REAL ANALYSIS MATH 608 HOMEWORK \#3

Problem 1.

(1) Let $f: X \rightarrow Y$ be a bijection that is continuous, where X is a compact topological space and Y is a Hausdorff topological space. Show that $f^{-1}: Y \rightarrow X$ is continuous.
(2) Show that a metric space is normal.

Solution.

(1) Observe that it follows immediately from the identity $g^{-1}(A)=g^{-1}\left(A^{c}\right)^{c}$, that a function g is continuous of a function if and only if the inverse image of a closed set is closed.

Let $F \subset X$ be closed. Then F is compact since X is compact. Now, $\left(f^{-1}\right)^{-1}(F)=f(F)$ which is compact since f is continuous. But $f(F)$ is closed in Y since Y is Hausdorff, and hence f^{-1} is continuous by the observation above.
(2) Let F, G be closed and disjoint subsets of $\left(X, d_{X}\right)$. Observe that $d(x, A) \stackrel{\text { def }}{=} \inf \left\{d_{X}(x, a): a \in A\right\}=0$ if and only if $x \in \bar{A}$. Indeed, if x is in the closure of A then there is a sequence $\left(a_{n}\right)_{n}$ in A such that $\lim _{n} d\left(x, a_{n}\right)=0$ and hence $d(x, A)=0$. If $d(x, A)=0$ then by definition there is a sequence $\left(a_{n}\right)_{n}$ in A such that $\lim _{n} d\left(x, a_{n}\right)=0$, which means that x is in the closure of A. Consider the sets $U \stackrel{\text { def }}{=}$ $\cup_{x \in F} B\left(x, \frac{1}{3} d(x, G)\right)$ and $V \stackrel{\text { def }}{=} \cup_{y \in G} B\left(y, \frac{1}{3} d(y, F)\right)$. By the observation above, the radii are all positive because F and G are disjoint, and U and V are open sets such that $F \subset U$ and $G \subset V$. It remains to show that they are disjoint. Assume that there is $z \in U \cap V$, then $z \in B\left(x, \frac{1}{3} d(x, G)\right) \cap B\left(y, \frac{1}{3} d(y, G)\right)$ for some $x \in F$ and $y \in G$. The following inequalities provide a contradiction:

$$
\max \{d(x, G), d(y, G)\} \leqslant d_{X}(x, y) \leqslant d_{X}(x, z)+d_{X}(z, y) \leqslant \frac{1}{3} d(x, G)+\frac{1}{3} d(y, G) \leqslant \frac{2}{3} \max \{d(x, G), d(y, G)\} .
$$

Problem 2. Let X be a set and $\left\{f_{i}: X \rightarrow\left(Y_{i}, \tau_{i}\right)\right\}_{i \in I}$ be a collection of functions. Let $\tau_{i n i}$ be the initial topology on X generated by $\left\{f_{i}\right\}_{i \in I}$.
(1) Show that a net $\left(x_{\alpha}\right)_{\alpha \in D}$ in X converges to $x \in X$ in the initial topology if and only if $\left(f_{i}\left(x_{\alpha}\right)\right)_{\alpha \in D}$ converges to $f_{i}(x)$, for all $i \in I$.
(2) Interpret the previous result (restricting to sequences) in the case when for all $i \in I, Y_{i}=Y, X=$ $\Pi_{i \in I} Y_{i}=Y^{I}$ and $f_{i}=\pi_{i}$ is the canonical projection on the i-th coordinate.

Solution. (1) One direction is easy since by definition, for all i, $f_{i}:\left(X, \tau_{i n i}\right) \rightarrow\left(Y_{i}, \tau_{i}\right)$ is continuous and thus $\left(f_{i}\left(x_{\alpha}\right)\right)_{\alpha \in D}$ converges to $f_{i}(x)$ whenever $\left(x_{\alpha}\right)_{\alpha \in D}$ converges to $x \in X$ in the initial topology.

For the other implication, recall that a neighborhood basis of $x \in X$ for the initial topology consists of sets of the form $\cap_{i \in F} f_{i}^{-1}\left(U_{i}\right)$, where F is a finite subset of I, and $U_{i} \in \tau_{i}$. If for all $i \in I,\left(f_{i}\left(x_{\alpha}\right)\right)_{\alpha \in D}$ converges to $f_{i}(x)$, then $\left(f_{i}\left(x_{\alpha}\right)\right)_{\alpha \in D}$ is eventually in U_{i} for all $i \in F$, and since F is finite we can certainly find $\beta \in D$ such that for all $\alpha \geqslant \beta$, and all $i \in F, f_{i}\left(x_{\alpha}\right) \in U_{i}$. Taking inverse images, this means that $\left(x_{\alpha}\right)_{\alpha \in D}$ is eventually in $\cap_{i \in F} f_{i}^{-1}\left(U_{i}\right)$, from which we conclude that $\left(x_{\alpha}\right)_{\alpha \in D}$ converges to $x \in X$ in the initial topology.
(2) A sequence in Y^{I} can (should!) be seen as a sequence of functions $\left\{g_{n}: I \rightarrow Y\right\}_{n \geqslant 1}$. By (1), $\left(g_{n}\right)_{n}$ converges to $g: I \rightarrow Y$ in the initial topology generated by the projections (which is the product
topology on Y^{I}) if and only if for all $i \in I, \pi_{i}\left(g_{n}\right)$ converges to $\pi_{i}(g)$. Since $\pi_{i}\left(g_{n}\right)=g_{n}(i)$, we can rephrase this by saying that $\left(g_{n}\right)_{n}$ converges to g in the product topology if and only if $\left(g_{n}\right)_{n}$ converges pointwise to g. This is the reason why the product topology is also called the topology of pointwise convergence.

Problem 3. Assume that $\left(X_{i}\right)_{i \in I}$ is a family of topological spaces for which infinitely many are not compact. Let K be a subset of $\prod_{i \in I} X_{i}$ that is closed and compact in the product topology. Show that K is nowhere dense.

Solution. Assume the claim is not true and hence $K^{\circ} \neq \emptyset$. Thus there is an $x \in K$ and a neighborhood U of x so that $U \subset K$.

We can assume that U is of the form $U=\prod_{i \in I} U_{i}$ with U_{i} open in X_{i} for $i \in I$, and with $F=\left\{i \in I: U_{i} \neq X_{i}\right\}$ is finite.

Since $\left\{i \in I: X_{i}\right.$ not compact $\}$ is infinite, we can choose an $i_{0} \in I$ so that $X_{i_{0}}$ is not compact and so that $U_{i_{0}}=X_{i_{0}}$.

Now since continuous images of compact sets are also compact, the projection $\pi_{i_{0}}(K)$ onto $X_{i_{0}}$ is compact, and therefore cannot be equal to whole space $X_{i_{0}}$. We deduce that there must be an $x_{i_{0}} \in X_{i_{0}} \backslash \pi_{i_{0}}(K)=$ $U_{i_{0}} \backslash \pi_{i_{0}}(K)$ and for $i \in I \backslash\left\{i_{0}\right\}$ we pick an $x_{i} \in U_{i}$. Therefore $\left(x_{i}\right)_{i \in I} \in U \subset K$, but, since $x_{i_{0}} \notin \pi_{i_{0}}(K)$ we have that $\left(x_{i}\right)_{i \in I} \notin K$, which is a contradiction.

Problem 4. Let X be a set and $\left\{f_{i}: X \rightarrow\left(Y_{i}, \tau_{i}\right)\right\}_{i \in I}$ be a collection of functions. Let $\tau_{i n i}$ be the initial topology on X generated by $\left\{f_{i}\right\}_{i \in I}$
(1) Show that if $\left(X, \tau_{i n i}\right)$ is a T_{0}-space, then for all $x \neq y \in X$ there exists $i_{0} \in I$ such that $f_{i_{0}}(x) \neq f_{i_{0}}(y)$.
(2) Let $k \in\{0,1,2\}$. Assume that for all $i \in I\left(Y_{i}, \tau_{i}\right)$ is a T_{k}-space. Show that if for all $x \neq y \in X$ there exists $i_{0} \in I$ such that $f_{i_{0}}(x) \neq f_{i_{0}}(y)$, then $\left(X, \tau_{i n i}\right)$ is a T_{k}-space.

Solution. (1) Let $x \neq y \in X$, Since $\tau_{\text {ini } i}$ is T_{0}, there is an open set $U \in \tau_{\text {ini }}$ such that, say, $x \in U$ and $y \notin U$. Let F a finite subset of I, and U_{i} open set in Y_{i} such that $x \in \cap_{i \in F} f_{i}^{-1}\left(U_{i}\right) \subset U$. Since $y \notin \cap_{i \in F} f_{i}^{-1}\left(U_{i}\right)$, there is $i_{0} \in F$ such that $f_{i_{0}}(y) \notin U_{i_{0}}$. Since $f_{i_{0}}(x) \in U_{i_{0}}$ it follows that $f_{i_{0}}(x) \neq f_{i_{0}}(y)$.
(2) We will prove it for the T_{2} separation property. Let $x \neq y \in X$, then $f_{i_{0}}(x) \neq f_{i_{0}}(y)$, and by Haussdorfness of $Y_{i_{0}}$, there are disjoint open sets U, V such that $f_{i_{0}}(x) \in U$ and $f_{i_{0}}(y) \in V$, i.e. $x \in f_{i_{0}}^{-1}(U)$ and $y \in f_{i_{0}}^{-1}(V)$. Since $f_{i_{0}}^{-1}(U)$ and $f_{i_{0}}^{-1}(V)$ are open sets for the initial topology and are clearly disjoint, the conclusion follows. A similar argument can be given to treat the two other separation properties. If $Y_{i_{0}}$ is only T_{1}, then there is a disjoint open set U such that $f_{i_{0}}(x) \in U$ and $f_{i_{0}}(y) \notin U$, i.e. $x \in f_{i_{0}}^{-1}(U)$ and $y \notin f_{i_{0}}^{-1}(U)$. Since $f_{i_{0}}^{-1}(U)$ and $f_{i_{0}}^{-1}(V)$ are open sets for the initial topology and are clearly disjoint, the conclusion follows observing that the role of x and y can be reversed.

If $Y_{i_{0}}$ is only T_{0}, then there is a disjoint open set U such that, say, $f_{i_{0}}(x) \in U$ and $f_{i_{0}}(y) \notin U$, i.e. $x \in f_{i_{0}}^{-1}(U)$ and $y \notin f_{i_{0}}^{-1}(U)$. Since $f_{i_{0}}^{-1}(U)$ and $f_{i_{0}}^{-1}(V)$ are open sets for the initial topology and are clearly disjoint, the conclusion follows.

Problem 5. Let $\left(X, d_{X}\right)$ be a metric space and $\alpha>0$. We say that a continuous function $f: X \rightarrow \mathbb{C}$ is Hölder continuous of exponent α, if there is $C>0$ such that for all $x, y \in X$,

$$
|f(x)-f(y)| \leqslant C d_{X}^{\alpha}(x, y)
$$

or equivalently

$$
\operatorname{Lip}_{\alpha}(f) \stackrel{\text { def }}{=} \sup _{x \neq y} \frac{|f(x)-f(y)|}{d_{X}^{\alpha}(x, y)}<\infty .
$$

Show that if X is compact then the set

$$
S=\left\{f \in C(X): \sup _{x \in X}|f(x)| \leqslant 1 \text { and } \operatorname{Lip}_{\alpha}(f) \leqslant 1\right\}
$$

is compact (for the uniform topology on $C(X)$).
Solution. This is an ultra-typical application of Arzelà-Ascoli.
S is pointwise bounded: This is immediate from the condition $\sup _{x \in X}|f(x)| \leqslant 1$ in the definition of S and the condition (it is in fact uniformly bounded)
S is equicontinuous: This follows from the condition $\operatorname{Lip}_{\alpha}(f) \leqslant 1$ in the definition of S (in fact S is equi-uniformly continuous). Let $\varepsilon>0$ and choose $\delta=\varepsilon^{1 / \alpha}>0$ (which does not depend on any $f \in S$ nor $x \in X$). Then for all $x, y \in X$, and all $f \in S$, if $d_{X}(x, y)<\delta$ it follows that

$$
|f(x)-f(y)| \leqslant d^{\alpha}(x, y)<\delta^{\alpha}=\varepsilon
$$

S is closed: This will be true by continuity of the module and because the defining conditions for S involve non-strict inequalities and are "closed" conditions. Assume that $\left(f_{n}\right)_{n} \subset S$ and $f \in C(X)$ so that $d_{u}\left(f_{n}, f\right) \rightarrow 0$ for $n \rightarrow \infty$. Then

$$
\begin{aligned}
\sup _{x \neq y} \frac{|f(x)-f(y)|}{d^{\alpha}(x, y)} & =\sup _{x \neq y} \lim _{n \rightarrow \infty} \frac{\left|f_{n}(x)-f_{n}(y)\right|}{d^{\alpha}(x, y)} \\
& \leqslant \sup _{x \neq y} \sup _{n \in \mathbb{N}} \frac{\left|f_{n}(x)-f_{n}(y)\right|}{d^{\alpha}(x, y)} \\
& =\sup _{n \in \mathbb{N}} \sup _{x \neq y} \frac{\left|f_{n}(x)-f_{n}(y)\right|}{d^{\alpha}(x, y)}=\sup _{n \in \mathbb{N}} \operatorname{Lip}\left(p_{\alpha}\right) \leqslant 1 .
\end{aligned}
$$

Moreover, since for all $x \in X,|f(x)|=\lim _{n}\left|f_{n}(x)\right|$ (by continuity of the $|\cdot|$), it follows that $\sup _{x \in x}|f(x)| \leqslant$ 1. Thus $f \in S$, and S is closed.

The conclusion now follows from Arzelà-Ascoli theorem.

