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HOMEWORK #3

Problem 1.
(1) Let f : X→ Y be a bijection that is continuous, where X is a compact topological space and Y is a

Hausdorff topological space. Show that f −1 : Y → X is continuous.
(2) Show that a metric space is normal.

Solution.
(1) Observe that it follows immediately from the identity g−1(A) = g−1(Ac)c, that a function g is contin-

uous of a function if and only if the inverse image of a closed set is closed.
Let F ⊂ X be closed. Then F is compact since X is compact. Now, ( f −1)−1(F) = f (F) which

is compact since f is continuous. But f (F) is closed in Y since Y is Hausdorff, and hence f −1 is
continuous by the observation above.

(2) Let F,G be closed and disjoint subsets of (X,dX). Observe that d(x,A) def
= inf{dX(x,a) : a ∈ A} = 0 if

and only if x ∈ A. Indeed, if x is in the closure of A then there is a sequence (an)n in A such that
limn d(x,an) = 0 and hence d(x,A) = 0. If d(x,A) = 0 then by definition there is a sequence (an)n

in A such that limn d(x,an) = 0, which means that x is in the closure of A. Consider the sets U def
=

∪x∈F B(x, 1
3 d(x,G)) and V def

= ∪y∈GB(y, 1
3 d(y,F)). By the observation above, the radii are all positive

because F and G are disjoint, and U and V are open sets such that F ⊂ U and G ⊂ V . It remains to
show that they are disjoint. Assume that there is z ∈ U ∩V , then z ∈ B(x, 1

3 d(x,G))∩ B(y, 1
3 d(y,G))

for some x ∈ F and y ∈G. The following inequalities provide a contradiction:

max{d(x,G),d(y,G)} 6 dX(x,y) 6 dX(x,z) + dX(z,y) 6
1
3

d(x,G) +
1
3

d(y,G) 6
2
3

max{d(x,G),d(y,G)}.

�

Problem 2. Let X be a set and { fi : X→ (Yi, τi)}i∈I be a collection of functions. Let τini be the initial topology
on X generated by { fi}i∈I .

(1) Show that a net (xα)α∈D in X converges to x ∈ X in the initial topology if and only if ( fi(xα))α∈D
converges to fi(x), for all i ∈ I.

(2) Interpret the previous result (restricting to sequences) in the case when for all i ∈ I, Yi = Y, X =

Πi∈IYi = Y I and fi = πi is the canonical projection on the i-th coordinate.

Solution. (1) One direction is easy since by definition, for all i, fi : (X, τini)→ (Yi, τi) is continuous and
thus ( fi(xα))α∈D converges to fi(x) whenever (xα)α∈D converges to x ∈ X in the initial topology.

For the other implication, recall that a neighborhood basis of x ∈ X for the initial topology consists
of sets of the form ∩i∈F f −1

i (Ui), where F is a finite subset of I, and Ui ∈ τi. If for all i ∈ I, ( fi(xα))α∈D
converges to fi(x), then ( fi(xα))α∈D is eventually in Ui for all i ∈ F, and since F is finite we can
certainly find β ∈ D such that for all α > β, and all i ∈ F, fi(xα) ∈ Ui. Taking inverse images, this
means that (xα)α∈D is eventually in ∩i∈F f −1

i (Ui), from which we conclude that (xα)α∈D converges to
x ∈ X in the initial topology.

(2) A sequence in Y I can (should!) be seen as a sequence of functions {gn : I → Y}n>1. By (1), (gn)n
converges to g : I → Y in the initial topology generated by the projections (which is the product
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topology on Y I) if and only if for all i ∈ I, πi(gn) converges to πi(g). Since πi(gn) = gn(i), we can
rephrase this by saying that (gn)n converges to g in the product topology if and only if (gn)n converges
pointwise to g. This is the reason why the product topology is also called the topology of pointwise
convergence.

�

Problem 3. Assume that (Xi)i∈I is a family of topological spaces for which infinitely many are not compact.
Let K be a subset of

∏
i∈I Xi that is closed and compact in the product topology. Show that K is nowhere

dense.

Solution. Assume the claim is not true and hence K◦ , ∅. Thus there is an x ∈ K and a neighborhood U of
x so that U ⊂ K.

We can assume that U is of the form U =
∏

i∈I Ui with Ui open in Xi for i ∈ I, and with F = {i ∈ I : Ui , Xi}

is finite.
Since {i ∈ I : Xi not compact} is infinite, we can choose an i0 ∈ I so that Xi0 is not compact and so that

Ui0 = Xi0 .
Now since continuous images of compact sets are also compact, the projection πi0(K) onto Xi0 is compact,

and therefore cannot be equal to whole space Xi0 . We deduce that there must be an xi0 ∈ Xi0 \ πi0(K) =

Ui0 \πi0(K) and for i ∈ I \ {i0} we pick an xi ∈ Ui. Therefore (xi)i∈I ∈ U ⊂ K, but, since xi0 < πi0(K) we have
that (xi)i∈I < K, which is a contradiction. �

Problem 4. Let X be a set and { fi : X→ (Yi, τi)}i∈I be a collection of functions. Let τini be the initial topology
on X generated by { fi}i∈I

(1) Show that if (X, τini) is a T0-space, then for all x , y ∈ X there exists i0 ∈ I such that fi0(x) , fi0(y).
(2) Let k ∈ {0,1,2}. Assume that for all i ∈ I (Yi, τi) is a Tk-space . Show that if for all x , y ∈ X there

exists i0 ∈ I such that fi0(x) , fi0(y), then (X, τini) is a Tk-space.

Solution. (1) Let x , y ∈ X, Since τini is T0, there is an open set U ∈ τini such that, say, x ∈U and y <U.
Let F a finite subset of I, and Ui open set in Yi such that x ∈ ∩i∈F f −1

i (Ui)⊂U. Since y <∩i∈F f −1
i (Ui),

there is i0 ∈ F such that fi0(y) < Ui0 . Since fi0(x) ∈ Ui0 it follows that fi0(x) , fi0(y).
(2) We will prove it for the T2 separation property. Let x , y ∈ X, then fi0(x) , fi0(y), and by Haussdorf-

ness of Yi0 , there are disjoint open sets U,V such that fi0(x) ∈ U and fi0(y) ∈ V , i.e. x ∈ f −1
i0

(U) and
y ∈ f −1

i0
(V). Since f −1

i0
(U) and f −1

i0
(V) are open sets for the initial topology and are clearly disjoint,

the conclusion follows. A similar argument can be given to treat the two other separation proper-
ties. If Yi0 is only T1, then there is a disjoint open set U such that fi0(x) ∈ U and fi0(y) < U, i.e.
x ∈ f −1

i0
(U) and y < f −1

i0
(U). Since f −1

i0
(U) and f −1

i0
(V) are open sets for the initial topology and are

clearly disjoint, the conclusion follows observing that the role of x and y can be reversed.
If Yi0 is only T0, then there is a disjoint open set U such that, say, fi0(x) ∈ U and fi0(y) < U, i.e.

x ∈ f −1
i0

(U) and y < f −1
i0

(U). Since f −1
i0

(U) and f −1
i0

(V) are open sets for the initial topology and are
clearly disjoint, the conclusion follows.
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Problem 5. Let (X,dX) be a metric space and α > 0. We say that a continuous function f : X→ C is Hölder
continuous of exponent α, if there is C > 0 such that for all x,y ∈ X,

| f (x)− f (y)| 6CdαX(x,y),

or equivalently

Lipα( f ) def
= sup

x,y

| f (x)− f (y)|
dαX(x,y)

<∞.

Show that if X is compact then the set

S = { f ∈C(X) : sup
x∈X
| f (x)| 6 1 and Lipα( f ) 6 1}.

is compact (for the uniform topology on C(X)).

Solution. This is an ultra-typical application of Arzelà-Ascoli.
S is pointwise bounded: This is immediate from the condition supx∈X | f (x)| 6 1 in the definition of S

and the condition (it is in fact uniformly bounded)
S is equicontinuous: This follows from the condition Lipα( f ) 6 1 in the definition of S (in fact S is

equi-uniformly continuous). Let ε > 0 and choose δ = ε1/α > 0 (which does not depend on any f ∈ S
nor x ∈ X). Then for all x,y ∈ X, and all f ∈ S , if dX(x,y) < δ it follows that

| f (x)− f (y)| 6 dα(x,y) < δα = ε,

S is closed: This will be true by continuity of the module and because the defining conditions for S
involve non-strict inequalities and are “closed" conditions. Assume that ( fn)n ⊂ S and f ∈ C(X) so
that du( fn, f )→ 0 for n→∞. Then

sup
x,y

| f (x)− f (y)|
dα(x,y)

= sup
x,y

lim
n→∞

| fn(x)− fn(y)|
dα(x,y)

6 sup
x,y

sup
n∈N

| fn(x)− fn(y)|
dα(x,y)

= sup
n∈N

sup
x,y

| fn(x)− fn(y)|
dα(x,y)

= sup
n∈N

Lipα( fn) 6 1.

Moreover, since for all x ∈ X, | f (x)|= limn| fn(x)| (by continuity of the |·|), it follows that supx∈x| f (x)|6
1. Thus f ∈ S , and S is closed.

The conclusion now follows from Arzelà-Ascoli theorem.
�
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