REAL ANALYSIS MATH 608 HOMEWORK #5

Problem 1. Consider the Banach space C[0,1] consisting of all continuous, real valued functions on [0,1], endowed with the uniform topology. For $f \in C[0,1]$, let

$$||f||_{L} = |f(0)| + \sup_{0 \le x < y \le 1} \frac{|f(y) - f(x)|}{y - x}$$

Is the set $\{f \in C[0,1] \mid ||f||_L < \infty\}$ *dense in* C[0,1] *for the uniform topology, or not? Justify your answer.*

Problem 2. Recall that a point is isolated in a topological space if $\{x\}$ is open, and a G_{δ} -set is a countable intersection of open sets. Let X be a non-empty Baire space that is T_1 , and $Y \subset X$ that is countable, dense, and such that no point in Y is isolated in X. Show that

- (1) $X \setminus Y$ is a dense G_{δ} -set,
- (2) Y is not a G_{δ} -set.
- (3) Can \mathbb{Q} be a G_{δ} -set in \mathbb{R} ?

Problem 3 (Osgood's theorem). Let X be a complete metric space and Y be a metric space. Let $\mathcal{F} \subset C(X, Y)$ such that the set $\{f(x): f \in \mathcal{F}\} \subset Y$ is bounded for each $x \in X$. Then, there is a non-empty open set $U \subset X$ such that $\{f(x): f \in \mathcal{F}, x \in U\} \subset Y$ is bounded.

Problem 4. A topological space (X, τ) is locally compact if every $x \in X$ admits a neighborhood basis consisting of compact sets.

- (1) Assuming that (X,τ) is Hausdorff, show that X is locally compact if and only if every point admits a compact neighborhood.
- (2) Show that a Hausdorff compact space is locally compact.
- (3) Show that every Hausdorff locally compact space is a Baire space.

Problem 5 (Completeness of L(X, Y)). Let X and Y be normed linear spaces and L(X, Y) the vector space of bounded linear maps from X into Y.

- (1) Show that $||T|| = \sup_{x \in X, ||x||_X \le 1} ||T(x)||_Y$ defines a norm on L(X, Y).
- (2) Show that

$$||T|| = \sup\left\{\frac{||T(x)||_Y}{||x||_X} : x \neq 0\right\} = \inf\{C \ge 0 : \forall x \in X \quad ||T(x)||_Y \le C||x||_X\}$$

(3) Show that if Y is a Banach space then L(X, Y) is complete, and thus also a Banach space.