REAL ANALYSIS MATH 608 HOMEWORK #3

Problem 1.

- (1) Let $f: X \to Y$ be a bijection that is continuous, where X is a compact topological space and Y is a Hausdorff topological space. Show that $f^{-1}: Y \to X$ is continuous.
- (2) Show that a metric space is normal.

Solution.

(1) Observe that it follows immediately from the identity $g^{-1}(A) = g^{-1}(A^c)^c$, that a function g is continuous of a function if and only if the inverse image of a closed set is closed.

Let $F \subset X$ be closed. Then F is compact since X is compact. Now, $(f^{-1})^{-1}(F) = f(F)$ which is compact since f is continuous. But f(F) is closed in Y since Y is Hausdorff, and hence f^{-1} is continuous by the observation above.

(2) Let F, G be closed and disjoint subsets of (X, d_X) . Observe that $d(x, A) \stackrel{\text{def}}{=} \inf\{d_X(x, a) : a \in A\} = 0$ if and only if $x \in \overline{A}$. Indeed, if x is in the closure of A then there is a sequence $(a_n)_n$ in A such that $\lim_n d(x, a_n) = 0$ and hence d(x, A) = 0. If d(x, A) = 0 then by definition there is a sequence $(a_n)_n$ in A such that $\lim_n d(x, a_n) = 0$, which means that x is in the closure of A. Consider the sets $U \stackrel{\text{def}}{=} \bigcup_{x \in F} B(x, \frac{1}{3}d(x, G))$ and $V \stackrel{\text{def}}{=} \bigcup_{y \in G} B(y, \frac{1}{3}d(y, F))$. By the observation above, the radii are all positive because F and G are disjoint, and U and V are open sets such that $F \subset U$ and $G \subset V$. It remains to show that they are disjoint. Assume that there is $z \in U \cap V$, then $z \in B(x, \frac{1}{3}d(x, G)) \cap B(y, \frac{1}{3}d(y, G))$ for some $x \in F$ and $y \in G$. The following inequalities provide a contradiction:

$$\max\{d(x,G), d(y,G)\} \le d_X(x,y) \le d_X(x,z) + d_X(z,y) \le \frac{1}{3}d(x,G) + \frac{1}{3}d(y,G) \le \frac{2}{3}\max\{d(x,G), d(y,G)\}.$$

Problem 2. Let X be a set and $\{f_i : X \to (Y_i, \tau_i)\}_{i \in I}$ be a collection of functions. Let τ_{ini} be the initial topology on X generated by $\{f_i\}_{i \in I}$.

- (1) Show that a net $(x_{\alpha})_{\alpha \in D}$ in X converges to $x \in X$ in the initial topology if and only if $(f_i(x_{\alpha}))_{\alpha \in D}$ converges to $f_i(x)$, for all $i \in I$.
- (2) Interpret the previous result (restricting to sequences) in the case when for all $i \in I$, $Y_i = Y$, $X = \prod_{i \in I} Y_i = Y^I$ and $f_i = \pi_i$ is the canonical projection on the *i*-th coordinate.
- Solution. (1) One direction is easy since by definition, for all $i, f_i: (X, \tau_{ini}) \to (Y_i, \tau_i)$ is continuous and thus $(f_i(x_\alpha))_{\alpha \in D}$ converges to $f_i(x)$ whenever $(x_\alpha)_{\alpha \in D}$ converges to $x \in X$ in the initial topology.

For the other implication, recall that a neighborhood basis of $x \in X$ for the initial topology consists of sets of the form $\bigcap_{i \in F} f_i^{-1}(U_i)$, where *F* is a finite subset of *I*, and $U_i \in \tau_i$. If for all $i \in I$, $(f_i(x_\alpha))_{\alpha \in D}$ converges to $f_i(x)$, then $(f_i(x_\alpha))_{\alpha \in D}$ is eventually in U_i for all $i \in F$, and since *F* is finite we can certainly find $\beta \in D$ such that for all $\alpha \ge \beta$, and all $i \in F$, $f_i(x_\alpha) \in U_i$. Taking inverse images, this means that $(x_\alpha)_{\alpha \in D}$ is eventually in $\bigcap_{i \in F} f_i^{-1}(U_i)$, from which we conclude that $(x_\alpha)_{\alpha \in D}$ converges to $x \in X$ in the initial topology.

(2) A sequence in Y^I can (should!) be seen as a sequence of functions $\{g_n : I \to Y\}_{n \ge 1}$. By (1), $(g_n)_n$ converges to $g : I \to Y$ in the initial topology generated by the projections (which is the product

topology on Y^I if and only if for all $i \in I$, $\pi_i(g_n)$ converges to $\pi_i(g)$. Since $\pi_i(g_n) = g_n(i)$, we can rephrase this by saying that $(g_n)_n$ converges to g in the product topology if and only if $(g_n)_n$ converges pointwise to g. This is the reason why the product topology is also called the topology of pointwise convergence.

Problem 3. Assume that $(X_i)_{i \in I}$ is a family of topological spaces for which infinitely many are not compact. Let K be a subset of $\prod_{i \in I} X_i$ that is closed and compact in the product topology. Show that K is nowhere dense.

Solution. Assume the claim is not true and hence $K^{\circ} \neq \emptyset$. Thus there is an $x \in K$ and a neighborhood U of x so that $U \subset K$.

We can assume that U is of the form $U = \prod_{i \in I} U_i$ with U_i open in X_i for $i \in I$, and with $F = \{i \in I : U_i \neq X_i\}$ is finite.

Since $\{i \in I : X_i \text{ not compact}\}$ is infinite, we can choose an $i_0 \in I$ so that X_{i_0} is not compact and so that $U_{i_0} = X_{i_0}$.

Now since continuous images of compact sets are also compact, the projection $\pi_{i_0}(K)$ onto X_{i_0} is compact, and therefore cannot be equal to whole space X_{i_0} . We deduce that there must be an $x_{i_0} \in X_{i_0} \setminus \pi_{i_0}(K) = U_{i_0} \setminus \pi_{i_0}(K)$ and for $i \in I \setminus \{i_0\}$ we pick an $x_i \in U_i$. Therefore $(x_i)_{i \in I} \in U \subset K$, but, since $x_{i_0} \notin \pi_{i_0}(K)$ we have that $(x_i)_{i \in I} \notin K$, which is a contradiction.

Problem 4. Let X be a set and $\{f_i : X \to (Y_i, \tau_i)\}_{i \in I}$ be a collection of functions. Let τ_{ini} be the initial topology on X generated by $\{f_i\}_{i \in I}$

- (1) Show that if (X, τ_{ini}) is a T₀-space, then for all $x \neq y \in X$ there exists $i_0 \in I$ such that $f_{i_0}(x) \neq f_{i_0}(y)$.
- (2) Let $k \in \{0, 1, 2\}$. Assume that for all $i \in I$ (Y_i, τ_i) is a T_k -space. Show that if for all $x \neq y \in X$ there exists $i_0 \in I$ such that $f_{i_0}(x) \neq f_{i_0}(y)$, then (X, τ_{ini}) is a T_k -space.
- Solution. (1) Let $x \neq y \in X$, Since τ_{ini} is T_0 , there is an open set $U \in \tau_{ini}$ such that, say, $x \in U$ and $y \notin U$. Let *F* a finite subset of *I*, and U_i open set in Y_i such that $x \in \bigcap_{i \in F} f_i^{-1}(U_i) \subset U$. Since $y \notin \bigcap_{i \in F} f_i^{-1}(U_i)$, there is $i_0 \in F$ such that $f_{i_0}(y) \notin U_{i_0}$. Since $f_{i_0}(x) \in U_{i_0}$ it follows that $f_{i_0}(x) \neq f_{i_0}(y)$.
 - (2) We will prove it for the T₂ separation property. Let x ≠ y ∈ X, then f_{i0}(x) ≠ f_{i0}(y), and by Haussdorfness of Y_{i0}, there are disjoint open sets U, V such that f_{i0}(x) ∈ U and f_{i0}(y) ∈ V, i.e. x ∈ f_{i0}⁻¹(U) and y ∈ f_{i0}⁻¹(V). Since f_{i0}⁻¹(U) and f_{i0}⁻¹(V) are open sets for the initial topology and are clearly disjoint, the conclusion follows. A similar argument can be given to treat the two other separation properties. If Y_{i0} is only T₁, then there is a disjoint open set U such that f_{i0}(x) ∈ U and f_{i0}(y) ∉ U, i.e. x ∈ f_{i0}⁻¹(U) and y ∉ f_{i0}⁻¹(U). Since f_{i0}⁻¹(U) and f_{i0}⁻¹(V) are open sets for the initial topology and are clearly disjoint, the conclusion follows observing that the role of x and y can be reversed.

If Y_{i_0} is only T_0 , then there is a disjoint open set U such that, say, $f_{i_0}(x) \in U$ and $f_{i_0}(y) \notin U$, i.e. $x \in f_{i_0}^{-1}(U)$ and $y \notin f_{i_0}^{-1}(U)$. Since $f_{i_0}^{-1}(U)$ and $f_{i_0}^{-1}(V)$ are open sets for the initial topology and are clearly disjoint, the conclusion follows.

Problem 5. Let (X, d_X) be a metric space and $\alpha > 0$. We say that a continuous function $f : X \to \mathbb{C}$ is Hölder continuous of exponent α , if there is C > 0 such that for all $x, y \in X$,

$$|f(x) - f(y)| \le C d_X^{\alpha}(x, y),$$

or equivalently

$$Lip_{\alpha}(f) \stackrel{\text{def}}{=} \sup_{x \neq y} \frac{|f(x) - f(y)|}{d_{x}^{\alpha}(x, y)} < \infty$$

Show that if X is compact then the set

$$S = \{ f \in C(X) \colon \sup_{x \in X} |f(x)| \le 1 \text{ and } Lip_{\alpha}(f) \le 1 \}.$$

is compact (for the uniform topology on C(X)).

Solution. This is an ultra-typical application of Arzelà-Ascoli.

- *S* is pointwise bounded: This is immediate from the condition $\sup_{x \in X} |f(x)| \le 1$ in the definition of *S* and the condition (it is in fact uniformly bounded)
- *S* is equicontinuous: This follows from the condition $Lip_{\alpha}(f) \leq 1$ in the definition of *S* (in fact *S* is equi-uniformly continuous). Let $\varepsilon > 0$ and choose $\delta = \varepsilon^{1/\alpha} > 0$ (which does not depend on any $f \in S$ nor $x \in X$). Then for all $x, y \in X$, and all $f \in S$, if $d_X(x, y) < \delta$ it follows that

$$|f(x) - f(y)| \le d^{\alpha}(x, y) < \delta^{\alpha} = \varepsilon,$$

S is closed: This will be true by continuity of the module and because the defining conditions for *S* involve non-strict inequalities and are "closed" conditions. Assume that $(f_n)_n \subset S$ and $f \in C(X)$ so that $d_u(f_n, f) \to 0$ for $n \to \infty$. Then

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{d^{\alpha}(x, y)} = \sup_{x \neq y} \lim_{n \to \infty} \frac{|f_n(x) - f_n(y)|}{d^{\alpha}(x, y)}$$
$$\leq \sup_{x \neq y} \sup_{n \in \mathbb{N}} \frac{|f_n(x) - f_n(y)|}{d^{\alpha}(x, y)}$$
$$= \sup_{n \in \mathbb{N}} \sup_{x \neq y} \frac{|f_n(x) - f_n(y)|}{d^{\alpha}(x, y)} = \sup_{n \in \mathbb{N}} Lip_{\alpha}(f_n) \leq 1.$$

Moreover, since for all $x \in X$, $|f(x)| = \lim_{n \to \infty} |f_n(x)|$ (by continuity of the $|\cdot|$), it follows that $\sup_{x \in X} |f(x)| \le 1$. Thus $f \in S$, and S is closed.

The conclusion now follows from Arzelà-Ascoli theorem.