REAL ANALYSIS MATH 608 HOMEWORK #3

Problem 1.

- (1) Let $f: X \to Y$ be a bijection that is continuous, where X is a compact topological space and Y is a Hausdorff topological space. Show that $f^{-1}: Y \to X$ is continuous.
- (2) Show that a metric space is normal.

Problem 2. Let X be a set and $\{f_i : X \to (Y_i, \tau_i)\}_{i \in I}$ be a collection of functions. Let τ_{ini} be the initial topology on X generated by $\{f_i\}_{i \in I}$.

- (1) Show that a net $(x_{\alpha})_{\alpha \in D}$ in X converges to $x \in X$ in the initial topology if and only if $(f_i(x_{\alpha}))_{\alpha \in D}$ converges to $f_i(x)$, for all $i \in I$.
- (2) Interpret the previous result (restricting to sequences) in the case when for all $i \in I$, $Y_i = Y$, $X = \prod_{i \in I} Y_i = Y^I$ and $f_i = \pi_i$ is the canonical projection on the *i*-th coordinate.

Problem 3. Assume that $(X_i)_{i \in I}$ is a family of topological spaces for which infinitely many are not compact. Let K be a subset of $\prod_{i \in I} X_i$ that is closed and compact in the product topology. Show that K is nowhere dense.

Problem 4. Let X be a set and $\{f_i : X \to (Y_i, \tau_i)\}_{i \in I}$ be a collection of functions. Let τ_{ini} be the initial topology on X generated by $\{f_i\}_{i \in I}$

- (1) Show that if (X, τ_{ini}) is a T_0 -space, then for all $x \neq y \in X$ there exists $i_0 \in I$ such that $f_{i_0}(x) \neq f_{i_0}(y)$.
- (2) Let $k \in \{0, 1, 2\}$. Assume that for all $i \in I$ (Y_i, τ_i) is a T_k -space. Show that if for all $x \neq y \in X$ there exists $i_0 \in I$ such that $f_{i_0}(x) \neq f_{i_0}(y)$, then (X, τ_{ini}) is a T_k -space.

Problem 5. Let (X, d_X) be a metric space and $\alpha > 0$. We say that a continuous function $f : X \to \mathbb{C}$ is Hölder continuous of exponent α , if there is C > 0 such that for all $x, y \in X$,

$$|f(x) - f(y)| \le Cd_X^{\alpha}(x, y).$$

or equivalently

$$Lip_{\alpha}(f) \stackrel{\text{def}}{=} \sup_{x \neq y} \frac{|f(x) - f(y)|}{d_{X}^{\alpha}(x, y)} < \infty.$$

Show that if X is compact then the set

$$S = \{ f \in C(X) \colon \sup_{x \in X} |f(x)| \le 1 \text{ and } Lip_{\alpha}(f) \le 1 \}.$$

is compact (for the uniform topology on C(X)).