solution of Problem|2.9
k divides n <= (Im € Z)(n = km)
O
Problem 2.10. Give a formal definition of what it means for a number x to be a rational number.
Solution of Problem[2.11]
xisrational <= (x e R)A[(Fp€Z)(TgeN)x= g]
O
Problem 2.11. Give a formal definition of what it means for a number x to be a irrational number.
Solution of Problem Since x is irrational if and only if it is not rational,
xisirrational <= (x¢ R)V[(Vp € Z)(Vg € N)(x # g)]
O

Problem 2.12. What is the truth value of the statement (Vx € R)(Jy € R)(Vz € R)[xy = xz]?

Solution of Problem The statement is false, i.e., (3x € R)(Vy € R)(3z € R)[xy # xz] is true. To see
this, let x = 1, and let y € R be given. If y # 0, put z =2y. Then xy =y # 2y = xz. If now y =0, put z = 1.
Thenxy =0# 1 =xz. O

Problem 2.13. What is the truth value of the statement (Jy € R)(Vx € R)(Jz € R)[xy = xz]?

Solution of Problem[2.13] The statement is true. To see this, put y = 1, and let x € R be given. Put z = 1.

Then we have xy = x = xz. ]

11



3 Proofs

Problem 3.1. Prove that the equation (E): 7x—2 = 0 has a unique solution in R.

Solution of Problem[3.1} Let xo = % Then xp € R and 7xg —2 = 7% —2=2-2=0, so the equation (E)
has a solution. Assume now that y is a real solution to the equation (E), then 7y —2 = 0 and thus y = % = Xg.

Therefore, the equation (E) has a unique solution. O
Problem 3.2. Prove that the equation (E): —3x+ 8 =0 has a unique solution in R.

Solution of Problem[3.2] Assume that y and z are real solutions to the equation (E), then —3y+8 = —3z+8
and thus —3y = —3z. Since —3 # 0 it follows that y = z. Therefore, the equation (E) has at most one
solution. Now, let x = %. Thenx € Rand —3x+48 = —3% +8 = —8+8=0, so the equation (E) has at least

solution. We can thus conclude that the equation (E) at a unique solution. O

Problem 3.3. Let a,b,c € R with a # 0. Prove that the equation (E): ax+ b = ¢ has a unique solution in

R.

Solution of Problem[3.3] Let xy = %. Then xp € R and axq+b = a% +b=c—b+b=c, and hence the
equation (E) has a solution. Assume now that y and z are real solutions to the equation (E), then ay+b = c¢
and az + b = c. Therefore,

0=c—c=(ay+b)—(az+b)=a(y—2z).
Since a # 0, one has y — z = 0, and thus y = z. The equation (E) has a unique solution. O

Problem 3.4. Let a, b, and c be integers. Prove that for all integers m and n, if a divides b and a divides c,

then a divides (bm+ cn).

Solution of Problem[3.4] Let m and n be fixed integers. Assume that a divides b and that a divides c¢. Then
there exist integers j and k such that b = aj and ¢ = ak. (We must show that there exists an integer / such

that bm + cn = al.) Observe that
bm+cn = ajm+ akn = a(jm+kn).

Put / = jm+kn. Then [ is an integer such that bm + cn = al, and therefore a | (bm+ cn). Since m and n
were fixed but arbitrary, we proved that for all integers m and n, if a divides b and a divides c, then a divides

(bm+cn). O
Problem 3.5. Prove that if m and n are even, then m+ n is even.

12



Solution of Problem[3.5] Let m and n be fixed integer and assume that m and n are fixed even numbers.

Then there exist integers j and k such that m = 2j and n = 2k. Let [ = j+k, then [ is an integer, and we have
m+n=2j+2k=2(j+k) =2l

Therefore, m + n is even. Since m and n were fixed but arbitrary even numbers then the proof is complete.

O
Problem 3.6. Prove that if m is even and n is odd, then m +n is odd.

Solution of Problem[3.6] Assume that m is a fixed even number and n is a fixed odd number. Then there

exist integers j and k such that m =2j+ 1 and n = 2k. Let [ = j +k, then [ is an integer, and we have
m4+n=2j+14+2k=2(j+k)+1=20+1.

Therefore, m + n is odd. The proof is complete since m and n were fixed but arbitrary. O

Problem 3.7. Prove that for all m,n € 7, if m is even, then mn is even.

Solution of Problem Let m and n be integers and assume that m is even. Then there exists and integer k

such that m = 2k. Put [ = kn. Then [ is an integer, and we have mn = 2kn = 2I. Therefore, mn is even. [

Problem 3.8. Show that for alln € Z, 4n+17 is odd.

Solution of Problem Fix n € Z. Let k = 2n+ 3, then £ is an integer, and we have
dn+7=212n)+2(3)+1=2(2n+3)+1=2k+1.

Therefore, 4n+ 7 is odd. Since n was fixed but arbitrary the conclusion follows. O

Problem 3.9. Let n be an integer. Prove that if n” is even, then n is even.

Solution of Problem[3.9 Let n € Z and assume n is not even. Then n is odd, hence there is some k € Z such
that n = 2k + 1. Thus n? = (2k+1)? = 2(2k*> +2k) + 1 = 2r + 1, with r = 2k? + 2k € Z, and thus n? is odd.

Therefore, by contraposition, if n is even, then n? is even. OJ

Problem 3.10. Let n be an integer. Prove that if n’ is even, then n is even.

Solution of Problem[3.10} Let us prove the contrapositive “if n is not even then n? is not even”, or equiv-
alently “if n is odd then n3 is odd”. Assume that n is odd, then there exists k € Z such that n = 2k + 1,
and hence n® = (2k +1)% = (2k)3 +3- (2k)®2 +3-2k+ 1 =2(4k> + 6 - k> +3k) +1 = 2r + 1, where r =
4k 46 - k> 4 3k is an integer. Therefore n? is odd. O

13



Problem 3.11. For this problem you can use the following fact that will be proven later: 3 does not divides
n if and only if there exists an integer k and an integer i € {1,2} such that n = 3k +i.

Prove that for every integer n, if 3 divides n* then 3 divides n.

Solution of Problem Let n be an integer and assume that 3 does not divide n. Then there exists an

integer k and an integer i € {1,2} such that n = 3k +i. Therefore,
n? = (3k+i)? = 9k> 4 6ki + i* = 3(3k> + 2ki) +i°.

If i =1 then # = 12 = 1, and n*> = 3r + 1 with r = 3k> + 2ki € Z. Otherwise, if i = 2 then n> = 3(3k> +
2ki) + 2% = 3(3k%> 4 2ki) + 3+ 1 = 3(3k> + 2ki+ 1) +1 = 3s + 1, with s = 3k> + 2ki+ 1 € Z. In any case,

n* = 3t + 1 for some integer ¢ and thus 3 does not divide n?. 0
Problem 3.12. Prove that there are no integers m and n such that 8m+26n = 1.

Solution of Problem Assume, towards a contradiction, that there exist integers m and n such that 8m +
26n = 1. Then 1 = 2(4m + 13n) = 2r, with r = 4m + 13n € Z, and 1 would be even. But 1 is odd, a

contradiction. Thus, there are no integers m and n such that 8m + 26n = 1. O
Problem 3.13. Are there integers m and n such that m> = 4n+3?

Solution of Problem[3.13] Assume, towards a contradiction, that there exist integers m and n such that m? =
4n+3. Then m?> = 2(2n+ 1) + 1, so m? is odd, and therefore m is odd. Thus there is some k € Z such that
m = 2k—+ 1, and we have

4n+3=(2k+1)* =4k> +4k+1,

0 4n+2 = 4k> + 4k, and thus 2n + 1 = 2k? + 2k = 2(k* + k). Hence 2n+ 1 is both even and odd, a

contradiction. Therefore, there do not exist integers m and n such that m? = 4n + 3. 0

Problem 3.14. Let x € R. Show that if for all € > 0,

x| < 2&, then x = 0.

Solution of Problem Let x € R. Assume that for all € > 0, |x| < 2¢ and for the sake of a contradiction
assume that x # 0. If we put & = % then & > 0. Therefore, |x| < 2g = 2%. Since |x| # 0, it follows that

x| < % and thus 1 < 3, a contradiction. O
Problem 3.15. Prove that z@ is irrational.

Hint. Use Problem[3.10 O

14



Solution of Problem Assume by contradiction that \3@ is rational and write, as we may, w = g with
pEZ,q€Z,q>0,where p and g have no common factors. Thus, 2 = (5)3 and 2¢> = p?, which means
that p? is even. By Problem above p is even, and there exists k € Z such that p = 2k. It follows that
¢ = % = % =22k and hence ¢’ is even. By Problem q is even, a contradiction. Indeed, p and ¢

being even they have 2 as a common factor which contradicts our assumption. O
Problem 3.16. Show that \/3 is irrational.
Hint. Use Problem[3.111 O

Solution of Problem[3.16] Assume, towards a contradiction, that 1/3 is rational. Then there exist nonnega-
tive integers m and n, with n # 0, such that /3 = “. Without loss of generality, we may assume that m and
n have no common factors. Then m? = 3n?, so 3 divides m?, and by the result of Problem it follows

that 3 divides m. Thus there is some k € Z such that m = 3k. Hence we have
9> = m? = 3n?,

so n? = 3k*. Thus 3 divides n?, and applying the results of Problem again, it follows that 3 divides
n. But then both m and n are divisible by 3, so they share a common factor, contradicting our assumption.

Therefore, v/3 is irrational. O
Problem 3.17. Show that log(3) is irrational.

Hint. You can use the the following property of the log function: x = log(3) <= 2* = 3 (no proof needed)
You can also use the binomial formula (no proof needed). Everything else that you might need needs to be

proven. O
Problem 3.18. Prove that for all real numbers x and y with y > 0, ifx2 = 4y, then x > 2,/y or x < —2,/y.

Solution of Problem Let x € R and y > 0 and assume that x> > 4y. Either x > 2,/y and the conclusion
follows, or x < 2, /y but then 0 < x?—dy=(x— 2,/y)(x+2,/y) and hence x+2,/y <0, i.e. x < —2,/y, and

the conclusion follows. O
Problem 3.19. Prove that for all integers k, k(k+3) is even.
Solution of Problem[3.19} Let k € Z.

Case | kis even and there exists n € Z such that k = 2n. So, k(k+3) = 2n(2n+ 3) which is even.

15



Case 2 kis odd and there exists n € Z such thatk =2n+1. So, k(k+3) = 2n+1)(2n+4) =2(2n+1)(n+2)

which is even.

Problem 3.20. Prove that for all integers k, (k+1)(k+ 6) is even.

Solution of Problem[3.20} Let k € Z. Either k is even and there exists n € Z such that k = 2n, and (k +
1)(k4+6)=(2n+1)(2n+6) =2(2n+ 1)(n+ 3) which is even, or k is odd and there exists n € Z such that
k=2n+1,and thus (k+1)(k+6) = (2n+2)(2n+7) =2(n+1)(2n+7) is even. O

For the following problems we recall the definition of the absolute value function

X ifx>0
x| ==
—x ifx<0

Problem 3.21. Show that for all x € R,

x| = 0 with |x| = 0 if and only if x = 0.

Proof of Problem We prove the first part of the statement. Let x € R. Then, either x > 0 or x < 0. If
x > 0 then by definition |x| =x > 0. Otherwise, if x < 0 then by definition |x| = —x > 0. For the equivalence

in the second part, if x = 0 then by definition |x| = 0. If |x| = 0 then by definition |x| = x and thusx =0. [

Problem 3.22. Prove that for all real numbers x and y, |x —y| = |y — x|.

Proof of Problem[3.22] Let x,y € R. Inthe case x—y >0theny—x < 0Oand [x—y| =x—y, but |[y—x| =
—(y—x)=x—yandthus [x—y|=|y—x|. Inthecase x—y < Otheny—x>0and |[x—y| = —(x—y) =y —x,

but |y — x| =y —x and thus |x — y| = |y — x|. Therefore in all cases |x —y| = |y —x|. O

Problem 3.23. Prove that for all real numbers x and y, |xy| = |x||y|.

Problem 3.24. Let x € R and M > 0. Show that |x| <M <— —M < x < M.

Proof of Problem[3.24] Letx € R and M > 0.

Proof of = : Assume that |x| < M, then if x > 0, then x = |x| and —M < 0 < x = |x| < M. Otherwise,
ifx <Othen x| = —xand - M <0< —x= [x| <M.

Proof of <—=: Assume that —M < x < M. In the case x > 0 then |x| = x, but x < M and it follows that

|x| < M. In the case x < 0 then |x| = —x, but since —M < x then —x < M and hence |x| < M

Problem 3.25. Prove that for all real numbers x and y, |x+y| < |x|+ ||
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Hint. You could use Problem [3.24] O

Proof of Problem Let x,y € R. Since —|x| < x < |x| and —|y| < y < |y| then by adding up theses two
inequalities —(|y| + |x|) <x+y < |x|+ [y| and by Problem [3.24] |x + y| < |x| + [y]. O

Problem 3.26. Prove that for all x,y,z € R,

x—y[ < |x—z+|y—z|
Hint. You could use Problem [3.23] O

Proof of Problem[3.26] Let x,y,z € R and set a = x—z and b = z —y. It follows from Problem that
o=yl =la+b] <la[+|b] = |x—z[+]y 2|

O
Problem 3.27. Prove that for all real numbers x and y, ||x| —|y|| < [x—|.
Hint. You could use Problem [3.23 O

Proof of Problem[3.27] Letx,y € R, then by Problem[3.25||x| = [x —y+y| < [x—y|+y|. and |y| = [y —x+

x| < |y — x|+ |x|. Thus |x| —|y| < |x—y| and |y| — |x| < |x — y| and the conclusion follows. O
Problem 3.28. Let x,y be real numbers. Show that
VE> 0, x<y+€ <= x<)y.

Proof of Problem Proof of «—: Assume that x < y, then if € > 0 it follows that x < y+ €. Proof of
—> : Assume that x < y+ € for all € > 0. Assume by contradiction that x >y and let &g =x—y > 0. By

our assumption, x < y+ & = y+ (x —y) = x; a contradiction. O
Problem 3.29. Let x,y be real numbers. Show that x >y — € for all € > 0 if and only if x > y.

Proof of Problem[3.29] Assume that x < y+ € for all € > 0. Assume by contradiction that x > y and let
& = x—y > 0. By our assumption, x < y+ & = y+ (x—y) = x; a contradiction. For the other direction, if

x>yand € >0thenx >y—E€. O

Problem 3.30. Prove that for all real numbers x and y, if x <y, then x < % <.

Solution of Problem[3.30} Let x and y be real numbers such that x < y. Then 2x = x+x < x+, and thus

x < % Similarly, x +y < y+y = 2y, and thus % < y. Combining our results, we obtain
X+y
x<—<
3 Y
as desired. O
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Problem 3.31. Prove that for all positive real numbers x, the sum of x and its reciprocal is greater than 2.

Solution of Problem Let x be a real number such that x > 0. Observe that 0 < (x — 1)? = x> — 2x+ 1,

0 2x < x% + 1 and thus since x > 0 one has

1 1 1
2=- -2 < - (1) =x+ -
X X X

as desired. O
Problem 3.32. 1. Prove that for all x,y € R*, \/xy < 2.
2. Show that that for all x,y € R, VXY = ’% ifandonly ifx=y

Solution of Problem[332] 1. Let x,y € R* be given. Observe that 0 < (x —y)? = x?> — 2xy +?, and so
4xy < x* +2xy+y*> = (x+y)%. Thus 2,/xy < x+y, and therefore ,/xy < %

2. Assuming x =y, we obtain
2x x4y

Conversely, assume /Xy = % Then 4xy = (x +y)? = x> + 2xy +y?, and rearranging we obtain

0=x>—2xy+y> = (x—y)2, 500 =x—y and therefore x = y.

4 Applications of the Principle of Mathematical Induction

Problem 4.1. Prove that for all integers n > 1,

& 2 n(n-l—l)(Zn—i—l)'
L 6

Solution of Problem First observe that for n = 1 we have

nn+1)2n+1) 1-2-3 _q
6 6

but ¥}, k> = 12 = 1 and thus the equality holds if n = 1. Now let n > 1 and assume that assume Y;_, k> =
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2t 1)2n+1) Then we have

6
n+1 n
Y B=mn+1+Y) K
k=1 k=1
:(n+1)2+n(n+1)6(2n—|—1)
_6(n+1)(n+1) nn+1)2n+1)
_ (n+1)[6(n+1)+n(2n+1)]
6
~ (n+1)(2n* +Tn+6)
6
_ (n+1)(n+2)(2n+3)
6
_ (n+1)((n+1)+1)2(n+1)+1)
6 Y

so the equality holds for n+ 1. Therefore, it follows by the Principle of Mathematical Induction that for all

integersn > 1, Y}, w. _

Problem 4.2. Prove that for all integers n > 0,
n
Z 2k — 2n+1 -1
k=0

Solution of Problem[d.2] First observe that for n = 0, we have 20 =1 =20*1 1, so the equality holds in

this case. Let n > 0 and assume that the equality holds for n, i.e., ¥'{_,2% = 2! — 1. Then we have

+1
nz 2k 2n+1 + Z 2k 2n+1 +2n+1 1=2. 2n+1 1= 2(n+1)+1 -1
k=0 k=0

so the equality holds for n 4 1. Therefore, it follows by the Principle of Mathematical Induction that for all
integers n > 0, Y§_ 2k =21 — 1. O

Problem 4.3. Prove that for all integers n > 1,
n
Z (2k—1)

Solution of Problem[H.3} First observe that for n = 1, we have 12 =1 =2-1— 1, so the result is true in this

case. Now assume that the result holds for some positive integer m. Then we have

m+1 m
Y Ck—1)=2(m+1)—1+Y 2k—1)=m*+2m+1=(m+1)?
k=1 k=1

so the result is true for m+ 1. Therefore, it follows by induction that the result holds for all positive integers.

O
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Problem 4.4. Prove that for all integers n > 1,

n

S|
k;k(kJrl) Cont 1

Solution of Problemd.4) Forn=1,Y,_, % = ﬁ =i= 137> @nd the equality holds. Assume that

the result holds for some positive integer m. Then we have

e 1 n 1
k;lk(kJrl)_(m+1)(m+2)+k§'lk(k+1)
1 m
A Dmt2) Tmrd
B 1 m2+2m
S Dm+2)  mrDmL2)
B (m+1)?
= mt D(m+2)
_ (m+1)
(m+1)+1

so the result is true for m + 1. Therefore, it follows by induction that the result holds for all positive integers.

O]

Problem 4.5. Prove that for all integers n > 1,

n 4 3
Y (k-1 ="""
l+1 3
Solution of Problem First observe that
4-13 -1
lez(z-l—l)z,

so the result is true for n = 1. Now assume that the result holds for some positive integer m. Then we have

m+1 3
Y @k 12 = @mt 12+ 2" —
k=1
B 12m*>+12m+3  4m’> —m
N 3 3
B Am3 +12m* 4+ 12m+3 —m
N 3
_4m+3mP +3m+1) — (m+ 1)
N 3
4m+1)° —(m+1)

3 Y
so the result is true for m+ 1. Therefore, it follows by induction that the result holds for all positive integers.

O
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Problem 4.6. Conjecture a formula for };_, (—=1)*k?, for all n > 1 and then prove the formula is correct

using induction.

Solution of Problem{d.6] After calculating a few iterates, you should see that for all n > 1 the formula you

é(_l)kkz — (-1 <n(n2+ 1)> _

Indeed, this holds for n = 1. Now assume the formula holds for some positive integer m. Then we have

are looking for is

nf(_l)kkz = (=)™ (m+ 1>+ (=1)" ("1(’”+1)>

k=1 2
( -1 )m+ 1
=0 (2m2—|—4m—|—2—m2 —m)
-1 m+1
= (; (m2 +3m+ 2)
2 )
so the formula holds for m 4 1. Therefore, by induction, the result holds for all positive integers. O

Problem 4.7. Prove that for all integers n > 1, n < 10™.

Solution of Problem The result is true for n = 1. Now assume the result holds for some positive integer
m. Then we have

m+1<10"4+1<9-10"+10" =10-10" = 10",

so the result is true for m + 1. Therefore, by induction it follows that the result is true for all positive

integers. 0
Problem 4.8. Prove that for all integers n > 7, (%)” > n.

. . . 7
Solution of Problemd.8] Direct calculation show that (%) > 7. Now assume that for some m > 7 we have

(%)m >m. Then3<7<m< (%)m, sol < % (%)m and thus

+l< im_'_l ﬂm_ ierl
m 3 3 (3) ~\3 ’

so the result holds for m + 1. Therefore, by induction it follows that the result holds for all positive integers

n=7. O]

Problem 4.9. Prove that for all integers n > 1, n® +8n+9 is divisible by 3.
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Solution of Problem[H.9} First observe that 13 +8-1+9 = 18 = 36, so the result is true for n = 1. Now
assume that the result holds for some positive integer m. Then there is some integer k such that m> +8m+9 =

3k, and we have
(m+13+8(m—+1)+9 = (m* +3m* +3m+1) + (8m+8) +9
= (m® +8m+9) +3m* +3m+9

=3(k+m*+m+3),

so the result is true for m+ 1. Therefore, by induction it follows that the result holds for all positive integers.

O]

Problem 4.10. Prove that for all integers n > 1, 3°" — 1 is divisible by 8.

Solution of ProblemH.10} First observe that 32! — 1 = 8- 1, so the result is true for n = 1. Now assume the

result is true for some positive integer m. Then there is some integer k such that 32" — 1 = 8k, and we have
320m+1) _ | 32mt2
=93~
=9.(3*"—1)+8

=8-(9%+1),

so the result is true for m;. Therefore, by induction it follows that the result is true for all positive integers.

O]

Problem 4.11. Prove that for all integers n > 5, n> < 2".

Solution of ProblemH.T1] Let P(n) be the statement n> < 2". Observe that 52 = 25 < 32 = 25, so P(5) is

true. Now assume that P(m) is true for some m > 5. Since m > 5, we have 2m+ 1 < 3m < m2, so that
(m+1)>=m?+2m+1 < 2m? <2.2m=2m+1
and thus P(m + 1) is true. Therefore, by induction it follows that P(n) is true for all n > 5. O

Problem 4.12. Prove that for all integers n > 4, 2" < n!.

Solution of ProblemH.12] Clearly 2* = 16 < 24 = 4!. Now assume that 2" < m! for some positive integer
m > 4. Then we have

2l —2.0m <oml < (m+1)-m! = (m+1)!

Therefore, it follows by induction that 2" < n! for all positive integers 7. O
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Problem 4.13. Assuming that (1+ )" <e, for alln > 1, prove that for alln > 1, n! > (2)".
Problem 4.14. Show that for all n > 12 there exist x,, € Z and y,, € Z such that n = 3x, + 7y,
Problem 4.15. Prove that for all positive integers n, 4" — 1 is divisible by 3.

Solution of Problem First note that 4! — 1 = 3, and thus 3 | 4! — 1. Now assume that 4™ — 1 is divisible

by 3 for some positive integer m. Then 4" — 1 = 3k for some k € 7Z, hence we have
4l 1 =4(4" —1)+3=3(dk+1).

Thus 4"*! — 1 is divisible by 3, and it follows by induction that 4" — 1 is divisible by 3 for all positive

integers n. 0
Problem 4.16. Let a; =2, and let a, | = %(an +3) foralln> 1.
(a) Prove that for all positive integers n, a, < any1.

(b) Prove that for all positive integers n, a, < 3.

1
on—1-+

(c) Prove that for all positive integers n, a,, = 3 —

Solution of Problemd.16] (a) First note that ap = %(al +3)= %(24— 3)= % > a;. Now assume that a,, | >

a,, for some positive integer m. Then we have
1 1
a2 = E(aerl +3) > E(Clm +3) =dami1-
By induction, it follows that a,,+; > a, for all positive integers n.

(b) Clearly a; =2 < 3. Now assume that a,, < 3 for some positive integer m. Then we have

1 1
am+1 = E(am+3) < 5(3+3) =3.

By induction, it follows that a,, < 3 for all positive integers n.

(c) Clearlya; =2=3— ﬁ Now assume that a,, = 3 — 2,,,1—_] for some positive integer m. Then we have

1 1 1 1

1

By induction, it follows that @, =3 — T

for all positive integers 7.
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Problem 4.17. Let r € R with r # 1. Prove that

n—1 1

I
kgé C1=r

Solution of Problem@.17} Fix r € R withr# 1. Note that ¥, ¥ = 1 = 111': . Now assume that Y7 rk =

1

— I .
- for some positive integer n. Then we have

m m—1 +1
1— - 1-r"
Zrk:rm—l—Zrk:rm r+ = .
=0 =0 1—r 1-r 1—r
Thus, by induction it follows that ZZ;(I) = % is true for all positive integers n. 0

Problem 4.18. Prove Bernoulli’s Inequality: Let x > —1. Then foralln € N, (1+x)" > 1 +nx.

Solution of Problemd.18} For n = 1 equality (hence the inequality) holds. Now suppose that (1 +x)" >

1 4+ mx for some m € N. Then we have
(14x)" > (14+x)(1+mx) = 1 +mx+x+mx> > 14+ (m+1)x.

(Note that we used the assumption that x > 1 in the first inequality.) Thus by induction, the inequality holds
foralln € N. O

Problem 4.19. Let x,y € R. Prove the binomial theorem: for all integers n > 1,

(x+y)" = Zn: (Z)x"kyk.

k=0

Solution of Problem First note that

1 1
(x+y)!=x+y= <0>x1y0—|— <1)x0y1.

Now assume that for some m € N we have
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Then we have

(x+ )" = (x+y)(x+y)"

- (m flkk N (M —k _jk+1
:Z<k>xm ¥+ Y . K"y

k=0 k=0

m m—1
m m m m
< >xm+1y0 k} :1 < )xm+l kyk k} 0: ( >xm kyk+1 < >x0ym+l

_ (’g)xm+1yo+l; <<’Z> + <k’ill>>xm+1—kyk+ (:)xoym-H

— Pas m-+
(o)x A O Y )

k=1

as desired.

Problem 4.20. Let n be an integer. Show that if n is even then n* is even for all k € N.

S Applications of the Principle of Strong Mathematical Induction
Problem 5.1. Fori €N, let p; denote the ith prime number, so that

p1 =2, p2=3, p3=>5,....
Prove that for alln € N, p, < 22"

Hint. For the induction step, given m € N, show that py,.1 < p1p2-+-pm+ 1.

Solution of Problem[5.1} First observe that p; =2 = 22", Now fix m € N, and assume that p; <22 for

1 <k <m. Note that p,,,+1 < p1p2---pm+ 1, since p; does not divide pyps--- p,, + 1 for 1 < k < m. Thus,

we have

Post <Pipr- pmt1 <2502 41 =02"" 141 <2.02" 1 = 22",

Problem 5.2. Show that the principle of strong mathematical induction implies the principle of mathemati-

cal induction.

Solution of Problem Assume the principle of strong mathematical induction, and let P(n) be a statement

about the positive integer n. Assume that P(1) is true, and that for all m € N, if P(m) is true then P(m+ 1) is
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true. Let m € N be given, and assume that P(k) is true for 1 < k < m. Then P(m) is true, so P(m+ 1) is true.
Thus, by the principle of strong mathematical induction, P(n) is true for all n € N. Therefore, the principle

of mathematical induction is true. O

Problem 5.3. Show that the principle of mathematical induction implies the principle of strong mathemati-

cal induction.

Solution of Problem Assume the principle of mathematical induction, and let P(n) be a statement about
the positive integer n. Assume that P(1) is true, and that for all m € N, if P(k) is true for 1 < k < m, then
P(m+1) is true. For n € N, let Q(n) be the statement ”P(k) is true for all k < n”. Clearly Q(1) is true.
If m € N and Q(m) is true, then P(k) is true for all 1 < k < m. By assumption P(m+ 1) is true, and thus
Q(m+1) is true. By the principle of mathematical induction, Q(n) is true for all n € N. But if Q(n) is
true, then P(n) is true, and thus P(n) is true for all n € N. Therefore, the principle of strong mathematical

induction is true. OJ

6 Sequences defined by a recurrence relation

Problem 6.1. Let a; =2, ay =4, and a1 = Ta, — 10a,—1 for all n = 2. Conjecture a closed formula for

ay and prove your result.

Solution of Problem[6.1} We will show that a, = 2" for each n € N. Indeed, a; =2 =2! and a; =4 = 22.

Now assume that for some m > 2 we have a; = 2¥ for 1 < k < m. Then we have
i1 = Tam — 104,y =7-2"—10-2"" 1 =14.2m"1 _10.2m" 1 =4.2m 1 = pmtl,
Therefore, by the principle of strong mathematical induction it follows that @, = 2" for all n € N. O

Problem 6.2. Leta; =3, a, =4, and a,+| = %(2{1” “+ay—_1) for all n > 2. Prove that for all positive integers

n 3<a, <4

Solution of Problem[6.2] Clearly 3 < a; < 4 and 3 < ay < 4. Now fix m > 2, and assume that 3 < a; < 4

for all 1 < k < m. Then we have

1 1
am+1 = g(zam +am—1) Z 5(2 -3 +3) =3
and
1 1
am+1 = g(zam +am—1> < 5(244‘4) =4.
Therefore, by the principle of strong mathematical induction it follows that 3 < a, <4 foralln € N. O
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Problem 6.3. Consider the sequence (ay);,_, recursively defined as a; =1, a, = 8 and for all n > 3,

ap = an—1+2a,_». Show that foralln > 1, a, =3 - Pt +2(=1)"
Solution of Problem[6.3} Note that 3-2!"! +2(—1)! =1=ay, 3-227! +2(—1)? = 8 = a. Now assume
that for some integer m > 2, we have ay =3 - k=14 2(—1)" whenever 1 < k < m. Then we have
A1 = Qm~+ 20

=3 2" g 2(=1)m) +2(3- 2" 2 2(— 1))

—3:2:27 21" (=) ) 2= )

=3.2m 4 2(—1)"*,
Therefore, by the principle of strong mathematical induction it follows that a, = 3-2"~! 4 2(—1)" for all
integers n > 1. O

oo

Problem 6.4. Consider the sequence (a);_,

recursively defined as ay = 2, a, = 4 and for all n > 3,

an, =3a,—1 —2a,—3. Foralln > 1, find a closed formula for a,.

Solution of Problem After performing a few calculations, it should be clear that a, = 2"*. We prove by
induction that this is the correct formula.
Clearly 21 =2 =g, and 2> =4 = a,. Now suppose that for some m € N with m > 2, we have aq; = 2k

whenever 1 < k < m. Then we have
A1 =3y —2apm_n =3-2M—2.2m" 1 =3.pm _pm — pm+1

Thus, by the principle of strong mathematical induction it follows that @, = 2" for all n € N. O

7 Set Theory

7.1 Subsets

Problem 7.1. Prove that X CY where X = {n € Z | n is a multiple of 6} andY = {n € Z | n is even}.

Solution of Problem[7.1] Let n € X be given. Then n is a multiple of 6, so there is some k € Z such that

n = 6k. Thus n = 2(3k), so n is even and therefore x € Y. O
Problem 7.2. Consider the sets

A={neZ|(BkeZ)(n=12k+11)},

B={ncZ|(3@jeZ)(n=4j+3)}.
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(a) Is A C B? Prove or disprove.
(b) Is B C A? Prove or disprove.

Solution of Problem[7.2] (a) We will show that A C B. Suppose n € A. Then there is some k € Z such that
n=12k+11. Put j =3k+2. Then j € Z and

n=12k+11=4(3k)+4(2)+3=4j+3,
and therefore n € B.

(b) We will show that B € A, that is, there is some n € B such that n ¢ A. Indeed, put n = 7. Then
n=4(1)+3 son € B. Now assume (towards a contradiction) that n € A. Then there is some k € Z such

that 7 = 12k + 11. But then —4 = 12k, which is impossible. Thus n ¢ A and therefore B Z A.

Problem 7.3. Consider the sets

A={n€l|(3keZ)(n=4k+1)},

B={necZ|(3jeZ)(n=4j—-T}.
Prove that A = B.
Solution of Problem[7.3] Suppose n € A. Then there is some k € Z such that n = 4k + 1. Hence we have
n=4k+1=4(k+2)—7€B,

and therefore A C B.

Conversely, assume n € B. Then there is some j € Z such that n = 4j — 7. Hence we have
n=4j—7=4(j—-2)+1€A
and therefore B C A. O
Problem 7.4. Consider the sets

A={neZ|(GkeZ)(n=3k)},

B={necZ|(3i,j€Z)(n=15i+12j)}.
Prove that A = B.
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Solution of Problem[7.4} Suppose n € A. Then there is some k € Z such that n = 3k. Note that k = 5k — 4k,
so we have
n =23k =3(5k—4k) =15(k)+12(—k) € B
and therefore A C B.
Conversely, suppose n € B. Then there exist i, j € Z such that n = 15i+ 12j. Then n = 3(5i+4) € A,
and therefore B C A. OJ

Problem 7.5. Prove that X = {n € Z | n+5 is odd} is the set of all even integers.

Solution of Problem[7.5] Let n € X be given. Then n+ 5 is odd, so there is some k € Z such that n+5 =
2k+1. Thus n =2k —4 =2(k—2), so n is even.

Now suppose n € Z is even. Then there is some k € Z such that n = 2k. Thus n+5 =2k+5 =
2(k4+2)+41,son+5 is odd and therefore n € X. O

7.2 Complements

Problem 7.6. Let A and B be subsets of an ambient set U. Prove that (A—B)U(B—A) = (AUB) — (ANB).
Solution of Problem Using the identities found in section Section 4.2, this can be done with a few
manipulations:
(A—B)U(B—A)=(ANB)U(BNA)
=(AU(BNA))N(BU(BNA))

=[(AUB)N(AUA)|N[(BUB)N(BUA)]

=(AUB)N(BUA

~—

=(AUB)N(ANB)
=(AUB)—(ANB).

You could also give a a double-inclusion proof.

First, we show that (A—B)U(B—A) C (AUB) — (ANB). Note that AC AUB and ANB C B, so
(A—B) C (AUB) — (ANB). Similarly, since BCAUBand ANB C A, we have (B—A) C (AUB) —(ANB),
and therefore (A—B)U(B—A) C (AUB) — (ANB).

Conversely, assume that x € (AUB) — (AN B). Then in particular, x ¢ ANB and x € (ANB). If x € A,
then x ¢ B, for otherwise x € AN B and we obtain a contradiction. Thusx € A—BC (A—B)U(B—A). If now
x € B, then x ¢ A, for otherwise x € AN B and we obtain a contradiction. Thusx e B—A C (A—B)U(B—A).

Therefore, we have (AUB) — (ANB) C (AUB) — (AN B) and equality holds. O
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7.3 Arbitrary unions and intersections
Problem 7.7. Fori €N, let A; = (—i,i). Compute |J_, A,.
Solution of Problem[7.7} We will show that | J;~; A; =R

* U}i]Ai CR

If x € U2, Ai, then x € A;;, for some iy. Since A;, C R, then x € R. Since x € |J;Z; A; was arbitrary, it

follows that ;- A; C R.

s RCUZ A

If x € R, then there is some i € N such that —i < x < i. Indeed if x =0 any i > 1 would work, otherwise
if x # 0 then |x| > 0 and by the Archimedean principle there is an integer i > 1 such that |x| < i and

then —i < x < i. Thus x € (—i,i) = A; and x € |J;Z| A;. Therefore R C J;2 | A;
By combining the two inclusions one has that R = (J=; A;. O
Problem 7.8. Foric N, let A; = (—i,i). Compute (7, Ai.
Solution of Problem[7.8) We will show that (;2; A; = (—1,1).
C R4S (-11).
If x¢ (—1,1), then x ¢ Aj, and thus x ¢ (i~ A;. Therefore (;—; A; C (—1,1).

Ifx € (—1,1), thenx € (—i,i) for all i € N and thus (—1,1) C (2, A;.

Problem 7.9. Fori €N, let A; = [0,1 — 1]. Compute U;cy A:.

i
Solution of Problem[7.9, We will show that | J;cyA; = [0, 1).
¢ UieNAi C [Oa 1)

If x € U;enAi, thenx € A; for some j € N. Thus 0 <x < 1— % < 1, and hence x € [0, 1). Therefore,

UienAi € [0, 1).
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* [0,1) € Uien A
If now x € [0,1), then 0 < x < 1. Thus 0 < 1 —x and 1= > 0, and by the Archimedean principle there
is some j € N such that — < j, andhencej l—x. Thus0<x<1— andxe[O 1—7]:Aj.

Therefore x € | J;cyAi, and [O, 1) C UienAi-
By definition of equality between sets we have proven that J;cyA; = [0, 1). O
Problem 7.10. Fori €N, let A; = [0,1— 1]. Compute ey Ai.
Solution of Problem[7.10, We will show that (;cyA; = {0}.

* NienAi C {0}.

Suppose x € (;eyAi. Then in particular x € A; = [0,1 — 1] = {0}, and therefore (;cyA; C {0}.

* {0} CNienAi

Conversely, 0 € [0, 1- %) =Aj forall j € N, and therefore {0} C ;cnA;.

Problem 7.11. Let X, = (%,211] for every integer n > 2.
1. Compute \J,_, X.
2. Compute (\;—» Xy

Solution of Problem|[7.11] 1. We will show that |, X, = (0,00).

First, we show that ;" X,, C (0,°). Letx € |;_, X,,, then there exists k > 2 such that x € X; = (%, 24]
and hence % < x < 2k. Since it follows from k& > 2 that % > 1> 0and 2k < o0 one has 0 < x < o and
thus x € (0,). Therefore | J;,_, X, C (0,)

Assume now that x € (0,0), then x > 0 and also 5 > 0. On one hand, if follows from the Archimedean
principle that there is some n; > 2 such that n; > 3 3> 80 2ny > x. On the other hand, £ > 0 and it
follows from the Archimedean pr1n01ple that there exists 75 > 2 such that 2 < < ny and hence x > —.

Let k = max{n;,ny} > 2 then 2 <= <x< 2n; < k and hence x € Xj. Therefore, (0,0) C |, X;,.

2. We will show that (", X, = (1,4].

Let x € ()7, X, then x € X, = (2,2n] for all integers n > 2. In particular, x € X> = (%,2-2] = (1,4].
Therefore, N, X, C (1,4].
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Now, let x € (1,4] then 1 < x < 4 and for all n > 2, it follows that % <1 < x <4 < 2n. Therefore
xe (%,2n] =X, forall n > 2, and (1,4] CN7_, Xy
d

Problem 7.12. Let I be a nonempty set and let {A; : i € I} be an indexed family of sets. Let X be a non-empty
set. Suppose that for all i € I, X C A;. Prove that X C (;c;A:.

Solution of Problem Suppose x € X, and let i € I be given. Since X C A;, x € A;. Since i € I was

arbitrary, x € A; for all 7, thus x € (;c;A;, and therefore X C ;¢ A;. O

Problem 7.13. Let {A; : i € N} be an indexed family of sets. Assume that for alli € N, A;;; C A;. Prove
that UiENAi :Al.

Solution of Problem[7.13] If x € Ay, then there is some i € N such that x € A; (namely, i = 1), and thus
x € UienAi-

Next, we show that A; C A for all i € N. Clearly A} C A;. If now A, C Ay, then A, 11 CA, CAj,so
Ap+1 € Aj. Thus it follows by induction that A, C A; forall n € N.

Now assume x € (J;cyAi. Then there is some n € N such that x € A,,. Since A, C Ay, it follows that

XEA;. ]

Problem 7.14. Let (X;)ic; be a collection of subsets of an ambient set U. Show that
W -Ux.
iel iel
Solution of Problem We first prove the inclusion (N;; X € U;e; Xii-
If N;c; Xi = 0 then the inclusion holds, otherwise let z € (;c; X;. Then z & ;c; X; (by definition of the
complement), and it follows that z ¢ X;, for some iy € I (by definition of the intersection). Thus, z € XTO (by

definition of the complement), which means that z € | J;c; X; (by definition of the union).

For the reverse inclusion, if | J;; X; = 0 then the inclusion holds, otherwise let z € | J;c; X;. Then z € X;,
for some iy € I (by definition of the union), and thus z ¢ X;, (by definition of the complement). It follows
that z ¢ N;c; X; (by definition of the intersection), and hence z € ();; X; (by definition of the complement).

Therefore, it follows from the definition of equality between sets that {J;c; X; = ;e X - U

Problem 7.15. Let (X;)ic; be a collection of subsets of an ambient set U. Show that

Ur-Nx.

icl icl
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Solution of Problem We first prove the inclusion [J;c; Xi C (;er X -
If U;c; X; = 0 then the inclusion holds, otherwise let z € [J;c; X;. Then z ¢ U, X; (by definition of the
complement), and it follows that z ¢ X; for all i € I (by definition of the union). Thus, z € X; for all i € I (by

definition of the complement), which means that z € (;; X; (by definition of the intersection).

For the reverse inclusion, if ;¢ ;X; = 0 then the inclusion holds, otherwise let z € Nicr X;. Thenz € X;
for all i € I (by definition of the intersection), and thus z ¢ X; for all i € I (by definition of the complement). It
follows that z ¢ [J;c; X; (by definition of the union), and hence z € |J;; X; (by definition of the complement).

Therefore, it follows from the definition of equality between sets that ;; X; = ;s X - O

7.4 More problems

Problem 7.16. LetA = {x+yv2 | x,y€ Q} CR.

(a) Prove that for all x,y € Q, x+yv2 =0 ifand only if x =y = 0.

(b) Prove that for all z1,20 € A, z1 + 22,2122 € A and , for zp # 0, % €A.

Solution of Problem (a) Clearly if x =y = 0 then x+yv/2 = 0. Conversely, assume x+yy/2 = 0. Then
x=—yv2. If y#0then V2 = —§ € Q, a contradiction. Thus y = 0, and therefore 0 = x4 yv/2 = x.

(b) Suppose z1,z2 € A. Then there exist x,x2,y1,y2 € Q such that z; = x; —|—y,~\@ for i =1,2. Then we have
2+ = (x1+x2)+ (1 +2)V2 €A,

and

2122 = (x1x2+ 2y1y2) + (x1y2 +2x231) V2 € A

Now assume zp # 0. Then we have

a_ xa+nv2
2 xn+ynV2
X1+Y1\ﬁ'x2*y2\ﬁ
)Cz-i-yz\/E Xz—yz\@
x1x2 —4y1y2 XyL =Xz
p— 2-
G4y G443

: XX —4y1y2  XoY1—X1)2 : z1
Since Vi € Q, it follows that !} € A.
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Problem 7.17. We say that the sequence of sets (X,);_, is increasing, or an ascending chain, if X; C X, C

X3C---CX, CX,p1 C.... Formally, (X,)5_, is increasing if
(Vn e N)[X, C Xp+1].
Show that the sequence of sets (X,)5_, is increasing if and only if
(VneN)(VkeN)[(n<k) = (X, CXp)].

Hint. Your goal is to show that

(VreN)[X, C Xoi1] <= (Vke N)(Vne N)[(1<n<k) = (Xu C X0

For the implication <= simply put n = r and k = r + 1. For the implication = you need to assume
that (Vr € N)[X, C X,+1] and show by induction on k that Vk € N P(k) is true, where P(k) is the predicate
(Vne N)[(1 <n<k) = (X, C Xy)]. For the base case observe that P(1) is simply X; C X;. For the
inductive step P(k+ 1) is the predicate (Vn € N)[(1 <n < k+1) = (X, C Xi11)] and you need to
distinguish two cases: either 1 < n < k and you can use the induction hypothesis together with the other

assumption, orn = k+ 1 O

Problem 7.18. We say that the sequence of sets (X,);;_, is decreasing, or a descending chain, if X; 2 X, 2O

X320+ 2X, D X1 2 .... Formally, (X,)5_, is increasing if
(Vn e N)[X, C Xy11]-
Show that the sequence of sets (X,);_, is decreasing if and only if for all n,k € N if n < k then X, 2 Xi.

Hint. Your goal is to show that

(VreN)X, D Xpa1] <= (VkeN)(VneN)[(1<n<k) = (X, 2X0)]

For the implication <= simply put n = r and k = r + 1. For the implication = you need to assume
that (Vr € N)[X, 2 X,+1] and show by induction on k that Vk € N P(k) is true, where P(k) is the predicate
(Vne N)[(1 <n<k) = (X, 2 Xy)]. For the base case observe that P(1) is simply X; D X;. For the
inductive step P(k+ 1) is the predicate (Vn € N)[(1 <n <k+1) = (X, D Xi11)] and you need to
distinguish two cases: either 1 < n < k and you can use the induction hypothesis together with the other

assumption, orn = k+ 1 O
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Problem 7.19. Let X and Y be subsets of a universal set U. Show that X NY = X UY.

Solution of Problem We first prove the inclusion X NY C X UY. If X NY = 0 then the inclusion holds,
otherwise let z € X NY. Then z ¢ X NY (by definition of the complement), and it follows that z ¢ X orz ¢ Y
(by definition of the intersection). Thus, z € X or z € Y (by definition of the complement), which means that

z € X UY (by definition of the union). We just proved that XNY C X UY.

For the reverse inclusion, if X UY = 0 then the inclusion holds, otherwise let z € X UY. Then z € X or
z €Y (by definition of the union), and thus z ¢ X or z ¢ Y (by definition of the complement). It follows that
z ¢ X NY (by definition of the intersection), and hence z € X NY (by definition of the complement). This

shows the reverse inclusion. O

8 Functions

8.1 Composition

Problem 8.1. Let f,g: R — R be defined for all x € R as f(x) = x> — 3x and g(x) = 5x —2.
1. Is it possible to define fog? If it is, what is fog.
2. Is it possible to define go f? If it is, what is go f.
3. Are fogand go f equal? (Justify your answer)

Solution of Problem[8.1] 1. Itis possible to define fog: R — R and for all x € R

Fog(x) = £(g(x) = (8(x))* =3(g(x)) = (Sr—2)2 = 3(5x—2) = 25 — 35x + 10.

2. Itis possible to define go f: R — R and forall x € R

(gof)(x) =g(f(x) =5(f(x)) —2=5(x*—3x) —2 = 5x* — 15x — 2.

3. Letx=0then (gof)(0)=—-2#10=(fog)(0) and thus fog # go f.

Problem 8.2. Let f,g: 7 — 7 be defined for all n € Z as f(n) =2n+3 and

2n—1 ifnis even,

n+1 ifnisodd.

g(n) =
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1. Is it possible to define fog? If it is, what is fog.
2. Is it possible to define go f? If it is, what is g o f.
3. Are fogand go f equal? (Justify your answer)

Solution of Problem[8.2} 1. Itis possible to define fog: Z — Z and for all n € Z, since we have f(2n—
1)=4n+1and f(n+1) =2n+35, it follows that

dn+1 1ifniseven,

2n+5 ifnis odd.

(fog)(n) =

2. Since f(n) is odd for any n € Z, we have

(gof)(n)=f(n)+1=(2n+3)+1=2n+4.

3. Letn=0thennisevenand (go f)(0) =4 # 1 =(fog)(0). Therefore, go f # fog.

8.2 Injectivity, surjectivity, bijectivity

Problem 8.3. For f : R — R defined by f(x) =x+

x|, determine if:
1. f is injective,

2. fis surjective,

3. fis bijective.

Solution of Problem First, note that

2x : x>0,

0 : x<0.
1. f is not injective, since f(—1) =0 = f(0).

2. f is not surjective, since y € R is not in the range of f whenever y < 0. Indeed, for any x € R we have

x+ x| = x4+ (—x) =0,s0 f(x) >0.

3. fis not bijective because it is not injective (nor surjective).
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8.3 Composition and injectivity/surjectivity

Problem 8.4. Let W, X,Y be nonempty sets. Let f : W — X, g : X — Y be functions. Show that if go f is

surjective, then g is surjective.

Solution of Problem[8.4} Fix y € Y. Since go f is surjective, there is some w € W such that (go f)(w) = y.
Put x = f(w). Then x € X and g(x) = g(f(w)) = (go f)(w) = y. Therefore, g is surjective. O

Problem 8.5. Let W,X,Y be nonempty sets. Let f: W — X, g: X — Y be functions. Show that if go f is

injective, then f is injective.

Solution of Problem[8.5] Assume that g o f is injective. Let wi,w, € W such that f(w;) = f(w2). Since g
is a function one has g(f(w1)) = g(f(w2)) and (go f)(w1) = (go f)(wz) (by definition of the composition).

Since go f is injective it implies that w; = w», and f is injective. O

Problem 8.6. Let X and Y be nonempty sets and let f : X — Y be a function. Prove that f is injective if and

only if for all sets Z, for all functions h:Z — X andk:Z — X, if foh= fok, then h=k.

Solution of Problem[8.6] First suppose f is injective. Let Z be a set, and let &,k : Z — X be functions such
that foh = fok. Given z € Z, since f(h(z)) = f(k(z)), it follows that h(z) = k(z). Thus h = k.

Conversely assume f is not injective. Then there exist xj,x; € X such that x| # x, while f(x;) = f(x2).
Define i,k : X — X by h(x) = x; and k(x) = x, for all x € X. Then for all x € X, f(h(x)) = f(x1) = f(x2) =
f(k(x)),so foh= fok,buth# k. O

Problem 8.7. Let X and Y be nonempty sets and let f : X — Y be a function. Prove that f is surjective if

and only if for all sets Z, for all functions h:Y —Z andk:Y — Z, ifhof =ko f, then h=k.

Solution of Problem[8.7] First assume f is surjective. Let Z be a set, and let &,k : Y — Z be functions such
that ho f = ko f. Given y € Y, there is some x € X such that y = f(x), and thus h(y) = h(f(x)) = k(f(x)) =
k(y). Therefore, h = k.

Conversely, assume f is not surjective. Then there is some yo € Y such that the set {x € X : f(x) =yo}
is empty. Put h = iy, and letk : ¥ — Y be defined by k(y) =y if y # yo and k(yo) = y; for some y; € Y with
yo 7# y1. Then h # k since h(yg) = yo # y1 = k(yo), but ho f =ko f. O

9 Injectivity, surjectivity, and one-sided invertibility

Problem 9.1. Let X and Y be nonempty sets and f: X — Y be a function. We say that f is left-invertible

(or admits a left-inverse) if there exists a function g: Y — X such that go f = ix. Prove that f is injective if
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and only if f is left-invertible.

Solution of Problem[9.1} Suppose first that f is left-invertible. Then there is some function g : ¥ — X such
that go f = ix. Let xj,xo € X such that f(x;) = f(x2), then g(f(x1)) = g(f(x2)) (since g is a function),
and thus (go f)(x1) = (go f)(x2) (by definition of the composition). It follows from the assumption that
ix(x1) = ix(x2) and hence x; = x; (by definition of the identity function on X). Therefore f is injective.
Conversely, assume f is injective. Define a function g : Y — X as follows: if y = f(x) for some (and
hence only one by injectivity) x € X, put g(y) = x, and otherwise define g(y) arbitrarily. Then for each x € X,
let y = f(x). Then g(y) = x, that is, g(f(x)) = x and hence (go f)(x) = x (by definition of the composition).

By definition of the identity function (go f)(x) = ix(x) and thus go f = ix. Therefore f is left-invertible. [

Problem 9.2. Let X and Y be nonempty sets, and f: X — Y be a function. We say that f is right-invertible
(or admits a right-inverse) if there exists a function g: Y — X such that f og = iy. Prove that if f has a

right-inverse then f is surjective.

Solution of Problem[9.2] Suppose first that f is right-invertible. Then there is some function z: ¥ — X such
that foh=iy. Lety €Y, then
y =iy (y) (by definition of the identity function on Y)
= (foh)(y) (since foh(y) =iy(y) by definition of & being a right-inverse of f)
= f(h(y)) (by definition of the composition).

If we let x = h(y) then x € X (since the codomain of /4 is X) and y = f(x). We just proved that forall y € Y,

there is x € X such that y = f(x), which means that f is surjective. O

10 Functions and sets

Problem 10.1. Let X and Y be nonempty sets, and f: X — Y be an injective function. Let A be a subset of

X. Prove that f~'(f(A)) = A.

Solution of Problem The result is proved by a double inclusion argument. We first prove that f~!(f(A)) C
A.If f~'(f(A)) = 0 then the inclusion holds. Otherwise let x € f~!(f(A)), then f(x) € f(A) (by definition
of the inverse image of a subset), and there exists a € A such that f(x) = f(a) (by definition of the image of

a subset). Since f is injective it follows that x = a, and hence x € A (because a € A).

We now prove that A C f~!(f(A)). If A = 0 the inclusion holds. Otherwise, let x € A, then f(x) € f(A)

(by definition of the image of a subset) and x € f~!(f(A)) (by definition of the inverse image of a subset).
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Problem 10.2. Let X and Y be nonempty sets, and f: X — Y be an surjective function. Let A be a subset of

Y. Prove that f(f~'(A)) = A.

Solution of Problem[I0.2] The resultis proved by a double inclusion argument. We first prove that f(f~!(A)) C
A. If f(f~'(A)) = 0 the inclusion holds. Otherwise let y € f(f~'(A)), then y = f(x) for some x € f~'(A)
(by definition of the image), and f(x) € A (by definition of the inverse image). But y = f(x) belongs to A
since f(x) does. Therefore f~1(f(A)) C A.

We now prove that A C f(f~'(A)). If A = 0 the inclusion holds. Otherwise let a € A, then a € Y since
A is a subset of Y. By surjectivity of f, there exists x € X such that a = f(x), and f(x) € A (since a is in A).
It follows that x € f~!(A) (by definition of the inverse image) and f(x) € f(f'(A)) (by definition of the
image). Therefore a € f(f~'(A)). O

11 Supplementary problems

Problem 11.1. Letf1 1 X1 — Xy, fz: X, — Xj, f32 X3 — Xy andf4: X4 — X5. Show that ((f4of3)of2)of1 =
fao(fzo(f20 1))

Problem 11.2. Let X and Y be nonempty sets, and f: X — Y be a function. Prove that f is surjective then

f is right-invertible.

Solution of Problem Assume f is surjective. For each y € Y, the set {x € X : f(x) = y} is non-empty.
Note that if y; # y», then {x € X : f(x) =y} N{x € X : f(x) =y2} = . By the axiom of choice, there is a
function /4 : Y — X such that for each y € Y, h(y) € {x € X : f(x) =y}. Hence f(h(y)) =y foreachy €Y,

so foh =iy and therefore f is right-invertible. O

Problem 11.3. Let f1: X1 — X0, fo: Xo — X3, f3: X3 — Xy be three injective functions. Show that f30 fro f)

is injective.
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