
MATH 300 Problems with solutions

F. Baudier (Texas A&M University)

October 20, 2023

Contents

1 Logical connectives and equivalences, Boolean Calculus 2

2 Quantifiers 8

3 Proofs 12

4 Applications of the Principle of Mathematical Induction 18

5 Applications of the Principle of Strong Mathematical Induction 25

6 Sequences defined by a recurrence relation 26

7 Set Theory 27

7.1 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.2 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.3 Arbitrary unions and intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.4 More problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Functions 35

8.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.2 Injectivity, surjectivity, bijectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.3 Composition and injectivity/surjectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Injectivity, surjectivity, and one-sided invertibility 37

10 Functions and sets 38

1



11 Supplementary problems 39

1 Logical connectives and equivalences, Boolean Calculus

Problem 1.1. Show that P∨P is logically equivalent to P.

Solution of Problem 1.1. We write the truth table for P∨P.

P P P∨P

T T T

F F F

Problem 1.2. Show that P∧P is logically equivalent to P.

Solution of Problem 1.2. We write the truth table for P∧P.

P P P∧P

T T T

F F F

Problem 1.3. Are the statement forms (P∧Q)∧R and P∧ (Q∧R) logically equivalent?

Solution of Problem 1.3. We write a truth table for (P∧Q)∧R and P∧ (Q∧R):

P Q R P∧Q Q∧R (P∧Q)∧R P∧ (Q∧R)

T T T T T T T

T T F T F F F

T F T F F F F

T F F F F F F

F T T F T F F

F T F F F F F

F F T F F F F

F F F F F F F

Since the columns corresponding to (P∧Q)∧R and P∧ (Q∧R) are identical, the two statement forms are

equivalent.
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Problem 1.4. Are the statement forms (P∨Q)∨R and P∨ (Q∨R) logically equivalent?

Solution of Problem 1.4. We write a truth table for (P∨Q)∨R and P∨ (Q∨R):

P Q R P∨Q Q∨R (P∨Q)∨R P∨ (Q∨R)

T T T T T T T

T T F T T T T

T F T T T T T

T F F T F T T

F T T T T T T

F T F T T T T

F F T F T T T

F F F F F F F

Since the columns corresponding to (P∨Q)∨R and P∨ (Q∨R) are identical, the two statement forms are

equivalent.

Problem 1.5. Is the statement form (P∧Q)∨ ((¬P)∧¬Q) a tautology, a contradiction, or neither?

Solution of Problem 1.5. We write a truth table for (P∧Q)∨ ((¬P)∧¬Q):

P Q P∧Q (¬P)∧¬Q (P∧Q)∨ ((¬P)∧¬Q)

T T T F T

T F F F F

F T F F F

F F F T T

Since (P∧Q)∨((¬P)∧¬Q) is neither always true nor always false, the statement form is neither a tautology

nor a contradiction.

Problem 1.6. Are the statement forms (P∨Q)∧R and P∨ (Q∧R) logically equivalent?

Solution of Problem 1.6. We write a truth table for (P∨Q)∧R and P∨ (Q∧R):
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P Q R P∨Q Q∧R (P∨Q)∧R P∨ (Q∧R)

T T T T T T T

T T F T F F T

T F T T F T T

T F F T F F T

F T T T T T T

F T F T F F F

F F T F F F F

F F F F F F F

Since the columns corresponding to (P∨Q)∧R and P∨ (Q∧R) differ (in the second and fourth rows), the

two statements are not logically equivalent.

Problem 1.7. Show that P∨ (Q∧R) is logically equivalent to (P∨Q)∧ (P∨R).

Solution of Problem 1.7. We write a truth table for P∨ (Q∧R) and (P∨Q)∧ (P∨R):

P Q R P∨Q P∨R (P∨Q)∧ (P∨R) P∨ (Q∧R)

T T T T T T T

T T F T T T T

T F T T T T T

T F F T T T T

F T T T T T T

F T F T F F F

F F T F T F F

F F F F F F F

Since the columns corresponding to P∨ (Q∧R) and (P∨Q)∧ (P∨R) are identical, the two statement

forms are equivalent.

Problem 1.8. Show that P∧ (Q∨R) is logically equivalent to (P∧Q)∨ (P∧R).

Solution of Problem 1.8. We write a truth table for P∧ (Q∨R) and (P∧Q)∨ (P∧R):
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P Q R P∧Q P∧R (P∧Q)∨ (P∧R) P∧ (Q∨R)

T T T T T T T

T T F T F T T

T F T F T T T

T F F F F F F

F T T F F F F

F T F F F F F

F F T F F F F

F F F F F F F

Since the columns corresponding to P∧ (Q∨R) and (P∧Q)∨ (P∧R) are identical, the two statement

forms are equivalent.

Problem 1.9. Are the statement forms P =⇒ (Q∨R) and (P =⇒ Q)∨ (P =⇒ R) logically equivalent?

Solution of Problem 1.9. We could write a truth table for P =⇒ (Q∨R) and (P =⇒ Q)∨ (P =⇒ R):

P Q R Q∨R P =⇒ Q P =⇒ R P =⇒ (Q∨R) (P =⇒ Q)∨ (P =⇒ R)

T T T T T T T T

T T F T T F T T

T F T T F T T T

T F F F F F F F

F T T T T T T T

F T F T T T T T

F F T T T T T T

F F F F T T T T

Since the columns corresponding to P =⇒ (Q∨R) and (P =⇒ Q)∨ (P =⇒ R) are identical, the two

statements are logically equivalent.

An alternate proof would go as follows:

P =⇒ (Q∨R)≡ (¬P)∨ (Q∨R)≡ (¬P)∨Q∨R

while
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(P =⇒ Q)∨ (P =⇒ R)≡ ((¬P)∨Q)∨ ((¬P)∨R)

≡ (¬P)∨ (¬P)∨Q∨R

≡ (¬P)∨Q∨R

and thus P =⇒ (Q∨R)≡ (P =⇒ Q)∨ (P =⇒ R).

Problem 1.10. Are the statement forms P =⇒ (Q∧R) and (P =⇒ Q)∧ (P =⇒ R) logically equivalent?

Hint. Try to use Problem 1.7.

Solution of Problem 1.10. We could write a truth table for P =⇒ (Q∧R) and (P =⇒ Q)∧ (P =⇒ R):

P Q R Q∧R P =⇒ Q P =⇒ R P =⇒ (Q∧R) (P =⇒ Q)∧ (P =⇒ R)

T T T T T T T T

T T F F T F F F

T F T F F T F F

T F F F F F F F

F T T T T T T T

F T F F T T T T

F F T F T T T T

F F F F T T T T

Since the columns corresponding to P =⇒ (Q∧R) and (P =⇒ Q)∧ (P =⇒ R) are identical, the two

statements are logically equivalent.

An alternate proof (assuming we know the result from Problem 1.7 ) would go as follows:

P =⇒ (Q∧R)≡ (¬P)∨ (Q∧R)≡ ((¬P)∨Q)∧ ((¬P)∨R)

while

(P =⇒ Q)∧ (P =⇒ R)≡ ((¬P)∨Q)∧ ((¬P)∨R)

and thus P =⇒ (Q∧R)≡ (P =⇒ Q)∧ (P =⇒ R).
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Problem 1.11. Show that the statement forms (P∨Q) =⇒ R and (P =⇒ R)∧ (Q =⇒ R) are logically

equivalent.

Hint. Try to use DeMorgan’s Laws and Problem 1.7.

Solution of Problem 1.11. We could write a truth table for (P∨Q) =⇒ R and (P =⇒ R)∧ (Q =⇒ R):

P Q R P∨Q Q =⇒ R P =⇒ R (P∨Q) =⇒ R (P =⇒ R)∧ (Q =⇒ R)

T T T T T T T T

T T F T F F F F

T F T T T T T T

T F F T T F F F

F T T T T T T T

F T F T F T F F

F F T F T T T T

F F F F T T T T

Since the columns corresponding to (P∨Q) =⇒ R and (P =⇒ R)∧ (Q =⇒ R) are identical, the two

statements are logically equivalent.

An alternate proof (assuming we know DeMorgan’s laws and the result from Problem 1.7) would go as

follows:

(P∨Q) =⇒ R ≡ (¬(P∨Q)∨R)≡ ((¬P)∧¬Q)∨R

≡ ((¬P)∨R)∧ ((¬Q)∨R)

while

(P =⇒ R)∧ (Q =⇒ R)≡ ((¬P)∨R)∧ ((¬Q)∨R)

and thus (P∨Q) =⇒ R ≡ (P =⇒ Q)∧ (P =⇒ R).

Problem 1.12. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective ¬ and ∨.

1. P∨ (Q∧R)

7



2. (P∨Q)∧ (P∨R)

3. P ⇐⇒ Q

Hint. Try to use DeMorgan’s laws.

Solution of Problem 1.12. 1. P∨ (Q∧R)≡ P∨¬((¬Q)∨ (¬R))

2. (P∨Q)∧ (P∨R)≡ ¬((¬(P∨Q))∨¬(P∨R))

3. P ⇐⇒ Q ≡ (P =⇒ Q)∧(Q =⇒ P)≡ ((¬P)∨Q)∧((¬Q)∨P)≡¬((¬((¬P)∨Q))∨¬((¬Q)∨P))

Problem 1.13. For all the statement forms below write a logically equivalent statement form that involves

only the logical connective ¬ and ∧.

1. P∧ (Q∨R)

2. (P∧Q)∨ (P∧R)

3. P ⇐⇒ Q

Hint. Try to use DeMorgan’s laws.

Solution of Problem 1.13. 1. P∧ (Q∨R)≡ P∧¬((¬Q)∧ (¬R))

2. (P∧Q)∨ (P∧R)≡ ¬((¬(P∧Q))∧¬(P∧R))

3. P ⇐⇒ Q ≡ (P =⇒ Q)∧ (Q =⇒ P)≡ ((¬P)∨Q)∧ ((¬Q)∨P)≡ (¬((¬¬P)∧¬Q))∧¬((¬¬Q)∧

¬P)≡ (¬(P∧¬Q))∧¬(Q∧¬P)

Problem 1.14. Are the statement forms [(¬P) =⇒ [Q∧¬Q]] and P logically equivalent?

2 Quantifiers

Problem 2.1. Let x0 ∈ (a,b), ℓ ∈ R and f : (a,x0)∪ (x0,b)→ R. We say that ℓ is the limit of f at x0, and

we write limx→x0 f (x) = ℓ, if for all ε > 0 there exists δ > 0 such that if x satisfies 0 < |x− x0| < δ then

| f (x)− ℓ|< ε . Formally,

lim
x→x0

f (x) = ℓ ⇐⇒ (∀ε > 0)(∃δ > 0)(∀x)[0 < |x− x0|< δ =⇒ | f (x)− ℓ|< ε].

Negate the statement (∀ε > 0)(∃δ > 0)(∀x)[0 < |x− x0|< δ =⇒ | f (x)− ℓ|< ε].
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Hint. Remember that ¬(P =⇒ Q)≡ P∧¬Q.

Solution of Problem 2.1.

(∃ε > 0)(∀δ > 0)(∃x)[(0 < |x− x0|< δ )∧ (| f (x)− ℓ|⩾ ε)].

Problem 2.2.

1. Give a possible definition of even numbers using logical symbols, quantifiers, and only the multipli-

cation operation.

2. Negate the definition you gave above.

Solution of Problem 2.2.

1.

x is even ⇐⇒ (x ∈ Z)∧ (∃k ∈ Z)(x = 2k)

2.

x is not even ⇐⇒ (x /∈ Z)∨ (∀k ∈ Z)(x ̸= 2k)

Problem 2.3.

1. Give a possible definition of a prime number using logical symbols, quantifiers, and only the multipli-

cation operation.

2. Negate the definition you gave above.

Solution of Problem 2.3.

1.

x is a prime number ⇐⇒ [(x ∈N)∧(x ̸= 1)∧ [(∀m ∈N)(∀n ∈N)[x = mn =⇒ ((m = 1)∨(n = 1))]].

2.

x is not a prime number ⇐⇒ [(x /∈N)∨ (x = 1)∨ [(∃m ∈N)(∃n ∈N)(x = mn)∧ (m > 1)∧ (n > 1)].
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Problem 2.4. Write a formal mathematical expression that expresses the fact that a given sequence (xn)n∈N

does not have a real limit.

Solution of Problem 2.4.

(∀ℓ ∈ R)(∃ε > 0)(∀N ∈ N)(∃n ⩾ N)(|xn − ℓ|⩾ ε)

Problem 2.5. Negate the statement P : (∀n ∈ Z)(∃k ∈ Z)(n2 +n+1 = 2k). Try to explain what P and ¬P

mean.

Solution of Problem 2.5. ¬P : (∃n ∈ Z)(∀k ∈ Z)(n2 + n+ 1 ̸= 2k). P means that for every integer n the

integer n2 + n+ 1 is even. ¬P means that there exists an integer n such that the integer n2 + n+ 1 is not

even.

Problem 2.6. Let f be a function from R to R. We say that f is strictly increasing if

(∀x ∈ R)(∀y ∈ R)[(x < y) =⇒ ( f (x)< f (y))].

Negate the statement above.

Solution of Problem 2.6.

(∃x ∈ R)(∃y ∈ R)[(x < y)∧ ( f (x)⩾ f (y))].

Problem 2.7. Let f be a function from R to R. Define what it means for f to be strictly decreasing

Solution of Problem 2.7.

f is strictly decreasing ⇐⇒ (∀x ∈ R)(∀y ∈ R)[(x < y) =⇒ ( f (x)> f (y))].

Problem 2.8. Let f be a function from R to R. Write a formal mathematical expression which expresses the

fact that it is not true that f is strictly decreasing or strictly increasing.
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Solution of Problem 2.8. If it is not true that f is strictly decreasing or strictly increasing then f is not strictly

decreasing and not strictly decreasing. Formally, it can be expressed with the following statement:

[(∃x ∈ R)(∃y ∈ R)[(x < y)∧ ( f (x)⩽ f (y))]]∧ [(∃w ∈ R)(∃z ∈ R)[(w < z)∧ ( f (w)⩾ f (z))]].

Problem 2.9. Define formally what it means that an integer k divides an integer n.

Solution of Problem 2.9.

k divides n ⇐⇒ (∃m ∈ Z)(n = km)

Problem 2.10. Give a formal definition of what it means for a number x to be a rational number.

Solution of Problem 2.11.

x is rational ⇐⇒ (x ∈ R)∧ [(∃p ∈ Z)(∃q ∈ N)x =
p
q
]

Problem 2.11. Give a formal definition of what it means for a number x to be a irrational number.

Solution of Problem 2.11. Since x is irrational if and only if it is not rational,

x is irrational ⇐⇒ (x /∈ R)∨ [(∀p ∈ Z)(∀q ∈ N)(x ̸= p
q
)].

Problem 2.12. What is the truth value of the statement (∀x ∈ R)(∃y ∈ R)(∀z ∈ R)[xy = xz]?

Solution of Problem 2.12. The statement is false, i.e., (∃x ∈ R)(∀y ∈ R)(∃z ∈ R)[xy ̸= xz] is true. To see

this, let x = 1, and let y ∈ R be given. If y ̸= 0, put z = 2y. Then xy = y ̸= 2y = xz. If now y = 0, put z = 1.

Then xy = 0 ̸= 1 = xz.

Problem 2.13. What is the truth value of the statement (∃y ∈ R)(∀x ∈ R)(∃z ∈ R)[xy = xz]?

Solution of Problem 2.13. The statement is true. To see this, put y = 1, and let x ∈ R be given. Put z = 1.

Then we have xy = x = xz.
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3 Proofs

Problem 3.1. Prove that the equation (E) : 7x−2 = 0 has a unique solution in R.

Solution of Problem 3.1. Let x0 =
2
7 . Then x0 ∈ R and 7x0 − 2 = 7 2

7 − 2 = 2− 2 = 0, so the equation (E)

has a solution. Assume now that y is a real solution to the equation (E), then 7y−2 = 0 and thus y = 2
7 = x0.

Therefore, the equation (E) has a unique solution.

Problem 3.2. Prove that the equation (E) : −3x+8 = 0 has a unique solution in R.

Solution of Problem 3.2. Assume that y and z are real solutions to the equation (E), then −3y+8 =−3z+8

and thus −3y = −3z. Since −3 ̸= 0 it follows that y = z. Therefore, the equation (E) has at most one

solution. Now, let x = 8
3 . Then x ∈R and −3x+8 =−3 8

3 +8 =−8+8 = 0, so the equation (E) has at least

solution. We can thus conclude that the equation (E) at a unique solution.

Problem 3.3. Let a,b,c ∈ R with a ̸= 0. Prove that the equation (E) : ax+b = c has a unique solution in

R.

Solution of Problem 3.3. Let x0 =
c−b

a . Then x0 ∈ R and ax0 +b = a c−b
a +b = c−b+b = c, and hence the

equation (E) has a solution. Assume now that y and z are real solutions to the equation (E), then ay+b = c

and az+b = c. Therefore,

0 = c− c = (ay+b)− (az+b) = a(y− z).

Since a ̸= 0, one has y− z = 0, and thus y = z. The equation (E) has a unique solution.

Problem 3.4. Let a, b, and c be integers. Prove that for all integers m and n, if a divides b and a divides c,

then a divides (bm+ cn).

Solution of Problem 3.4. Let m and n be fixed integers. Assume that a divides b and that a divides c. Then

there exist integers j and k such that b = a j and c = ak. (We must show that there exists an integer l such

that bm+ cn = al.) Observe that

bm+ cn = a jm+akn = a( jm+ kn).

Put l = jm+ kn. Then l is an integer such that bm+ cn = al, and therefore a | (bm+ cn). Since m and n

were fixed but arbitrary, we proved that for all integers m and n, if a divides b and a divides c, then a divides

(bm+ cn).

Problem 3.5. Prove that if m and n are even, then m+n is even.
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Solution of Problem 3.5. Let m and n be fixed integer and assume that m and n are fixed even numbers.

Then there exist integers j and k such that m = 2 j and n = 2k. Let l = j+k, then l is an integer, and we have

m+n = 2 j+2k = 2( j+ k) = 2l.

Therefore, m+n is even. Since m and n were fixed but arbitrary even numbers then the proof is complete.

Problem 3.6. Prove that if m is even and n is odd, then m+n is odd.

Solution of Problem 3.6. Assume that m is a fixed even number and n is a fixed odd number. Then there

exist integers j and k such that m = 2 j+1 and n = 2k. Let l = j+ k, then l is an integer, and we have

m+n = 2 j+1+2k = 2( j+ k)+1 = 2l +1.

Therefore, m+n is odd. The proof is complete since m and n were fixed but arbitrary.

Problem 3.7. Prove that for all m,n ∈ Z, if m is even, then mn is even.

Solution of Problem 3.7. Let m and n be integers and assume that m is even. Then there exists and integer k

such that m = 2k. Put l = kn. Then l is an integer, and we have mn = 2kn = 2l. Therefore, mn is even.

Problem 3.8. Show that for all n ∈ Z, 4n+7 is odd.

Solution of Problem 3.8. Fix n ∈ Z. Let k = 2n+3, then k is an integer, and we have

4n+7 = 2(2n)+2(3)+1 = 2(2n+3)+1 = 2k+1.

Therefore, 4n+7 is odd. Since n was fixed but arbitrary the conclusion follows.

Problem 3.9. Let n be an integer. Prove that if n2 is even, then n is even.

Solution of Problem 3.9. Let n ∈ Z and assume n is not even. Then n is odd, hence there is some k ∈ Z such

that n = 2k+1. Thus n2 = (2k+1)2 = 2(2k2 +2k)+1 = 2r+1, with r = 2k2 +2k ∈ Z, and thus n2 is odd.

Therefore, by contraposition, if n is even, then n2 is even.

Problem 3.10. Let n be an integer. Prove that if n3 is even, then n is even.

Solution of Problem 3.10. Let us prove the contrapositive “if n is not even then n3 is not even”, or equiv-

alently “if n is odd then n3 is odd”. Assume that n is odd, then there exists k ∈ Z such that n = 2k + 1,

and hence n3 = (2k + 1)3 = (2k)3 + 3 · (2k)2 + 3 · 2k + 1 = 2(4k3 + 6 · k2 + 3k) + 1 = 2r + 1, where r =

4k3 +6 · k2 +3k is an integer. Therefore n3 is odd.
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Problem 3.11. For this problem you can use the following fact that will be proven later: 3 does not divides

n if and only if there exists an integer k and an integer i ∈ {1,2} such that n = 3k+ i.

Prove that for every integer n, if 3 divides n2 then 3 divides n.

Solution of Problem 3.12. Let n be an integer and assume that 3 does not divide n. Then there exists an

integer k and an integer i ∈ {1,2} such that n = 3k+ i. Therefore,

n2 = (3k+ i)2 = 9k2 +6ki+ i2 = 3(3k2 +2ki)+ i2.

If i = 1 then i2 = 12 = 1, and n2 = 3r+ 1 with r = 3k2 + 2ki ∈ Z. Otherwise, if i = 2 then n2 = 3(3k2 +

2ki)+22 = 3(3k2 +2ki)+3+1 = 3(3k2 +2ki+1)+1 = 3s+1, with s = 3k2 +2ki+1 ∈ Z. In any case,

n2 = 3t +1 for some integer t and thus 3 does not divide n2.

Problem 3.12. Prove that there are no integers m and n such that 8m+26n = 1.

Solution of Problem 3.12. Assume, towards a contradiction, that there exist integers m and n such that 8m+

26n = 1. Then 1 = 2(4m+ 13n) = 2r, with r = 4m+ 13n ∈ Z, and 1 would be even. But 1 is odd, a

contradiction. Thus, there are no integers m and n such that 8m+26n = 1.

Problem 3.13. Are there integers m and n such that m2 = 4n+3?

Solution of Problem 3.13. Assume, towards a contradiction, that there exist integers m and n such that m2 =

4n+3. Then m2 = 2(2n+1)+1, so m2 is odd, and therefore m is odd. Thus there is some k ∈ Z such that

m = 2k+1, and we have

4n+3 = (2k+1)2 = 4k2 +4k+1,

so 4n + 2 = 4k2 + 4k, and thus 2n + 1 = 2k2 + 2k = 2(k2 + k). Hence 2n + 1 is both even and odd, a

contradiction. Therefore, there do not exist integers m and n such that m2 = 4n+3.

Problem 3.14. Let x ∈ R. Show that if for all ε > 0, |x|< 2ε , then x = 0.

Solution of Problem 3.14. Let x ∈ R. Assume that for all ε > 0, |x|< 2ε and for the sake of a contradiction

assume that x ̸= 0. If we put ε0 =
|x|
4 then ε0 > 0. Therefore, |x|< 2ε0 = 2 |x|

4 . Since |x| ≠ 0, it follows that

|x|< |x|
2 and thus 1 < 1

2 , a contradiction.

Problem 3.15. Prove that 3√2 is irrational.

Hint. Use Problem 3.10.
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Solution of Problem 3.15. Assume by contradiction that 3√2 is rational and write, as we may, 3√2 = p
q with

p ∈ Z, q ∈ Z, q > 0, where p and q have no common factors. Thus, 2 = ( p
q )

3 and 2q3 = p3, which means

that p3 is even. By Problem 3.10 above p is even, and there exists k ∈ Z such that p = 2k. It follows that

q3 = p3

2 = 8k3

2 = 2 ·2k3 and hence q3 is even. By Problem 3.10, q is even, a contradiction. Indeed, p and q

being even they have 2 as a common factor which contradicts our assumption.

Problem 3.16. Show that
√

3 is irrational.

Hint. Use Problem 3.11.

Solution of Problem 3.16. Assume, towards a contradiction, that
√

3 is rational. Then there exist nonnega-

tive integers m and n, with n ̸= 0, such that
√

3 = m
n . Without loss of generality, we may assume that m and

n have no common factors. Then m2 = 3n2, so 3 divides m2, and by the result of Problem 3.11 it follows

that 3 divides m. Thus there is some k ∈ Z such that m = 3k. Hence we have

9k2 = m2 = 3n2,

so n2 = 3k2. Thus 3 divides n2, and applying the results of Problem 3.11 again, it follows that 3 divides

n. But then both m and n are divisible by 3, so they share a common factor, contradicting our assumption.

Therefore,
√

3 is irrational.

Problem 3.17. Show that log(3) is irrational.

Hint. You can use the the following property of the log function: x = log(3) ⇐⇒ 2x = 3 (no proof needed)

You can also use the binomial formula (no proof needed). Everything else that you might need needs to be

proven.

Problem 3.18. Prove that for all real numbers x and y with y ⩾ 0, if x2 ⩾ 4y, then x ⩾ 2
√

y or x ⩽−2
√

y.

Solution of Problem 3.18. Let x ∈R and y > 0 and assume that x2 ⩾ 4y. Either x ⩾ 2
√

y and the conclusion

follows, or x < 2
√

y but then 0 ⩽ x2−4y = (x−2
√

y)(x+2
√

y) and hence x+2
√

y ⩽ 0, i.e. x ⩽−2
√

y, and

the conclusion follows.

Problem 3.19. Prove that for all integers k, k(k+3) is even.

Solution of Problem 3.19. Let k ∈ Z.

Case 1 k is even and there exists n ∈ Z such that k = 2n. So, k(k+3) = 2n(2n+3) which is even.
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Case 2 k is odd and there exists n∈Z such that k = 2n+1. So, k(k+3) = (2n+1)(2n+4) = 2(2n+1)(n+2)

which is even.

Problem 3.20. Prove that for all integers k, (k+1)(k+6) is even.

Solution of Problem 3.20. Let k ∈ Z. Either k is even and there exists n ∈ Z such that k = 2n, and (k +

1)(k+6) = (2n+1)(2n+6) = 2(2n+1)(n+3) which is even, or k is odd and there exists n ∈ Z such that

k = 2n+1, and thus (k+1)(k+6) = (2n+2)(2n+7) = 2(n+1)(2n+7) is even.

For the following problems we recall the definition of the absolute value function

|x| :=


x if x ⩾ 0

−x if x < 0

Problem 3.21. Show that for all x ∈ R, |x|⩾ 0 with |x|= 0 if and only if x = 0.

Proof of Problem 3.21. We prove the first part of the statement. Let x ∈ R. Then, either x ⩾ 0 or x < 0. If

x ⩾ 0 then by definition |x|= x ⩾ 0. Otherwise, if x < 0 then by definition |x|=−x > 0. For the equivalence

in the second part, if x = 0 then by definition |x|= 0. If |x|= 0 then by definition |x|= x and thus x = 0.

Problem 3.22. Prove that for all real numbers x and y, |x− y|= |y− x|.

Proof of Problem 3.22. Let x,y ∈ R. In the case x− y ⩾ 0 then y− x ⩽ 0 and |x− y| = x− y, but |y− x| =

−(y−x) = x−y and thus |x−y|= |y−x|. In the case x−y < 0 then y−x > 0 and |x−y|=−(x−y) = y−x,

but |y− x|= y− x and thus |x− y|= |y− x|. Therefore in all cases |x− y|= |y− x|.

Problem 3.23. Prove that for all real numbers x and y, |xy|= |x||y|.

Problem 3.24. Let x ∈ R and M ⩾ 0. Show that |x|⩽ M ⇐⇒ −M ⩽ x ⩽ M.

Proof of Problem 3.24. Let x ∈ R and M ⩾ 0.

Proof of =⇒ : Assume that |x|⩽ M, then if x ⩾ 0, then x = |x| and −M ⩽ 0 ⩽ x = |x|⩽ M. Otherwise,

if x < 0 then |x|=−x and −M ⩽ 0 <−x = |x|< M.

Proof of ⇐=: Assume that −M ⩽ x ⩽ M. In the case x ⩾ 0 then |x| = x, but x ⩽ M and it follows that

|x|⩽ M. In the case x < 0 then |x|=−x, but since −M ⩽ x then −x ⩽ M and hence |x|⩽ M

Problem 3.25. Prove that for all real numbers x and y, |x+ y|⩽ |x|+ |y|.
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Hint. You could use Problem 3.24.

Proof of Problem 3.25. Let x,y ∈ R. Since −|x|⩽ x ⩽ |x| and −|y|⩽ y ⩽ |y| then by adding up theses two

inequalities −(|y|+ |x|)⩽ x+ y ⩽ |x|+ |y| and by Problem 3.24 |x+ y|⩽ |x|+ |y|.

Problem 3.26. Prove that for all x,y,z ∈ R, |x− y|⩽ |x− z|+ |y− z|.

Hint. You could use Problem 3.25.

Proof of Problem 3.26. Let x,y,z ∈ R and set a = x− z and b = z− y. It follows from Problem 3.25 that

|x− y|= |a+b|⩽ |a|+ |b|= |x− z|+ |y− z|.

Problem 3.27. Prove that for all real numbers x and y,
∣∣|x|− |y|

∣∣⩽ |x− y|.

Hint. You could use Problem 3.25.

Proof of Problem 3.27. Let x,y ∈R, then by Problem 3.25 |x|= |x−y+y|⩽ |x−y|+ |y|, and |y|= |y−x+

x|⩽ |y− x|+ |x|. Thus |x|− |y|⩽ |x− y| and |y|− |x|⩽ |x− y| and the conclusion follows.

Problem 3.28. Let x,y be real numbers. Show that

∀ε > 0, x < y+ ε ⇐⇒ x ⩽ y.

Proof of Problem 3.28. Proof of ⇐=: Assume that x ⩽ y, then if ε > 0 it follows that x < y+ ε . Proof of

=⇒ : Assume that x < y+ ε for all ε > 0. Assume by contradiction that x > y and let ε0 = x− y > 0. By

our assumption, x < y+ ε0 = y+(x− y) = x; a contradiction.

Problem 3.29. Let x,y be real numbers. Show that x > y− ε for all ε > 0 if and only if x ⩾ y.

Proof of Problem 3.29. Assume that x < y+ ε for all ε > 0. Assume by contradiction that x > y and let

ε0 = x− y > 0. By our assumption, x < y+ ε0 = y+(x− y) = x; a contradiction. For the other direction, if

x ⩾ y and ε > 0 then x > y− ε .

Problem 3.30. Prove that for all real numbers x and y, if x < y, then x < x+y
2 < y.

Solution of Problem 3.30. Let x and y be real numbers such that x < y. Then 2x = x+ x < x+ y, and thus

x < x+y
2 . Similarly, x+ y < y+ y = 2y, and thus x+y

2 < y. Combining our results, we obtain

x <
x+ y

2
< y

as desired.
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Problem 3.31. Prove that for all positive real numbers x, the sum of x and its reciprocal is greater than 2.

Solution of Problem 3.31. Let x be a real number such that x > 0. Observe that 0 ⩽ (x−1)2 = x2 −2x+1,

so 2x ⩽ x2 +1 and thus since x > 0 one has

2 =
1
x
·2x ⩽

1
x
· (x2 +1) = x+

1
x

as desired.

Problem 3.32. 1. Prove that for all x,y ∈ R+,
√

xy ⩽ x+y
2 .

2. Show that that for all x,y ∈ R+,
√

xy = x+y
2 if and only if x = y

Solution of Problem 3.32. 1. Let x,y ∈ R+ be given. Observe that 0 ⩽ (x− y)2 = x2 −2xy+ y2, and so

4xy ⩽ x2 +2xy+ y2 = (x+ y)2. Thus 2
√

xy ⩽ x+ y, and therefore
√

xy ⩽ x+y
2 .

2. Assuming x = y, we obtain
√

xy =
√

x2 = x =
2x
2

=
x+ y

2
.

Conversely, assume
√

xy = x+y
2 . Then 4xy = (x+ y)2 = x2 + 2xy+ y2, and rearranging we obtain

0 = x2 −2xy+ y2 = (x− y)2, so 0 = x− y and therefore x = y.

4 Applications of the Principle of Mathematical Induction

Problem 4.1. Prove that for all integers n ⩾ 1,

n

∑
k=1

k2 =
n(n+1)(2n+1)

6
.

Solution of Problem 4.1. First observe that for n = 1 we have

n(n+1)(2n+1)
6

=
1 ·2 ·3

6
= 1,

but ∑
1
k=1 k2 = 12 = 1 and thus the equality holds if n = 1. Now let n ⩾ 1 and assume that assume ∑

n
k=1 k2 =
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n(n+1)(2n+1)
6 . Then we have

n+1

∑
k=1

k2 = (n+1)2 +
n

∑
k=1

k2

= (n+1)2 +
n(n+1)(2n+1)

6

=
6(n+1)(n+1)

6
+

n(n+1)(2n+1)
6

=
(n+1)[6(n+1)+n(2n+1)]

6

=
(n+1)(2n2 +7n+6)

6

=
(n+1)(n+2)(2n+3)

6

=
(n+1)((n+1)+1)(2(n+1)+1)

6
,

so the equality holds for n+1. Therefore, it follows by the Principle of Mathematical Induction that for all

integers n ⩾ 1, ∑
n
k=1 k2 = n(n+1)(2n+1)

6 .

Problem 4.2. Prove that for all integers n ⩾ 0,

n

∑
k=0

2k = 2n+1 −1.

Solution of Problem 4.2. First observe that for n = 0, we have 20 = 1 = 20+1 − 1, so the equality holds in

this case. Let n ⩾ 0 and assume that the equality holds for n, i.e., ∑
n
k=0 2k = 2n+1 −1. Then we have

n+1

∑
k=0

2k = 2n+1 +
n

∑
k=0

2k = 2n+1 +2n+1 −1 = 2 ·2n+1 −1 = 2(n+1)+1 −1

so the equality holds for n+1. Therefore, it follows by the Principle of Mathematical Induction that for all

integers n ⩾ 0, ∑
n
k=0 2k = 2n+1 −1.

Problem 4.3. Prove that for all integers n ⩾ 1,

n

∑
k=1

(2k−1) = n2.

Solution of Problem 4.3. First observe that for n = 1, we have 12 = 1 = 2 ·1−1, so the result is true in this

case. Now assume that the result holds for some positive integer m. Then we have

m+1

∑
k=1

(2k−1) = 2(m+1)−1+
m

∑
k=1

(2k−1) = m2 +2m+1 = (m+1)2,

so the result is true for m+1. Therefore, it follows by induction that the result holds for all positive integers.
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Problem 4.4. Prove that for all integers n ⩾ 1,

n

∑
k=1

1
k(k+1)

=
n

n+1
.

Solution of Problem 4.4. For n = 1, ∑
1
k=1

1
k(k+1) =

1
1(1+1) =

1
2 = 1

1+1 , and the equality holds. Assume that

the result holds for some positive integer m. Then we have

m+1

∑
k=1

1
k(k+1)

=
1

(m+1)(m+2)
+

m

∑
k=1

1
k(k+1)

=
1

(m+1)(m+2)
+

m
m+1

=
1

(m+1)(m+2)
+

m2 +2m
(m+1)(m+2)

=
(m+1)2

(m+1)(m+2)

=
(m+1)

(m+1)+1

so the result is true for m+1. Therefore, it follows by induction that the result holds for all positive integers.

Problem 4.5. Prove that for all integers n ⩾ 1,

n

∑
k+1

(2k−1)2 =
4n3 −n

3
.

Solution of Problem 4.5. First observe that

4 ·13 −1
3

= 1 = (2 ·1−1)2,

so the result is true for n = 1. Now assume that the result holds for some positive integer m. Then we have

m+1

∑
k=1

(2k−1)2 = (2m+1)2 +
4m3 −m

3

=
12m2 +12m+3

3
+

4m3 −m
3

=
4m3 +12m2 +12m+3−m

3

=
4(m3 +3m2 +3m+1)− (m+1)

3

=
4(m+1)3 − (m+1)

3
,

so the result is true for m+1. Therefore, it follows by induction that the result holds for all positive integers.
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Problem 4.6. Conjecture a formula for ∑
n
k=1(−1)kk2, for all n ⩾ 1 and then prove the formula is correct

using induction.

Solution of Problem 4.6. After calculating a few iterates, you should see that for all n ⩾ 1 the formula you

are looking for is
n

∑
k=1

(−1)kk2 = (−1)n
(

n(n+1)
2

)
.

Indeed, this holds for n = 1. Now assume the formula holds for some positive integer m. Then we have

m+1

∑
k=1

(−1)kk2 = (−1)m+1(m+1)2 +(−1)m
(

m(m+1)
2

)
=

(−1)m+1

2
(
2m2 +4m+2−m2 −m

)
=

(−1)m+1

2
(
m2 +3m+2

)
= (−1)m+1

(
(m+1)((m+1)+1)

2

)
,

so the formula holds for m+1. Therefore, by induction, the result holds for all positive integers.

Problem 4.7. Prove that for all integers n ⩾ 1, n < 10n.

Solution of Problem 4.7. The result is true for n = 1. Now assume the result holds for some positive integer

m. Then we have

m+1 < 10m +1 < 9 ·10m +10m = 10 ·10m = 10m+1,

so the result is true for m+ 1. Therefore, by induction it follows that the result is true for all positive

integers.

Problem 4.8. Prove that for all integers n ⩾ 7,
(4

3

)n
> n.

Solution of Problem 4.8. Direct calculation show that
(4

3

)7
> 7. Now assume that for some m ⩾ 7 we have(4

3

)m
> m. Then 3 < 7 ⩽ m <

(4
3

)m, so 1 < 1
3

(4
3

)m and thus

m+1 <

(
4
3

)m

+
1
3

(
4
3

)m

=

(
4
3

)m+1

,

so the result holds for m+1. Therefore, by induction it follows that the result holds for all positive integers

n ⩾ 7.

Problem 4.9. Prove that for all integers n ⩾ 1, n3 +8n+9 is divisible by 3.
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Solution of Problem 4.9. First observe that 13 + 8 · 1+ 9 = 18 = 3 · 6, so the result is true for n = 1. Now

assume that the result holds for some positive integer m. Then there is some integer k such that m3+8m+9=

3k, and we have

(m+1)3 +8(m+1)+9 = (m3 +3m2 +3m+1)+(8m+8)+9

= (m3 +8m+9)+3m2 +3m+9

= 3(k+m2 +m+3),

so the result is true for m+1. Therefore, by induction it follows that the result holds for all positive integers.

Problem 4.10. Prove that for all integers n ⩾ 1, 32n −1 is divisible by 8.

Solution of Problem 4.10. First observe that 32·1 −1 = 8 ·1, so the result is true for n = 1. Now assume the

result is true for some positive integer m. Then there is some integer k such that 32m −1 = 8k, and we have

32(m+1)−1 = 32m+2 −1

= 9 ·32m −1

= 9 · (32m −1)+8

= 8 · (9k+1),

so the result is true for m1. Therefore, by induction it follows that the result is true for all positive integers.

Problem 4.11. Prove that for all integers n ⩾ 5, n2 < 2n.

Solution of Problem 4.11. Let P(n) be the statement n2 < 2n. Observe that 52 = 25 < 32 = 25, so P(5) is

true. Now assume that P(m) is true for some m ⩾ 5. Since m ⩾ 5, we have 2m+1 < 3m < m2, so that

(m+1)2 = m2 +2m+1 < 2m2 < 2 ·2m = 2m+1.

and thus P(m+1) is true. Therefore, by induction it follows that P(n) is true for all n ⩾ 5.

Problem 4.12. Prove that for all integers n ⩾ 4, 2n < n!.

Solution of Problem 4.12. Clearly 24 = 16 < 24 = 4!. Now assume that 2m < m! for some positive integer

m ⩾ 4. Then we have

2m+1 = 2 ·2m < 2m! < (m+1) ·m! = (m+1)!

Therefore, it follows by induction that 2n < n! for all positive integers n.

22



Problem 4.13. Assuming that (1+ 1
n)

n < e, for all n ⩾ 1, prove that for all n ⩾ 1, n! > (n
e )

n.

Problem 4.14. Show that for all n ⩾ 12 there exist xn ∈ Z and yn ∈ Z such that n = 3xn +7yn

Problem 4.15. Prove that for all positive integers n, 4n −1 is divisible by 3.

Solution of Problem 4.15. First note that 41−1 = 3, and thus 3 | 41−1. Now assume that 4m−1 is divisible

by 3 for some positive integer m. Then 4m −1 = 3k for some k ∈ Z, hence we have

4m+1 −1 = 4(4m −1)+3 = 3(4k+1).

Thus 4m+1 − 1 is divisible by 3, and it follows by induction that 4n − 1 is divisible by 3 for all positive

integers n.

Problem 4.16. Let a1 = 2, and let an+1 =
1
2(an +3) for all n ⩾ 1.

(a) Prove that for all positive integers n, an < an+1.

(b) Prove that for all positive integers n, an < 3.

(c) Prove that for all positive integers n, an = 3− 1
2n−1 .

Solution of Problem 4.16. (a) First note that a2 =
1
2(a1+3) = 1

2(2+3) = 5
2 > a1. Now assume that am+1 >

am for some positive integer m. Then we have

am+2 =
1
2
(am+1 +3)>

1
2
(am +3) = am+1.

By induction, it follows that an+1 > an for all positive integers n.

(b) Clearly a1 = 2 < 3. Now assume that am < 3 for some positive integer m. Then we have

am+1 =
1
2
(am +3)<

1
2
(3+3) = 3.

By induction, it follows that an < 3 for all positive integers n.

(c) Clearly a1 = 2 = 3− 1
21−1 . Now assume that am = 3− 1

2m−1 for some positive integer m. Then we have

am+1 =
1
2
(am +3) =

1
2

(
6− 1

2m−1

)
= 3− 1

2m+1−1 .

By induction, it follows that an = 3− 1
2n−1 for all positive integers n.

23



Problem 4.17. Let r ∈ R with r ̸= 1. Prove that

n−1

∑
k=0

rk =
1− rn

1− r
.

Solution of Problem 4.17. Fix r ∈ R with r ̸= 1. Note that ∑
1−1
k=0 rk = 1 = 1−r1

1−r . Now assume that ∑
m−1
k=0 rk =

1−rm

1−r for some positive integer n. Then we have

m

∑
k=0

rk = rm +
m−1

∑
k=0

rk = rm 1− r
1− r

+
1− rm

1− r
=

1− rm+1

1− r
.

Thus, by induction it follows that ∑
n−1
k=0 rk = 1−rn

1−r is true for all positive integers n.

Problem 4.18. Prove Bernoulli’s Inequality: Let x >−1. Then for all n ∈ N, (1+ x)n ⩾ 1+nx.

Solution of Problem 4.18. For n = 1 equality (hence the inequality) holds. Now suppose that (1+ x)m ⩾

1+mx for some m ∈ N. Then we have

(1+ x)m+1 ⩾ (1+ x)(1+mx) = 1+mx+ x+mx2 ⩾ 1+(m+1)x.

(Note that we used the assumption that x > 1 in the first inequality.) Thus by induction, the inequality holds

for all n ∈ N.

Problem 4.19. Let x,y ∈ R. Prove the binomial theorem: for all integers n ⩾ 1,

(x+ y)n =
n

∑
k=0

(
n
k

)
xn−kyk.

Solution of Problem 4.19. First note that

(x+ y)1 = x+ y =
(

1
0

)
x1y0 +

(
1
1

)
x0y1.

Now assume that for some m ∈ N we have

(x+ y)m =
m

∑
k=0

(
m
k

)
xm−kyk.
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Then we have

(x+ y)m+1 = (x+ y)(x+ y)m

=
m

∑
k=0

(
m
k

)
xm+1−kyk +

m

∑
k=0

(
m
k

)
xm−kyk+1

=

(
m
0

)
xm+1y0 +

m

∑
k=1

(
m
k

)
xm+1−kyk +

m−1

∑
k=0

(
m
k

)
xm−kyk+1 +

(
m
m

)
x0ym+1

=

(
m
0

)
xm+1y0 +

m

∑
k=1

((
m
k

)
+

(
m

k−1

))
xm+1−kyk +

(
m
m

)
x0ym+1

=

(
m+1

0

)
xm+1y0 +

m

∑
k=1

(
m+1

k

)
xm+1−kyk +

(
m+1
m+1

)
x0ym+1

=
m+1

∑
k=0

(
m+1

k

)
xm+1−kyk

as desired.

Problem 4.20. Let n be an integer. Show that if n is even then nk is even for all k ∈ N.

5 Applications of the Principle of Strong Mathematical Induction

Problem 5.1. For i ∈ N, let pi denote the ith prime number, so that

p1 = 2, p2 = 3, p3 = 5, . . . .

Prove that for all n ∈ N, pn ⩽ 22n−1
.

Hint. For the induction step, given m ∈ N, show that pm+1 ⩽ p1 p2 · · · pm +1.

Solution of Problem 5.1. First observe that p1 = 2 = 221−1
. Now fix m ∈ N, and assume that pk ⩽ 22k−1

for

1 ⩽ k ⩽ m. Note that pm+1 ⩽ p1 p2 · · · pm +1, since pk does not divide p1 p2 · · · pm +1 for 1 ⩽ k ⩽ m. Thus,

we have

pm+1 ⩽ p1 p2 · · · pm +1 ⩽ 2∑
m−1
k=0 2k

+1 = 22m−1 +1 < 2 ·22m−1 = 22m
.

Problem 5.2. Show that the principle of strong mathematical induction implies the principle of mathemati-

cal induction.

Solution of Problem 5.2. Assume the principle of strong mathematical induction, and let P(n) be a statement

about the positive integer n. Assume that P(1) is true, and that for all m ∈N, if P(m) is true then P(m+1) is
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true. Let m ∈N be given, and assume that P(k) is true for 1 ⩽ k ⩽ m. Then P(m) is true, so P(m+1) is true.

Thus, by the principle of strong mathematical induction, P(n) is true for all n ∈ N. Therefore, the principle

of mathematical induction is true.

Problem 5.3. Show that the principle of mathematical induction implies the principle of strong mathemati-

cal induction.

Solution of Problem 5.3. Assume the principle of mathematical induction, and let P(n) be a statement about

the positive integer n. Assume that P(1) is true, and that for all m ∈ N, if P(k) is true for 1 ⩽ k ⩽ m, then

P(m+ 1) is true. For n ∈ N, let Q(n) be the statement ”P(k) is true for all k ⩽ n”. Clearly Q(1) is true.

If m ∈ N and Q(m) is true, then P(k) is true for all 1 ⩽ k ⩽ m. By assumption P(m+ 1) is true, and thus

Q(m+ 1) is true. By the principle of mathematical induction, Q(n) is true for all n ∈ N. But if Q(n) is

true, then P(n) is true, and thus P(n) is true for all n ∈ N. Therefore, the principle of strong mathematical

induction is true.

6 Sequences defined by a recurrence relation

Problem 6.1. Let a1 = 2, a2 = 4, and an+1 = 7an −10an−1 for all n ⩾ 2. Conjecture a closed formula for

an and prove your result.

Solution of Problem 6.1. We will show that an = 2n for each n ∈ N. Indeed, a1 = 2 = 21 and a2 = 4 = 22.

Now assume that for some m ⩾ 2 we have ak = 2k for 1 ⩽ k ⩽ m. Then we have

am+1 = 7am −10am−1 = 7 ·2m −10 ·2m−1 = 14 ·2m−1 −10 ·2m−1 = 4 ·2m−1 = 2m+1.

Therefore, by the principle of strong mathematical induction it follows that an = 2n for all n ∈ N.

Problem 6.2. Let a1 = 3, a2 = 4, and an+1 =
1
3(2an+an−1) for all n ⩾ 2. Prove that for all positive integers

n, 3 ⩽ an ⩽ 4.

Solution of Problem 6.2. Clearly 3 ⩽ a1 ⩽ 4 and 3 ⩽ a2 ⩽ 4. Now fix m ⩾ 2, and assume that 3 ⩽ ak ⩽ 4

for all 1 ⩽ k ⩽ m. Then we have

am+1 =
1
3
(2am +am−1)⩾

1
3
(2 ·3+3) = 3

and

am+1 =
1
3
(2am +am−1)⩽

1
3
(2 ·4+4) = 4.

Therefore, by the principle of strong mathematical induction it follows that 3 ⩽ an ⩽ 4 for all n ∈ N.
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Problem 6.3. Consider the sequence (an)
∞
n=1 recursively defined as a1 = 1, a2 = 8 and for all n ⩾ 3,

an = an−1 +2an−2. Show that for all n ⩾ 1, an = 3 ·2n−1 +2(−1)n.

Solution of Problem 6.3. Note that 3 · 21−1 + 2(−1)1 = 1 = a1, 3 · 22−1 + 2(−1)2 = 8 = a2. Now assume

that for some integer m ⩾ 2, we have ak = 3 ·2k−1 +2(−1)k whenever 1 ⩽ k ⩽ m. Then we have

am+1 = am +2am−1

= (3 ·2m−1 +2(−1)m)+2(3 ·2m−2 +2(−1)m−1)

= 3 ·2 ·2m−1 +2((−1)m +(−1)m−1)+2(−1)m−1

= 3 ·2m +2(−1)m+1.

Therefore, by the principle of strong mathematical induction it follows that an = 3 · 2n−1 + 2(−1)n for all

integers n ⩾ 1.

Problem 6.4. Consider the sequence (an)
∞
n=1 recursively defined as a1 = 2, a2 = 4 and for all n ⩾ 3,

an = 3an−1 −2an−2. For all n ⩾ 1, find a closed formula for an.

Solution of Problem 6.4. After performing a few calculations, it should be clear that an = 2n. We prove by

induction that this is the correct formula.

Clearly 21 = 2 = a1 and 22 = 4 = a2. Now suppose that for some m ∈ N with m ⩾ 2, we have ak = 2k

whenever 1 ⩽ k ⩽ m. Then we have

am+1 = 3am −2am−2 = 3 ·2m −2 ·2m−1 = 3 ·2m −2m = 2m+1.

Thus, by the principle of strong mathematical induction it follows that an = 2n for all n ∈ N.

7 Set Theory

7.1 Subsets

Problem 7.1. Prove that X ⊆ Y where X = {n ∈ Z | n is a multiple of 6} and Y = {n ∈ Z | n is even}.

Solution of Problem 7.1. Let n ∈ X be given. Then n is a multiple of 6, so there is some k ∈ Z such that

n = 6k. Thus n = 2(3k), so n is even and therefore x ∈ Y .

Problem 7.2. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 12k+11)},

B = {n ∈ Z | (∃ j ∈ Z)(n = 4 j+3)}.
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(a) Is A ⊆ B? Prove or disprove.

(b) Is B ⊆ A? Prove or disprove.

Solution of Problem 7.2. (a) We will show that A ⊆ B. Suppose n ∈ A. Then there is some k ∈ Z such that

n = 12k+11. Put j = 3k+2. Then j ∈ Z and

n = 12k+11 = 4(3k)+4(2)+3 = 4 j+3,

and therefore n ∈ B.

(b) We will show that B ̸⊆ A, that is, there is some n ∈ B such that n /∈ A. Indeed, put n = 7. Then

n = 4(1)+3 so n ∈ B. Now assume (towards a contradiction) that n ∈ A. Then there is some k ∈ Z such

that 7 = 12k+11. But then −4 = 12k, which is impossible. Thus n /∈ A and therefore B ̸⊆ A.

Problem 7.3. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 4k+1)},

B = {n ∈ Z | (∃ j ∈ Z)(n = 4 j−7}.

Prove that A = B.

Solution of Problem 7.3. Suppose n ∈ A. Then there is some k ∈ Z such that n = 4k+1. Hence we have

n = 4k+1 = 4(k+2)−7 ∈ B,

and therefore A ⊆ B.

Conversely, assume n ∈ B. Then there is some j ∈ Z such that n = 4 j−7. Hence we have

n = 4 j−7 = 4( j−2)+1 ∈ A

and therefore B ⊆ A.

Problem 7.4. Consider the sets

A = {n ∈ Z | (∃k ∈ Z)(n = 3k)},

B = {n ∈ Z | (∃i, j ∈ Z)(n = 15i+12 j)}.

Prove that A = B.
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Solution of Problem 7.4. Suppose n ∈ A. Then there is some k ∈ Z such that n = 3k. Note that k = 5k−4k,

so we have

n = 3k = 3(5k−4k) = 15(k)+12(−k) ∈ B

and therefore A ⊆ B.

Conversely, suppose n ∈ B. Then there exist i, j ∈ Z such that n = 15i+12 j. Then n = 3(5i+4 j) ∈ A,

and therefore B ⊆ A.

Problem 7.5. Prove that X = {n ∈ Z | n+5 is odd} is the set of all even integers.

Solution of Problem 7.5. Let n ∈ X be given. Then n+ 5 is odd, so there is some k ∈ Z such that n+ 5 =

2k+1. Thus n = 2k−4 = 2(k−2), so n is even.

Now suppose n ∈ Z is even. Then there is some k ∈ Z such that n = 2k. Thus n + 5 = 2k + 5 =

2(k+2)+1, so n+5 is odd and therefore n ∈ X .

7.2 Complements

Problem 7.6. Let A and B be subsets of an ambient set U. Prove that (A−B)∪ (B−A) = (A∪B)− (A∩B).

Solution of Problem 7.6. Using the identities found in section Section 4.2, this can be done with a few

manipulations:

(A−B)∪ (B−A) = (A∩B)∪ (B∩A)

= (A∪ (B∩A))∩ (B∪ (B∩A))

= [(A∪B)∩ (A∪A)]∩ [(B∪B)∩ (B∪A)]

= (A∪B)∩ (B∪A)

= (A∪B)∩ (A∩B)

= (A∪B)− (A∩B).

You could also give a a double-inclusion proof.

First, we show that (A−B)∪ (B−A) ⊆ (A∪B)− (A∩B). Note that A ⊆ A∪B and A∩B ⊆ B, so

(A−B)⊆ (A∪B)− (A∩B). Similarly, since B ⊆ A∪B and A∩B ⊆ A, we have (B−A)⊆ (A∪B)− (A∩B),

and therefore (A−B)∪ (B−A)⊆ (A∪B)− (A∩B).

Conversely, assume that x ∈ (A∪B)− (A∩B). Then in particular, x /∈ A∩B and x ∈ (A∩B). If x ∈ A,

then x /∈B, for otherwise x∈A∩B and we obtain a contradiction. Thus x∈A−B⊆ (A−B)∪(B−A). If now

x ∈ B, then x /∈ A, for otherwise x ∈ A∩B and we obtain a contradiction. Thus x ∈ B−A ⊆ (A−B)∪(B−A).

Therefore, we have (A∪B)− (A∩B)⊆ (A∪B)− (A∩B) and equality holds.
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7.3 Arbitrary unions and intersections

Problem 7.7. For i ∈ N, let Ai = (−i, i). Compute
⋃

∞
i=1 Ai.

Solution of Problem 7.7. We will show that
⋃

∞
i=1 Ai = R

•
⋃

∞
i=1 Ai ⊆ R

If x ∈
⋃

∞
i=1 Ai, then x ∈ Ai0 for some i0. Since Ai0 ⊆ R, then x ∈ R. Since x ∈

⋃
∞
i=1 Ai was arbitrary, it

follows that
⋃

∞
i=1 Ai ⊆ R.

• R⊆
⋃

∞
i=1 Ai

If x∈R, then there is some i∈N such that −i< x< i. Indeed if x= 0 any i⩾ 1 would work, otherwise

if x ̸= 0 then |x| > 0 and by the Archimedean principle there is an integer i ⩾ 1 such that |x| < i and

then −i < x < i. Thus x ∈ (−i, i) = Ai and x ∈
⋃

∞
i=1 Ai. Therefore R⊆

⋃
∞
i=1 Ai

By combining the two inclusions one has that R=
⋃

∞
i=1 Ai.

Problem 7.8. For i ∈ N, let Ai = (−i, i). Compute
⋂

∞
i=1 Ai.

Solution of Problem 7.8. We will show that
⋂

∞
i=1 Ai = (−1,1).

•
⋂

∞
i=1 Ai ⊆ (−1,1).

If x /∈ (−1,1), then x /∈ A1, and thus x /∈
⋂

∞
i=1 Ai. Therefore

⋂
∞
i=1 Ai ⊆ (−1,1).

• (−1,1)⊆
⋂

∞
i=1 Ai.

If x ∈ (−1,1), then x ∈ (−i, i) for all i ∈ N and thus (−1,1)⊆
⋂

∞
i=1 Ai.

Problem 7.9. For i ∈ N, let Ai =
[
0,1− 1

i

]
. Compute

⋃
i∈N Ai.

Solution of Problem 7.9. We will show that
⋃

i∈N Ai = [0,1).

•
⋃

i∈N Ai ⊆ [0,1)

If x ∈
⋃

i∈N Ai, then x ∈ A j for some j ∈ N. Thus 0 ⩽ x ⩽ 1− 1
j < 1, and hence x ∈ [0,1). Therefore,⋃

i∈N Ai ⊆ [0,1).
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• [0,1)⊆
⋃

i∈N Ai.

If now x ∈ [0,1), then 0 ⩽ x < 1. Thus 0 < 1−x and 1
1−x > 0, and by the Archimedean principle there

is some j ∈ N such that 1
1−x ⩽ j, and hence 1

j ⩽ 1− x. Thus 0 ⩽ x ⩽ 1− 1
j , and x ∈ [0,1− 1

j ] = A j.

Therefore x ∈
⋃

i∈N Ai, and [0,1)⊆
⋃

i∈N Ai.

By definition of equality between sets we have proven that
⋃

i∈N Ai = [0,1).

Problem 7.10. For i ∈ N, let Ai =
[
0,1− 1

i

]
. Compute

⋂
i∈N Ai.

Solution of Problem 7.10. We will show that
⋂

i∈N Ai = {0}.

•
⋂

i∈N Ai ⊆ {0}.

Suppose x ∈
⋂

i∈N Ai. Then in particular x ∈ A1 = [0,1−1] = {0}, and therefore
⋂

i∈N Ai ⊆ {0}.

• {0} ⊆
⋂

i∈N Ai

Conversely, 0 ∈
[
0,1− 1

j

)
= A j for all j ∈ N, and therefore {0} ⊆

⋂
i∈N Ai.

Problem 7.11. Let Xn = (2
n ,2n] for every integer n ⩾ 2.

1. Compute
⋃

∞
n=2 Xn.

2. Compute
⋂

∞
n=2 Xn.

Solution of Problem 7.11. 1. We will show that
⋃

∞
n=2 Xn = (0,∞).

First, we show that
⋃

∞
n=1 Xn ⊆ (0,∞). Let x∈

⋃
∞
n=2 Xn, then there exists k ⩾ 2 such that x∈Xk = (2

k ,2k]

and hence 2
k < x ⩽ 2k. Since it follows from k ⩾ 2 that 2

k ⩾ 1 > 0 and 2k < ∞ one has 0 < x < ∞ and

thus x ∈ (0,∞). Therefore
⋃

∞
n=2 Xn ⊆ (0,∞)

Assume now that x ∈ (0,∞), then x > 0 and also x
2 > 0. On one hand, if follows from the Archimedean

principle that there is some n1 ⩾ 2 such that n1 > x
2 , so 2n1 ⩾ x. On the other hand, 2

x > 0 and it

follows from the Archimedean principle that there exists n2 ⩾ 2 such that 2
x < n2 and hence x > 2

n2
.

Let k = max{n1,n2}⩾ 2 then 2
k ⩽ 2

n2
< x ⩽ 2n1 ⩽ k and hence x ∈ Xk. Therefore, (0,∞)⊆

⋃
∞
n=2 Xn.

2. We will show that
⋂

∞
n=2 Xn = (1,4].

Let x ∈
⋂

∞
n=2 Xn then x ∈ Xn = (2

n ,2n] for all integers n ⩾ 2. In particular, x ∈ X2 = (2
2 ,2 ·2] = (1,4].

Therefore,
⋂

∞
n=2 Xn ⊆ (1,4].
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Now, let x ∈ (1,4] then 1 < x ⩽ 4 and for all n ⩾ 2, it follows that 2
n ⩽ 1 < x ⩽ 4 ⩽ 2n. Therefore

x ∈ (2
n ,2n] = Xn for all n ⩾ 2, and (1,4]⊆

⋂
∞
n=2 Xn.

Problem 7.12. Let I be a nonempty set and let {Ai : i∈ I} be an indexed family of sets. Let X be a non-empty

set. Suppose that for all i ∈ I, X ⊆ Ai. Prove that X ⊆
⋂

i∈I Ai.

Solution of Problem 7.12. Suppose x ∈ X , and let i ∈ I be given. Since X ⊆ Ai, x ∈ Ai. Since i ∈ I was

arbitrary, x ∈ Ai for all i, thus x ∈
⋂

i∈I Ai, and therefore X ⊆
⋂

i∈I Ai.

Problem 7.13. Let {Ai : i ∈ N} be an indexed family of sets. Assume that for all i ∈ N, Ai+1 ⊆ Ai. Prove

that
⋃

i∈N Ai = A1.

Solution of Problem 7.13. If x ∈ A1, then there is some i ∈ N such that x ∈ Ai (namely, i = 1), and thus

x ∈
⋃

i∈N Ai.

Next, we show that Ai ⊆ A1 for all i ∈ N. Clearly A1 ⊆ A1. If now Am ⊆ A1, then Am+1 ⊆ Am ⊆ A1, so

Am+1 ⊆ A1. Thus it follows by induction that An ⊆ A1 for all n ∈ N.

Now assume x ∈
⋃

i∈N Ai. Then there is some n ∈ N such that x ∈ An. Since An ⊆ A1, it follows that

x ∈ A1.

Problem 7.14. Let (Xi)i∈I be a collection of subsets of an ambient set U. Show that

⋂
i∈I

Xi =
⋃
i∈I

X i.

Solution of Problem 7.14. We first prove the inclusion
⋂

i∈I Xi ⊆
⋃

i∈I X i.

If
⋂

i∈I Xi = /0 then the inclusion holds, otherwise let z ∈
⋂

i∈I Xi. Then z /∈
⋂

i∈I Xi (by definition of the

complement), and it follows that z /∈ Xi0 for some i0 ∈ I (by definition of the intersection). Thus, z ∈ Xi0 (by

definition of the complement), which means that z ∈
⋃

i∈I X i (by definition of the union).

For the reverse inclusion, if
⋃

i∈I X i = /0 then the inclusion holds, otherwise let z ∈
⋃

i∈I X i. Then z ∈ Xi0

for some i0 ∈ I (by definition of the union), and thus z /∈ Xi0 (by definition of the complement). It follows

that z /∈
⋂

i∈I Xi (by definition of the intersection), and hence z ∈
⋂

i∈I Xi (by definition of the complement).

Therefore, it follows from the definition of equality between sets that
⋃

i∈I Xi =
⋂

i∈I X i.

Problem 7.15. Let (Xi)i∈I be a collection of subsets of an ambient set U. Show that

⋃
i∈I

Xi =
⋂
i∈I

X i.
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Solution of Problem 7.15. We first prove the inclusion
⋃

i∈I Xi ⊆
⋂

i∈I X i.

If
⋃

i∈I Xi = /0 then the inclusion holds, otherwise let z ∈
⋃

i∈I Xi. Then z /∈
⋃

i∈I Xi (by definition of the

complement), and it follows that z /∈ Xi for all i ∈ I (by definition of the union). Thus, z ∈ Xi for all i ∈ I (by

definition of the complement), which means that z ∈
⋂

i∈I X i (by definition of the intersection).

For the reverse inclusion, if
⋂

i∈I X i = /0 then the inclusion holds, otherwise let z ∈
⋂

i∈I X i. Then z ∈ Xi

for all i∈ I (by definition of the intersection), and thus z /∈Xi for all i∈ I (by definition of the complement). It

follows that z /∈
⋃

i∈I Xi (by definition of the union), and hence z ∈
⋃

i∈I Xi (by definition of the complement).

Therefore, it follows from the definition of equality between sets that
⋃

i∈I Xi =
⋂

i∈I X i.

7.4 More problems

Problem 7.16. Let A = {x+ y
√

2 | x,y ∈ Q} ⊆ R.

(a) Prove that for all x,y ∈ Q, x+ y
√

2 = 0 if and only if x = y = 0.

(b) Prove that for all z1,z2 ∈ A, z1 + z2,z1z2 ∈ A and , for z2 ̸= 0, z1
z2
∈ A.

Solution of Problem 7.16. (a) Clearly if x= y= 0 then x+y
√

2= 0. Conversely, assume x+y
√

2= 0. Then

x =−y
√

2. If y ̸= 0 then
√

2 =− x
y ∈Q, a contradiction. Thus y = 0, and therefore 0 = x+ y

√
2 = x.

(b) Suppose z1,z2 ∈ A. Then there exist x1,x2,y1,y2 ∈Q such that zi = xi +yi
√

2 for i = 1,2. Then we have

z1 + z2 = (x1 + x2)+(y1 + y2)
√

2 ∈ A,

and

z1z2 = (x1x2 +2y1y2)+(x1y2 + x2y1)
√

2 ∈ A.

Now assume z2 ̸= 0. Then we have

z1

z2
=

x1 + y1
√

2
x2 + y2

√
2

=
x1 + y1

√
2

x2 + y2
√

2
· x2 − y2

√
2

x2 − y2
√

2

=
x1x2 −4y1y2

x2
2 +4y2

2
+

x2y1 − x1y2

x2
2 +4y2

2

√
2.

Since x1x2−4y1y2
x2

2+4y2
2

, x2y1−x1y2
x2

2+4y2
2

∈Q, it follows that z1
z2
∈ A.
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Problem 7.17. We say that the sequence of sets (Xn)
∞
n=1 is increasing, or an ascending chain, if X1 ⊆ X2 ⊆

X3 ⊆ ·· · ⊆ Xn ⊆ Xn+1 ⊆ . . . . Formally, (Xn)
∞
n=1 is increasing if

(∀n ∈ N)[Xn ⊆ Xn+1].

Show that the sequence of sets (Xn)
∞
n=1 is increasing if and only if

(∀n ∈ N)(∀k ∈ N)[(n ⩽ k) =⇒ (Xn ⊆ Xk)].

Hint. Your goal is to show that

(∀r ∈ N)[Xr ⊆ Xr+1] ⇐⇒ (∀k ∈ N)(∀n ∈ N)[(1 ⩽ n ⩽ k) =⇒ (Xn ⊆ Xk)]

For the implication ⇐= simply put n = r and k = r+ 1. For the implication =⇒ you need to assume

that (∀r ∈ N)[Xr ⊆ Xr+1] and show by induction on k that ∀k ∈ N P(k) is true, where P(k) is the predicate

(∀n ∈ N)[(1 ⩽ n ⩽ k) =⇒ (Xn ⊆ Xk)]. For the base case observe that P(1) is simply X1 ⊆ X1. For the

inductive step P(k + 1) is the predicate (∀n ∈ N)[(1 ⩽ n ⩽ k + 1) =⇒ (Xn ⊆ Xk+1)] and you need to

distinguish two cases: either 1 ⩽ n ⩽ k and you can use the induction hypothesis together with the other

assumption, or n = k+1

Problem 7.18. We say that the sequence of sets (Xn)
∞
n=1 is decreasing, or a descending chain, if X1 ⊇ X2 ⊇

X3 ⊇ ·· · ⊇ Xn ⊇ Xn+1 ⊇ . . . . Formally, (Xn)
∞
n=1 is increasing if

(∀n ∈ N)[Xn ⊆ Xn+1].

Show that the sequence of sets (Xn)
∞
n=1 is decreasing if and only if for all n,k ∈ N if n ⩽ k then Xn ⊇ Xk.

Hint. Your goal is to show that

(∀r ∈ N)[Xr ⊇ Xr+1] ⇐⇒ (∀k ∈ N)(∀n ∈ N)[(1 ⩽ n ⩽ k) =⇒ (Xn ⊇ Xk)]

For the implication ⇐= simply put n = r and k = r+ 1. For the implication =⇒ you need to assume

that (∀r ∈ N)[Xr ⊇ Xr+1] and show by induction on k that ∀k ∈ N P(k) is true, where P(k) is the predicate

(∀n ∈ N)[(1 ⩽ n ⩽ k) =⇒ (Xn ⊇ Xk)]. For the base case observe that P(1) is simply X1 ⊇ X1. For the

inductive step P(k + 1) is the predicate (∀n ∈ N)[(1 ⩽ n ⩽ k + 1) =⇒ (Xn ⊇ Xk+1)] and you need to

distinguish two cases: either 1 ⩽ n ⩽ k and you can use the induction hypothesis together with the other

assumption, or n = k+1
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Problem 7.19. Let X and Y be subsets of a universal set U. Show that X ∩Y = X ∪Y .

Solution of Problem 7.19. We first prove the inclusion X ∩Y ⊆ X ∪Y . If X ∩Y = /0 then the inclusion holds,

otherwise let z ∈ X ∩Y . Then z /∈ X ∩Y (by definition of the complement), and it follows that z /∈ X or z /∈Y

(by definition of the intersection). Thus, z ∈ X or z ∈Y (by definition of the complement), which means that

z ∈ X ∪Y (by definition of the union). We just proved that X ∩Y ⊆ X ∪Y .

For the reverse inclusion, if X ∪Y = /0 then the inclusion holds, otherwise let z ∈ X ∪Y . Then z ∈ X or

z ∈ Y (by definition of the union), and thus z /∈ X or z /∈ Y (by definition of the complement). It follows that

z /∈ X ∩Y (by definition of the intersection), and hence z ∈ X ∩Y (by definition of the complement). This

shows the reverse inclusion.

8 Functions

8.1 Composition

Problem 8.1. Let f ,g : R→ R be defined for all x ∈ R as f (x) = x2 −3x and g(x) = 5x−2.

1. Is it possible to define f ◦g? If it is, what is f ◦g.

2. Is it possible to define g◦ f ? If it is, what is g◦ f .

3. Are f ◦g and g◦ f equal? (Justify your answer)

Solution of Problem 8.1. 1. It is possible to define f ◦g : R→ R and for all x ∈ R

f ◦g(x) = f (g(x)) = (g(x))2 −3(g(x)) = (5x−2)2 −3(5x−2) = 25x2 −35x+10.

2. It is possible to define g◦ f : R→ R and for all x ∈ R

(g◦ f )(x) = g( f (x)) = 5( f (x))−2 = 5(x2 −3x)−2 = 5x2 −15x−2.

3. Let x = 0 then (g◦ f )(0) =−2 ̸= 10 = ( f ◦g)(0) and thus f ◦g ̸= g◦ f .

Problem 8.2. Let f ,g : Z→ Z be defined for all n ∈ Z as f (n) = 2n+3 and

g(n) =

 2n−1 if n is even,

n+1 if n is odd.
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1. Is it possible to define f ◦g? If it is, what is f ◦g.

2. Is it possible to define g◦ f ? If it is, what is g◦ f .

3. Are f ◦g and g◦ f equal? (Justify your answer)

Solution of Problem 8.2. 1. It is possible to define f ◦g : Z→ Z and for all n ∈ Z, since we have f (2n−

1) = 4n+1 and f (n+1) = 2n+5, it follows that

( f ◦g)(n) =

 4n+1 if n is even,

2n+5 if n is odd.

2. Since f (n) is odd for any n ∈ Z, we have

(g◦ f )(n) = f (n)+1 = (2n+3)+1 = 2n+4.

3. Let n = 0 then n is even and (g◦ f )(0) = 4 ̸= 1 = ( f ◦g)(0). Therefore, g◦ f ̸= f ◦g.

8.2 Injectivity, surjectivity, bijectivity

Problem 8.3. For f : R→ R defined by f (x) = x+ |x|, determine if:

1. f is injective,

2. f is surjective,

3. f is bijective.

Solution of Problem 8.3. First, note that

f (x) =

 2x : x ⩾ 0,

0 : x < 0.

1. f is not injective, since f (−1) = 0 = f (0).

2. f is not surjective, since y ∈R is not in the range of f whenever y < 0. Indeed, for any x ∈R we have

x+ |x|⩾ x+(−x) = 0, so f (x)⩾ 0.

3. f is not bijective because it is not injective (nor surjective).
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8.3 Composition and injectivity/surjectivity

Problem 8.4. Let W,X ,Y be nonempty sets. Let f : W → X, g : X → Y be functions. Show that if g ◦ f is

surjective, then g is surjective.

Solution of Problem 8.4. Fix y ∈ Y . Since g◦ f is surjective, there is some w ∈W such that (g◦ f )(w) = y.

Put x = f (w). Then x ∈ X and g(x) = g( f (w)) = (g◦ f )(w) = y. Therefore, g is surjective.

Problem 8.5. Let W,X ,Y be nonempty sets. Let f : W → X, g : X → Y be functions. Show that if g ◦ f is

injective, then f is injective.

Solution of Problem 8.5. Assume that g ◦ f is injective. Let w1,w2 ∈ W such that f (w1) = f (w2). Since g

is a function one has g( f (w1)) = g( f (w2)) and (g◦ f )(w1) = (g◦ f )(w2) (by definition of the composition).

Since g◦ f is injective it implies that w1 = w2, and f is injective.

Problem 8.6. Let X and Y be nonempty sets and let f : X →Y be a function. Prove that f is injective if and

only if for all sets Z, for all functions h : Z → X and k : Z → X, if f ◦h = f ◦ k, then h = k.

Solution of Problem 8.6. First suppose f is injective. Let Z be a set, and let h,k : Z → X be functions such

that f ◦h = f ◦ k. Given z ∈ Z, since f (h(z)) = f (k(z)), it follows that h(z) = k(z). Thus h = k.

Conversely assume f is not injective. Then there exist x1,x2 ∈ X such that x1 ̸= x2 while f (x1) = f (x2).

Define h,k : X → X by h(x) = x1 and k(x) = x2 for all x ∈ X . Then for all x ∈ X , f (h(x)) = f (x1) = f (x2) =

f (k(x)), so f ◦h = f ◦ k, but h ̸= k.

Problem 8.7. Let X and Y be nonempty sets and let f : X → Y be a function. Prove that f is surjective if

and only if for all sets Z, for all functions h : Y → Z and k : Y → Z, if h◦ f = k ◦ f , then h = k.

Solution of Problem 8.7. First assume f is surjective. Let Z be a set, and let h,k : Y → Z be functions such

that h◦ f = k◦ f . Given y ∈Y , there is some x ∈ X such that y = f (x), and thus h(y) = h( f (x)) = k( f (x)) =

k(y). Therefore, h = k.

Conversely, assume f is not surjective. Then there is some y0 ∈ Y such that the set {x ∈ X : f (x) = y0}

is empty. Put h = iY , and let k : Y → Y be defined by k(y) = y if y ̸= y0 and k(y0) = y1 for some y1 ∈ Y with

y0 ̸= y1. Then h ̸= k since h(y0) = y0 ̸= y1 = k(y0), but h◦ f = k ◦ f .

9 Injectivity, surjectivity, and one-sided invertibility

Problem 9.1. Let X and Y be nonempty sets and f : X → Y be a function. We say that f is left-invertible

(or admits a left-inverse) if there exists a function g : Y → X such that g◦ f = iX . Prove that f is injective if
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and only if f is left-invertible.

Solution of Problem 9.1. Suppose first that f is left-invertible. Then there is some function g : Y → X such

that g ◦ f = iX . Let x1,x2 ∈ X such that f (x1) = f (x2), then g( f (x1)) = g( f (x2)) (since g is a function),

and thus (g ◦ f )(x1) = (g ◦ f )(x2) (by definition of the composition). It follows from the assumption that

iX(x1) = iX(x2) and hence x1 = x2 (by definition of the identity function on X). Therefore f is injective.

Conversely, assume f is injective. Define a function g : Y → X as follows: if y = f (x) for some (and

hence only one by injectivity) x ∈ X , put g(y) = x, and otherwise define g(y) arbitrarily. Then for each x ∈ X ,

let y = f (x). Then g(y) = x, that is, g( f (x)) = x and hence (g◦ f )(x) = x (by definition of the composition).

By definition of the identity function (g◦ f )(x) = iX(x) and thus g◦ f = iX . Therefore f is left-invertible.

Problem 9.2. Let X and Y be nonempty sets, and f : X → Y be a function. We say that f is right-invertible

(or admits a right-inverse) if there exists a function g : Y → X such that f ◦ g = iY . Prove that if f has a

right-inverse then f is surjective.

Solution of Problem 9.2. Suppose first that f is right-invertible. Then there is some function h : Y → X such

that f ◦h = iY . Let y ∈ Y , then

y = iY (y) (by definition of the identity function on Y )

= ( f ◦h)(y) (since f ◦h(y) = iY (y) by definition of h being a right-inverse of f )

= f (h(y)) (by definition of the composition).

If we let x = h(y) then x ∈ X (since the codomain of h is X) and y = f (x). We just proved that for all y ∈ Y ,

there is x ∈ X such that y = f (x), which means that f is surjective.

10 Functions and sets

Problem 10.1. Let X and Y be nonempty sets, and f : X → Y be an injective function. Let A be a subset of

X. Prove that f−1( f (A)) = A.

Solution of Problem 10.1. The result is proved by a double inclusion argument. We first prove that f−1( f (A))⊆

A. If f−1( f (A)) = /0 then the inclusion holds. Otherwise let x ∈ f−1( f (A)), then f (x) ∈ f (A) (by definition

of the inverse image of a subset), and there exists a ∈ A such that f (x) = f (a) (by definition of the image of

a subset). Since f is injective it follows that x = a, and hence x ∈ A (because a ∈ A).

We now prove that A ⊆ f−1( f (A)). If A = /0 the inclusion holds. Otherwise, let x ∈ A, then f (x) ∈ f (A)

(by definition of the image of a subset) and x ∈ f−1( f (A)) (by definition of the inverse image of a subset).
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Problem 10.2. Let X and Y be nonempty sets, and f : X →Y be an surjective function. Let A be a subset of

Y . Prove that f ( f−1(A)) = A.

Solution of Problem 10.2. The result is proved by a double inclusion argument. We first prove that f ( f−1(A))⊆

A. If f ( f−1(A)) = /0 the inclusion holds. Otherwise let y ∈ f ( f−1(A)), then y = f (x) for some x ∈ f−1(A)

(by definition of the image), and f (x) ∈ A (by definition of the inverse image). But y = f (x) belongs to A

since f (x) does. Therefore f−1( f (A))⊆ A.

We now prove that A ⊆ f ( f−1(A)). If A = /0 the inclusion holds. Otherwise let a ∈ A, then a ∈ Y since

A is a subset of Y . By surjectivity of f , there exists x ∈ X such that a = f (x), and f (x) ∈ A (since a is in A).

It follows that x ∈ f−1(A) (by definition of the inverse image) and f (x) ∈ f ( f−1(A)) (by definition of the

image). Therefore a ∈ f ( f−1(A)).

11 Supplementary problems

Problem 11.1. Let f1 : X1 →X2, f2 : X2 →X3, f3 : X3 →X4 and f4 : X4 →X5. Show that (( f4◦ f3)◦ f2)◦ f1 =

f4 ◦ ( f3 ◦ ( f2 ◦ f1)).

Problem 11.2. Let X and Y be nonempty sets, and f : X → Y be a function. Prove that f is surjective then

f is right-invertible.

Solution of Problem 11.3. Assume f is surjective. For each y ∈ Y , the set {x ∈ X : f (x) = y} is non-empty.

Note that if y1 ̸= y2, then {x ∈ X : f (x) = y1}∩{x ∈ X : f (x) = y2}=∅. By the axiom of choice, there is a

function h : Y → X such that for each y ∈ Y , h(y) ∈ {x ∈ X : f (x) = y}. Hence f (h(y)) = y for each y ∈ Y ,

so f ◦h = iY and therefore f is right-invertible.

Problem 11.3. Let f1 : X1 →X2, f2 : X2 →X3, f3 : X3 →X4 be three injective functions. Show that f3◦ f2◦ f1

is injective.
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