REAL ANALYSIS MATH 608 HOMEWORK #4

Problem 1. Let (X,d) be a metric space, $S \subset X$.

- (1) Show that if S is compact then S is totally bounded.
- (2) Assume that (X,d) is complete. Show that if S is totally bounded then the closure of S is compact.
- Solution. (1) Let $\varepsilon > 0$ and observe that $\bigcup_{x \in S} B(x, \varepsilon)$ is an open covering of *S* since open balls are open. By compactness of *S*, we can extract a finite subcover $\bigcup_{i=1}^{k} B(x_i, \varepsilon)$, and we are done.
 - (2) One implication was taken care off in (1). For the other implication, assume that S is totally bounded. Observe first that \overline{S} is also totally bounded. Indeed, if $\bigcup_{i=1}^{k} B(x_i,\varepsilon)$ covers S, then $\bigcup_{i=1}^{k} \overline{B}(x_i,\varepsilon)$ covers S and is closed ($\overline{B}(x,r)$) is the closed ball of radius r centered at x), and hence \overline{S} is covered by $\bigcup_{i=1}^{k} \overline{B}(x_i,\varepsilon)$. Therefore, $\bigcup_{i=1}^{k} B(x_i,2\varepsilon)$ is a cover of \overline{S} by open balls (then adjust the epsilon's).

Now, consider a sequence $\{x_n\}_{n=1}^{\infty}$ in \overline{S} and let $\bigcup_{i=1}^{k} \overline{B}(s_i^{(1)}, 1)$ be a cover of \overline{S} . WLOG we can assume that the $s_i^{(1)}$'s are in \overline{S} (do you see why?), and there is a point $y_1 \in S$ (it is one of the $s_i^{(1)}$'s) such that there is an infinite subsequence $(x_n^{(1)})_n$ in $B(y_1, 1)$. Covering $B(y_1, 1)$ (which is also totally bounded) with $\bigcup_{i=1}^{k} \overline{B}(s_i^{(2)}, \frac{1}{2})$, there is a point $y_2 \in B(y_1, 1)$ such that there is an infinite subsequence $(x_n^{(1)})_n$ of $(x_2^{(1)})_n$ of $(x_n^{(1)})_n$ in $B(y_2, \frac{1}{2})$. Continuing the recursive construction, for all $k \ge 1$ there are $y_{k+1} \in B(y_k, \frac{1}{k})$ and an infinite subsequence $(x_n^{(k+1)})_n$ of $(x_n^{(k)})_n$ in $B(y_{k+1}, \frac{1}{k+1})$. Since $d(x_n^{(n)}, x_k^{(k)}) \le d(x_n^{(n)}, y_n) + d(y_n, y_k) + d(y_k, x_k^{(k)}) \le \frac{1}{n} + \frac{1}{\max\{n,k\}} + \frac{1}{k}$, the diagonal sequence $(z_n)_n = (x_n^{(n)})_n$ is a Cauchy sequence in \overline{S} which converges by completness to $z \in \overline{S}$. We just show that \overline{S} is sequentially compact and hence compact since we are in the metric space setting.

Problem 2. Let (X, τ) be a topological compact space and (Y, d_Y) be a complete metric space. $C(X, Y) \stackrel{\text{def}}{=} \{f : X \to Y \mid f \text{ continuous } \}$ is a complete metric space when equipped wit the uniform metric d_u . Let $\mathcal{F} \subset C(X, Y)$ and assume that the closure of \mathcal{F} is compact.

- (1) Show that \mathcal{F} is equi-continuous.
- (2) Show for every $x \in X$, the closure of $\{f(x): f \in \mathcal{F}\}$ is compact in (Y, d_Y) .

Hint:

- (1): Use the fact that \mathcal{F} is totally bounded (and justify it).
- (2): Consider the evaluation map δ_x : $f \mapsto f(x)$.
- Solution. (1) Since C(X, Y) is complete, and $\overline{\mathcal{F}}$ is compact, it follows from Problem 1 that $\overline{\mathcal{F}}$, and in turn \mathcal{F} , is totally bounded. So cover \mathcal{F} by finitely many balls of radius ε , say, $\bigcup_{i=1}^{k} B_{d_u}(f_i, \varepsilon)$. The rest of the argument is a typically 3ε type argument. Let $x_0 \in X$, and $f \in \mathcal{F}$ then there is $1 \le i_0 \le k$ such that $\sup_{x \in X} d_Y(f_{i_0}(x), f(x)) < \varepsilon$. Then,

 $d_Y(f(y), f(x_0)) \leq d_Y(f(y), f_{i_0}(y)) + d_Y(f_{i_0}(y), f_{i_0}(x_0)) + d_Y(f_{i_0}(x_0), f(x_0)) \leq 2\varepsilon + d_Y(f_{i_0}(y), f_{i_0}(x_0)).$ Now, for all $1 \leq i \leq k$, by continuity of f_i there is an open set U_i that contains x_0 such that $y \in U_i \implies d_Y(f_i(y), f_i(x_0)) \leq \varepsilon$. Since i_0 depends on f we need to consider the set $\cap_i^k U_i$ which is open and contains x. Then for all $y \in \bigcap_{i=1}^{k} U_i$, one has $d_Y(f(y), f(x_0)) \leq 2\varepsilon + d_Y(f_{i_0}(y), f_{i_0}(x_0)) \leq 3\varepsilon$, which proves equicontinuity.

(2) Consider the evaluation map δ_x: f → f(x). Then δ_x is a 1-Lipschitz maps (since d_Y(δ_x(f), δ_x(g)) = d_Y(f(x), g(x)) ≤ sup_{x∈X} d_Y(f(x), g(x)) = d_u(f,g)) and thus is continuous. Now, observe that {f(x): f ∈ F} = δ_x(F), and hence {f(x): f ∈ F} = δ_x(F) ⊂ δ_x(F). Since δ_x(F) is compact as the image of a compact by a continuous map, it is also closed (it is a compact in a Hausdorff space), and hence {f(x): f ∈ F} ⊂ δ_x(F) ⊂ δ_x(F) is compact.

Problem 3. Show that every compact metric space is homeomorphic to a closed subset of $[0,1]^{\mathbb{N}}$.

Solution. Every compact metric space (K,d) is separable. So let $\{x_n\}_{n=1}^{\infty}$ be a dense sequence in X. A compact metric space is bounded and let $D = \sup_{x \neq y \in K} d(x, y) < \infty$. Now, consider the embedding $f: K \to [0,1]^{\mathbb{N}}$ defined by $f(x) = (\frac{1}{D}d(x, x_n))_{n \ge 1}$. Since the coordinate map $f_n(x) = \frac{1}{D}d(x, x_n)$ is $\frac{1}{D}$ -Lipschitz by the reverse triangle inequality, it is a continuous map from K into $[0,1]^{\mathbb{N}}$ equipped with the product topology,

Observe now that *f* is injective. Indeed, if $x \neq y$ then we can find $n \ge 1$ (by density) such that $d(y, x_n) \le \frac{1}{4}d(x, y)$. Then, $f_n(x) - f_n(y) = \frac{1}{D}(d(x, x_n) - d(y, x_n)) \ge \frac{1}{D}(d(x, y) - 2d(y, x_n)) \ge \frac{1}{2D}d(x, y) > 0$. Therefore $f_n(x) \neq f_n(y)$ and in turn $f(x) \neq f(y)$, which proves injectivity.

Thus we have proved that f is a continuous bijection from the compact set K onto a compact set f(K), and hence a homeomorphism between K and f(K). It remains to show that f(K) is closed, but this is true since f(K) is compact and the product topology on $[0, 1]^{\mathbb{N}}$ is Hausdorff since all the summands are Hausdorff (do you see why?)

Problem 4. Let $k: [0,1] \times [0,1] \rightarrow \mathbb{R}$ be continuous. For $f \in C([0,1])$ define $T(f): [0,1] \rightarrow \mathbb{R}$ by:

$$T(f)(x) = \int_0^1 k(x, y) f(y) dy, \ x \in [0, 1].$$

- (1) Show that $T(C[0,1]) \subset C([0,1])$.
- (2) A bounded set in C([0,1]) is a set S for which there exists an R > 0 so that $d_u(0, f) \leq R$ for all $f \in S$. Show that T maps bounded sets into compact set.
- Solution. (1) This statement is a simple consequence of the automatic uniform continuity of continuous functions on compact metric spaces. Let $f \in C([0,1]), \varepsilon > 0$ and $x \in [0,1]$. Let $||f||_u = \sup_{x \in [0,1]} |f(x)|$. The product topology on $[0,1]^2$ is induced, for instance, by the metric $d_2((u,v),(\tilde{u},\tilde{v})) = \sqrt{(u-\tilde{u})^2 + (v-\tilde{v})^2}$. Since $k(\cdot, \cdot)$ is continuous on a compact metric space it is uniformly continuous. We can therefore find a $\delta > 0$ so that for all $(u,v), (\tilde{u},\tilde{v}) \in [0,1]^2$ with $\sqrt{(u-\tilde{u})^2 + (v-\tilde{v})^2} < \delta$ it follows that $|k(u,v) - k(\tilde{u},\tilde{v})| < \varepsilon/(1 + ||f||_u)$. Therefore it follows for $z \in [0,1]$, with $|x-z| < \delta$ that

$$\begin{split} |T(f)(x) - T(f)(z)| &= \left| \int_0^1 [k(x, y) - k(z, y)] f(y) dy \right| \\ &\leq ||f||_u \int_0^1 |k(x, y) - k(z, y)| dy \leq ||f||_u \frac{\varepsilon}{1 + ||f||_u} < \varepsilon. \end{split}$$

(2) Assume that $B \subset C(X)$ is bounded. Note that in the proof of (1) the δ only depended on ε and $||f||_u$. This implies that $\{T(f): f \in B\}$ is equicontinuous.

	L		
	L		

Secondly if $f \in C([0, 1])$,

$$||T(f)||_{u} \leq \sup_{x,y \in [0,1]} |k(x,y)| \cdot |f(x)| \leq ||f||_{u} \sup_{x,y \in [0,1]} |k(x,y)|.$$

This implies that if $B \subset C(X)$ is bounded, then T(B) is bounded.

From the theorem of Arzelà and Ascoli it follows that $\{T(f) : f \in B\}$ is totally bounded and thus $\overline{\{T(f) : f \in B\}}$ is compact.