REAL ANALYSIS MATH 608
 HOMEWORK \#4

Problem 1. Let (X, d) be a metric space, $S \subset X$.
(1) Show that if S is compact then S is totally bounded.
(2) Assume that (X, d) is complete. Show that if S is totally bounded then the closure of S is compact.

Solution. (1) Let $\varepsilon>0$ and observe that $\cup_{x \in S} B(x, \varepsilon)$ is an open covering of S since open balls are open. By compactness of S, we can extract a finite subcover $\cup_{i=1}^{k} B\left(x_{i}, \varepsilon\right)$, and we are done.
(2) One implication was taken care off in (1). For the other implication, assume that S is totally bounded. Observe first that \bar{S} is also totally bounded. Indeed, if $\cup_{i=1}^{k} B\left(x_{i}, \varepsilon\right)$ covers S, then $\cup_{i=1}^{k} \bar{B}\left(x_{i}, \varepsilon\right)$ covers S and is closed ($\bar{B}(x, r)$ is the closed ball of radius r centered at x), and hence \bar{S} is covered by $\cup_{i=1}^{k} \bar{B}\left(x_{i}, \varepsilon\right)$. Therefore, $\cup_{i=1}^{k} B\left(x_{i}, 2 \varepsilon\right)$ is a cover of \bar{S} by open balls (then adjust the epsilon's).

Now, consider a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \bar{S} and let $\cup_{i=1}^{k} \bar{B}\left(s_{i}^{(1)}, 1\right)$ be a cover of \bar{S}. WLOG we can assume that the $s_{i}^{(1)}$'s are in \bar{S} (do you see why?), and there is a point $y_{1} \in S$ (it is one of the $s_{i}^{(1)}$'s) such that there is an infinite subsequence $\left(x_{n}^{(1)}\right)_{n}$ in $B\left(y_{1}, 1\right)$. Covering $B\left(y_{1}, 1\right)$ (which is also totally bounded) with $\cup_{i=1}^{k} \bar{B}\left(s_{i}^{(2)}, \frac{1}{2}\right)$, there is a point $y_{2} \in B\left(y_{1}, 1\right)$ such that there is an infinite subsequence $\left(x_{n}^{(2)}\right)_{n}$ of $\left(x_{n}^{(1)}\right)_{n}$ in $B\left(y_{2}, \frac{1}{2}\right)$. Continuing the recursive construction, for all $k \geqslant 1$ there are $y_{k+1} \in B\left(y_{k}, \frac{1}{k}\right)$ and an infinite subsequence $\left(x_{n}^{(k+1)}\right)_{n}$ of $\left(x_{n}^{(k)}\right)_{n}$ in $B\left(y_{k+1}, \frac{1}{k+1}\right)$. Since $d\left(x_{n}^{(n)}, x_{k}^{(k)}\right) \leqslant$ $d\left(x_{n}^{(n)}, y_{n}\right)+d\left(y_{n}, y_{k}\right)+d\left(y_{k}, x_{k}^{(k)}\right) \leqslant \frac{1}{n}+\frac{1}{\max \{n, k\}}+\frac{1}{k}$, the diagonal sequence $\left(z_{n}\right)_{n}=\left(x_{n}^{(n)}\right)_{n}$ is a Cauchy sequence in \bar{S} which converges by completness to $z \in \bar{S}$. We just show that \bar{S} is sequentially compact and hence compact since we are in the metric space setting.

Problem 2. Let (X, τ) be a topological compact space and $\left(Y, d_{Y}\right)$ be a complete metric space. $C(X, Y) \stackrel{\text { def }}{=}$ $\{f: X \rightarrow Y \mid f$ continuous $\}$ is a complete metric space when equipped wit the uniform metric d_{u}. Let $\mathcal{F} \subset$ $C(X, Y)$ and assume that the closure of \mathcal{F} is compact.
(1) Show that \mathcal{F} is equi-continuous.
(2) Show for every $x \in X$, the closure of $\{f(x): f \in \mathcal{F}\}$ is compact in $\left(Y, d_{Y}\right)$.

Hint:
(1): Use the fact that \mathcal{F} is totally bounded (and justify it).
(2): Consider the evaluation map $\delta_{x}: f \mapsto f(x)$.

Solution. (1) Since $C(X, Y)$ is complete, and $\overline{\mathcal{F}}$ is compact, it follows from Problem 1 that $\overline{\mathcal{F}}$, and in turn \mathcal{F}, is totally bounded. So cover \mathcal{F} by finitely many balls of radius ε, say, $\cup_{i=1}^{k} B_{d_{u}}\left(f_{i}, \varepsilon\right)$. The rest of the argument is a typically $3-\varepsilon$ type argument. Let $x_{0} \in X$, and $f \in \mathcal{F}$ then there is $1 \leqslant i_{0} \leqslant k$ such that $\sup _{x \in X} d_{Y}\left(f_{i_{0}}(x), f(x)\right)<\varepsilon$. Then,
$d_{Y}\left(f(y), f\left(x_{0}\right)\right) \leqslant d_{Y}\left(f(y), f_{i_{0}}(y)\right)+d_{Y}\left(f_{i_{0}}(y), f_{i_{0}}\left(x_{0}\right)\right)+d_{Y}\left(f_{i_{0}}\left(x_{0}\right), f\left(x_{0}\right)\right) \leqslant 2 \varepsilon+d_{Y}\left(f_{i_{0}}(y), f_{i_{0}}\left(x_{0}\right)\right)$.
Now, for all $1 \leqslant i \leqslant k$, by continuity of f_{i} there is an open set U_{i} that contains x_{0} such that $y \in U_{i} \Longrightarrow d_{Y}\left(f_{i}(y), f_{i}\left(x_{0}\right)\right) \leqslant \varepsilon$. Since i_{0} depends on f we need to consider the set $\cap_{i}^{k} U_{i}$ which is
open and contains x. Then for all $y \in \cap_{i}^{k} U_{i}$, one has $d_{Y}\left(f(y), f\left(x_{0}\right)\right) \leqslant 2 \varepsilon+d_{Y}\left(f_{i_{0}}(y), f_{i_{0}}\left(x_{0}\right)\right) \leqslant 3 \varepsilon$, which proves equicontinuity.
(2) Consider the evaluation map $\delta_{x}: f \mapsto f(x)$. Then δ_{x} is a 1-Lipschitz maps (since $d_{Y}\left(\delta_{x}(f), \delta_{x}(g)\right)=$ $\left.d_{Y}(f(x), g(x)) \leqslant \sup _{x \in X} d_{Y}(f(x), g(x))=d_{u}(f, g)\right)$ and thus is continuous. Now, observe that $\{f(x): f \in$ $\mathcal{F}\}=\delta_{x}(\mathcal{F})$, and hence $\overline{\{f(x): f \in \mathcal{F}\}}=\overline{\delta_{x}(\mathcal{F})} \subset \overline{\delta_{x}(\overline{\mathcal{F}})}$. Since $\delta_{x}(\overline{\mathcal{F}})$ is compact as the image of a compact by a continuous map, it is also closed (it is a compact in a Hausdorff space), and hence $\overline{\{f(x): f \in \mathcal{F}\}} \subset \delta_{x}(\overline{\mathcal{F}})$ is a closed subset of a compact space, and it is compact.

Problem 3. Show that every compact metric space is homeomorphic to a closed subset of $[0,1]^{\mathbb{N}}$.
Solution. Every compact metric space (K, d) is separable. So let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a dense sequence in X. A compact metric space is bounded and let $D=\sup _{x \neq y \in K} d(x, y)<\infty$. Now, consider the embedding $f: K \rightarrow$ $[0,1]^{\mathbb{N}}$ defined by $f(x)=\left(\frac{1}{D} d\left(x, x_{n}\right)\right)_{n \geqslant 1}$. Since the coordinate map $f_{n}(x)=\frac{1}{D} d\left(x, x_{n}\right)$ is $\frac{1}{D}$-Lipschitz by the reverse triangle inequality, it is a continuous map from K into $[0,1]$. It follows that f is continuous from K into $[0,1]^{\mathbb{N}}$ equipped with the product topology,

Observe now that f is injective. Indeed, if $x \neq y$ then we can find $n \geqslant 1$ (by density) such that $d\left(y, x_{n}\right) \leqslant$ $\frac{1}{4} d(x, y)$. Then, $f_{n}(x)-f_{n}(y)=\frac{1}{D}\left(d\left(x, x_{n}\right)-d\left(y, x_{n}\right)\right) \geqslant \frac{1}{D}\left(d(x, y)-2 d\left(y, x_{n}\right)\right) \geqslant \frac{1}{2 D} d(x, y)>0$. Therefore $f_{n}(x) \neq$ $f_{n}(y)$ and in turn $f(x) \neq f(y)$, which proves injectivity.

Thus we have proved that f is a continuous bijection from the compact set K onto a compact set $f(K)$, and hence a homeomorphism between K and $f(K)$. It remains to show that $f(K)$ is closed, but this is true since $f(K)$ is compact and the product topology on $[0,1]^{\mathbb{N}}$ is Hausdorff since all the summands are Hausdorff (do you see why?)

Problem 4. Let $k:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous. For $f \in C([0,1])$ define $T(f):[0,1] \rightarrow \mathbb{R}$ by:

$$
T(f)(x)=\int_{0}^{1} k(x, y) f(y) d y, x \in[0,1] .
$$

(1) Show that $T(C[0,1]) \subset C([0,1])$.
(2) A bounded set in $C([0,1])$ is a set S for which there exists an $R>0$ so that $d_{u}(0, f) \leqslant R$ for all $f \in S$. Show that T maps bounded sets into compact set.

Solution. (1) This statement is a simple consequence of the automatic uniform continuity of continuous functions on compact metric spaces. Let $f \in C([0,1]), \varepsilon>0$ and $x \in[0,1]$. Let $\|f\|_{u}=\sup _{x \in[0,1]}|f(x)|$. The product topology on $[0,1]^{2}$ is induced, for instance, by the metric $d_{2}((u, v),(\tilde{u}, \tilde{v}))=\sqrt{(u-\tilde{u})^{2}+(v-\tilde{v})^{2}}$. Since $k(\cdot, \cdot)$ is continuous on a compact metric space it is uniformly continuous. We can therefore find a $\delta>0$ so that for all $(u, v),(\tilde{u}, \tilde{v}) \in[0,1]^{2}$ with $\sqrt{(u-\tilde{u})^{2}+(v-\tilde{v})^{2}}<\delta$ it follows that $|k(u, v)-k(\tilde{u}, \tilde{v})|<\varepsilon /\left(1+\|f\|_{u}\right)$. Therefore it follows for $z \in[0,1]$, with $|x-z|<\delta$ that

$$
\begin{aligned}
|T(f)(x)-T(f)(z)| & =\left|\int_{0}^{1}[k(x, y)-k(z, y)] f(y) d y\right| \\
& \leqslant\|f\|_{u} \int_{0}^{1}|k(x, y)-k(z, y)| d y \leqslant\|f\|_{u} \frac{\varepsilon}{1+\|f\|_{u}}<\varepsilon .
\end{aligned}
$$

(2) Assume that $B \subset C(X)$ is bounded. Note that in the proof of (1) the δ only depended on ε and $\|f\|_{u}$. This implies that $\{T(f): f \in B\}$ is equicontinuous.

Secondly if $f \in C([0,1])$,
$\|T(f)\|_{u} \leqslant \sup _{x, y \in[0,1]}|k(x, y)| \cdot|f(x)| \leqslant\|f\|_{u} \sup _{x, y \in[0,1]}|k(x, y)|$.
This implies that if $B \subset C(X)$ is bounded, then $T(B)$ is bounded.
From the theorem of Arzelà and Ascoli it follows that $\{T(f): f \in B\}$ is totally bounded and thus $\overline{\{T(f): f \in B\}}$ is compact.

