REAL ANALYSIS MATH 608
HOMEWORK #3

Problem 1.

(1) Let f: X = Y be a bijection that is continuous, where X is a compact topological space and Y is a
Hausdorff topological space. Show that f~': Y — X is continuous.
(2) Show that a metric space is normal.

Solution.

(1) Observe that it follows immediately from the identity g 1(A) = g71(A°)¢, that a function g is contin-
uous of a function if and only if the inverse image of a closed set is closed.
Let F c X be closed. Then F is compact since X is compact. Now, ( FH™Y(F) = f(F) which
is compact since f is continuous. But f(F) is closed in Y since Y is Hausdorff, and hence f~! is
continuous by the observation above.

(2) Let F,G be closgd and disjoint subsets of (X,dx). Observe that d(x,A) def inf{dx(x,a): ac A} =0 if
and only if x € A. Indeed, if x is in the closure of A then there is a sequence (a,), in A such that
lim,, d(x,a,) = 0 and hence d(x,A) = 0. If d(x,A) = 0 then by definition there is a sequence (ay),

in A such that lim, d(x,a,) = 0, which means that x is in the closure of A. Consider the sets U &

UrerB(x, %d(x, G))and V def UyecB(y, %d(y,F )). By the observation above, the radii are all positive
because F and G are disjoint, and U and V are open sets such that F ¢ U and G C V. It remains to
show that they are disjoint. Assume that there is z€ UNV, then z € B(x, Ld(x,G)Hn B(y, %d(y, G))
for some x € F and y € G. The following inequalities provide a contradiction:

max{d(x,G),d(y,G)} < dx(x,y) < dx(x,z) +dx(z,y) < %d(x, G)+ %d(y, G) < %max{d(x, G),d(y,G)}.

Problem 2. Let X be a set and {f;: X — (Y;,T))}ier be a collection of functions. Let Tiy,; be the initial topology
on X generated by {f}icr.

(1) Show that a net (x4)aep in X converges to x € X in the initial topology if and only if (fi(Xa))eeD
converges to fi(x), forallie€l.

(2) Interpret the previous result (restricting to sequences) in the case when forallie€l, Y; =Y, X =
ie;Y; = Y and f; = n; is the canonical projection on the i-th coordinate.

Solution. (1) One direction is easy since by definition, for all i, f;: (X, 7;,;) — (Y;,7;) is continuous and
thus (f;(x¢))eep converges to fi(x) whenever (x,)qep converges to x € X in the initial topology.

For the other implication, recall that a neighborhood basis of x € X for the initial topology consists
of sets of the form nl-epfi‘l(U,-), where F is a finite subset of /, and U; € 7;. If for all i € I, (fi(x4))eeD
converges to fi(x), then (fi(xy))eep is eventually in U; for all i € F, and since F is finite we can
certainly find 8 € D such that for all @ > 8, and all i € F, fi(x,) € U;. Taking inverse images, this
means that (x,)qep is eventually in N;ep ]‘i‘l(Ui), from which we conclude that (x,).ep converges to
x € X in the initial topology.

(2) A sequence in Y’ can (should!) be seen as a sequence of functions {g,: I = Y},>1. By (1), (g)n
converges to g: I — Y in the initial topology generated by the projections (which is the product
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topology on Y') if and only if for all i € I, m;(g,) converges to m;(g). Since mi(g,) = gn(i), we can
rephrase this by saying that (g,),, converges to g in the product topology if and only if (g,,), converges
pointwise to g. This is the reason why the product topology is also called the topology of pointwise
convergence.

m|

Problem 3. Assume that (X;)ies is a family of topological spaces for which infinitely many are not compact.
Let K be a subset of |;c; Xi that is closed and compact in the product topology. Show that K is nowhere
dense.

Solution. Assume the claim is not true and hence K° # (). Thus there is an x € K and a neighborhood U of
x so that U C K.

We can assume that U is of the form U = [],;¢; U; with U; open in X; fori € I, and with F ={ie [: U; # X;}
is finite.

Since {i € I: X; not compact} is infinite, we can choose an iy € I so that X;, is not compact and so that
Ui, = X;,.

Now since continuous images of compact sets are also compact, the projection 7;,(K) onto Xj, is compact,
and therefore cannot be equal to whole space X;,. We deduce that there must be an x;, € X;, \ m;,(K) =
U;, \ m;,(K) and for i € I'\ {ip} we pick an x; € U;. Therefore (x;);c; € U C K, but, since x;, ¢ m;,(K) we have
that (x;);e; ¢ K, which is a contradiction. O

Problem 4. Let X be a set and {f;: X — (Y;,7T;)}ier be a collection of functions. Let Ti,; be the initial topology
on X generated by { fi}icr

(1) Show that if (X, 7;y;) is a To-space, then for all x #y € X there exists ig € I such that f;(x) # fi,(y).
(2) Let k €{0,1,2}. Assume that for all i € I (Y;,7;) is a Ty-space . Show that if for all x #y € X there
exists ig € I such that fi(x) # fi,(v), then (X, 1) is a Tx-space.

Solution. (1) Let x # y € X, Since 7j,; is Ty, there is an open set U € 7;,; such that, say, x€e U and y ¢ U.
Let F a finite subset of /, and U; open set in ¥; such that x € ﬂ,-epfi‘l (Uj)cU. Sincey¢ ﬂiepfl.‘l(U,-),
there is ip € F such that f;,(y) ¢ U,,. Since f;,(x) € Uj, it follows that f;,(x) # f;, ().

(2) We will prove it for the T, separation property. Let x # y € X, then f;,(x) # f;,(v), and by Haussdorf-
ness of Y;,, there are disjoint open sets U, V such that f; (x) € U and f;,(y) € V,i.e. x € figl(U) and
ye fl.gl(V). Since fl.gl(U ) and fl.gl(V) are open sets for the initial topology and are clearly disjoint,
the conclusion follows. A similar argument can be given to treat the two other separation proper-
ties. If Y}, is only 77, then there is a disjoint open set U such that fj,(x) € U and f;,(y) ¢ U, i.e.
X € flgl (U)and y ¢ fl.gl(U ). Since flgl (U) and flgl (V) are open sets for the initial topology and are
clearly disjoint, the conclusion follows observing that the role of x and y can be reversed.

If Y;, is only Ty, then there is a disjoint open set U such that, say, fi,(x) € U and f;,(y) ¢ U, i.e.

X € fl.gl(U) and y ¢ fl.gl(U ). Since fl.gl(U) and fl.gl(V) are open sets for the initial topology and are
clearly disjoint, the conclusion follows.

O



Problem S. Let (X,dx) be a metric space and a > 0. We say that a continuous function f: X — Cis Holder
continuous of exponent «, if there is C > 0 such that for all x,y € X,

If(0) = f)I < Cdy(x,y),
or equivalently
. def |f(x) - fO)
Lip,(f) = sup——————— < o0
Pall) = S gy
Show that if X is compact then the set

S ={feCX): sup|f(x)| <1 and Lip,(f) < 1}.
xeX
is compact (for the uniform topology on C(X)).

Solution. This is an ultra-typical application of Arzela-Ascoli.

S is pointwise bounded: This is immediate from the condition sup .y|f(x)| < 1 in the definition of §
and the condition (it is in fact uniformly bounded)

S is equicontinuous: This follows from the condition Lip,(f) < 1 in the definition of § (in fact § is
equi-uniformly continuous). Let & > 0 and choose ¢ = £!/* > 0 (which does not depend on any f € §
nor x € X). Then for all x,y € X, and all f € §, if dx(x,y) < ¢ it follows that

) - fOI<d(x,y) <6 =¢,

S is closed: This will be true by continuity of the module and because the defining conditions for §
involve non-strict inequalities and are “closed" conditions. Assume that (f,), € S and f € C(X) so
that d,(f;;, f) — 0 for n — co. Then

up If ) =Sl _ sup lim | /n(X) = fu ()
Xy d*(x,y) x#y 100 d®(x,y)

< supsup |2 (%) = fuY)
= x#y neN d*(x,y)

_ |/n(X) = fu (V)]
= supsup —————

=supLip,(f,) < 1.
e xay d9(x,y) PLipa(Jn

neN

Moreover, since for all x € X, | f(x)| = lim,|f,,(x)| (by continuity of the |-|), it follows that sup | f(x)| <
1. Thus f €S, and S is closed.

The conclusion now follows from Arzela-Ascoli theorem.



