
REAL ANALYSIS MATH 608
HOMEWORK #5

Problem 1. Consider the Banach space C[0,1] consisting of all continuous, real valued functions on [0,1],
endowed with the uniform topology. For f ∈C[0,1], let

‖ f ‖L = | f (0)|+ sup
06x<y61

| f (y)− f (x)|
y− x

Is the set S = { f ∈C[0,1] | ‖ f ‖L <∞} dense in C[0,1] for the uniform topology, or not? Justify your answer.

Solution. This is an archi-typical application of Stone-Weierstrass theorem.
S contains the constants.: This is clear.
S separates points: You could argue that S contains the polynomials (since their derivatives are poly-

nomials, thus continuous functions on a compact space, and hence their derivative are bounded,
which makes them Lipschitz maps) and polynomials separate points. Or more simply, you could
construct explicitely continuous piecewise linear functions separating two distinct points x < y (e.g.
a function that is 1 on [0, x] and 0 on [y,1] and extended continuously and linearly between x and y.
The Lipschitz constant of this map is clearly 1

d(x,y) <∞.
S is an algebra: Since continuity is preserved under the algebra operations it is sufficient to show that

• ‖λ f ‖L = |λ|‖ f ‖L; but this is immediate.
• ‖ f + g‖L 6 ‖ f ‖L + ‖g‖L; this follows from the triangle inequality.
• max‖ f ‖L,‖g‖L <∞ =⇒ ‖ f g‖L <∞; this needs a bit more work but follows from the following

decomposition
|( f g)(y)− ( f g)(x)|

y− x
=
|( f (y)− f (x))g(y) + f (x)(g(y)−g(x))|

y− x
6
|( f (y)− f (x))|

y− x
|g(y)|+ | f (x)|

|g(y)−g(x)|
y− x

,

which gives ‖ f g‖L 6 | f (0)||g(0)|+ ‖g‖u sup06x<y61
| f (y)− f (x)|

y−x + ‖ f ‖u sup06x<y61
|g(y)−g(x)|

y−x , which is
clearly finite if max‖ f ‖L,‖g‖L <∞ (and since f ,g are continuous on a compact space and hence
bounded)

By Stone-Weierstrass theorem S is dense in C[0,1]. �

Problem 2. Recall that a point is isolated in a topological space if {x} is open, and a Gδ-set is a countable
intersection of open sets. Let X be a non-empty Baire space that is T1, and Y ⊂ X that is countable, dense,
and such that no point in Y is isolated in X. Show that

(1) X \Y is a dense Gδ-set,
(2) Y is not a Gδ-set.
(3) Can Q be a Gδ-set in R?

Solution. (1) Y = ∪y∈Y {y} and this union is countable. Since X is T1 the singletons are closed. Since no
point in Y is isolated {y} has empty interior for any y ∈ Y . Therefore, Y is a countable intersections
of closed sets with empty interior, and by taking the complement X \Y is a countable intersection of
dense open sets, and hence a dense Gδ-set since X is a Baire space.

(2) Assume that Y = ∩nUn with Un open. Given n > 1, Y ⊂ Un, and Un is dense because Y is dense. So
Y is a countable intersection of dense open sets, and X \Y is the countable union of closed sets with
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empty interior. In (1) we showed that Y is also a countable intersections of closed sets with empty
interior, so X = X \Y ∪Y is a countable intersections of closed sets with empty interior, nad hence
has empty interior since X is Baire, a contradiction.

(3) No by (2).
�

Problem 3 (Osgood’s theorem). Let X be a complete metric space and Y be a metric space. Let F ⊂C(X,Y)
such that the set { f (x) : f ∈ F } ⊂ Y is bounded for each x ∈ X. Then, there is a non-empty open set U ⊂ X
such that { f (x) : f ∈ F , x ∈ U} ⊂ Y is bounded.

Solution. This is a prototypical application of Baire Category Theorem. Fix y0 ∈ Y , and for n > 1, let

Fn = {x ∈ X : ∀ f ∈ F , dY (y0, f (x)) 6 n}.

Then, by continuity of the distance function and the functions in F , Fn is closed and we infer from the
assumption that X = ∪∞n=1Fn. Since X is complete, BCT tells us that there must be a n0 ∈ N such that
F◦n0
, ∅. But if f ∈ F and x is in the open set F◦n0

, we have dY (y0, f (x)) 6 n0, which is exactly saying that
{ f (x) : f ∈ F , x ∈ F◦n0

} ⊂ Y is bounded. �

Problem 4. A topological space (X, τ) is locally compact if every x ∈ X admits a neighborhood basis con-
sisting of compact sets.

(1) Assuming that (X, τ) is Hausdorff, show that X is locally compact if and only if every point admits a
compact neighborhood.

(2) Show that a Hausdorff compact space is locally compact.
(3) Show that every Hausdorff locally compact space is a Baire space.

Solution.
(1) If X is locally compact then by definition every point admits a compact neighborhood (and we do

not need Hausdorfness).
Assume now that (X, τ) is Hausdorff, and that every point admits a compact neighborhood. Let U

be an open neighborhood of x ∈ X and let K be a compact neighborhood of x. The problem here is
that K might not be included in U. We will use that fact that Hausdorff compact spaces are normal
to find a compact neighborhood that is included in U. To do so we first observe that K◦ ∩U is
an open neighborhood of x whose closure is compact. Indeed, K◦∩U ⊂ K, but K is closed since
compact in a Hausdorff space, and hence K◦∩U is compact as a closed subset of a compact space.
Let V = K◦ ∩U, we will work in the closed subset V equipped with its subspace topology. Since
x ∈ V , it follows that x < Vc∩V . Since V is compact Hausdorff for the subspace topology, and Vc∩V
is closed (for the subspace topology on V and in X), and x ∈ V , by normality we can find disjoint
relatively open sets W1,W2 such Vc ∩V ⊂ W1 and x ∈ W2. The tricky point is to observe that W2
is open in X since it is in fact a subset of the open set V . If you draw a diagram it is clear, but
rigorously it follows from the fact that by disjointness of W1 and W2 (which are subsets of V),

W2 ⊂ V \W1 = V ∩ (Vc∩V)c = V ∩ (V ∪ (V
c
) = V.

Since V \W1 is relatively closed and W2 ⊂ V \W1, the relative closure of W2 is a subset of V \W1 ⊂

V = K◦ ∩U ⊂ U. But the relative closure of W2 coincides with the closure of W2 in X since V is
closed. Therefore, W2 is a compact neigborhood of x that is included in U.

(2) This is an immediate consequence of (1).
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(3) Let (Un)n be a sequence of open and dense sets. Let’s try to mimic the proof of BCT in the metric
setting. Let W be a non-empty open set. Then W ∩U1 is non empty by density and let x1 ∈W ∩U1.
Since W∩U1 is open and non empty, by local compactness there is a compact neighborhood K1 such
that ∅ , K◦1 ⊂ K1 ⊂W ∩U1. Since K◦1 is open and non-empty, one can find a compact neighborhood
K2 such that ∅ , K◦2 ⊂ K2 ⊂ K◦1 ∩U2 ⊂W∩U2 (again by density and local compactness). Continuing
recursively, we can find a decreasing sequence of compact neighborhood (Kn)n such that for all n> 1

Kn ⊂W ∩Un.

Since (Kn)n is a decreasing sequence of compact spaces the intersection ∩∞n=1Kn is non-empty (you
might want to prove this and here we need Hausdorfness). Since ∅ , ∩nKn ⊂W∩∩∞n=1Un, it follows
that ∩nUn is dense.

�

Problem 5 (Completeness of L(X,Y)). Let X and Y be normed linear spaces and L(X,Y) the vector space
of bounded linear maps from X into Y.

(1) Show that ‖T‖ = supx∈X,‖x‖X61 ‖T (x)‖Y defines a norm on L(X,Y).
(2) Show that

‖T‖ = sup
{‖T (x)‖Y
‖x‖X

: x , 0
}

= inf
{
C > 0 : ∀x ∈ X ‖T (x)‖Y 6C‖x‖X

}
.

(3) Show that if Y is a Banach space then L(X,Y) is complete, and thus also a Banach space.

Solution. (1) ‖ · ‖ is a norm.
Definitness:

‖T‖=0 ⇐⇒ sup
x∈X,‖x‖61

‖T (x)‖ = 0 ⇐⇒ ∀x ∈ X,‖x‖61, T (x) = 0

But this is equivalent to ∀x ∈ X,T (x) = 0 (by scalar homogeneity of T ) and this means that
T = 0.

homogeneity: ‖λT‖ = supx∈X,‖x‖61 ‖λT (x)‖ = |λ|supx∈X,‖x‖61 ‖T (x)‖ = |λ|‖T‖.
triangle inequality:

‖T + S ‖ = sup
x∈X,‖x‖61

‖T (x) + S (x)‖

6 sup
x∈X,‖x‖61

‖T (x)‖+ ‖S (x)‖

6 sup
x∈X,‖x‖61

‖T (x)‖+ sup
x∈X,‖x‖61

‖S (x)‖ = ‖T‖+ ‖S ‖.

(2) We will show that

sup
{‖T (x)‖
‖x‖

: x , 0
} (1)
6 ‖T‖

(2)
6 inf

{
C > 0: ‖T (x)‖ 6C‖x‖,∀x ∈ X

} (3)
6 sup

{‖T (x)‖
‖x‖

: x , 0
}
.

(1) sup
{
‖T (x)‖
‖x‖ : x , 0

}
6 ‖T‖:

Follows from the observation that
{
‖T (x)‖
‖x‖ : x , 0

}
=

{
‖T (x)‖ : ‖x‖ = 1

}
since for x ∈ X \ {0},

‖T (x)‖/‖x‖ = ‖T (x/‖x‖)‖.

(2) ‖T‖ 6 inf
{
C > 0: ‖T (x)‖ 6C‖x‖,∀x ∈ X

}
:

Assume that C > 0 is such that ∀x ∈ X ‖T (x)‖ 6 C‖x‖. Then ‖T (x)‖ 6 C whenever ‖x‖ 6 1.
The inequality follows by taking the sup over x ∈ BX first, and then the inf over C.
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(3) inf
{
C > 0: ‖T (x)‖ 6C‖x‖,∀x ∈ X

}
6 sup

{
‖T (x)‖
‖x‖ : x , 0

}
:

This is clear, since by definition ‖T (x)‖ 6 sup
{
‖T (x)‖
‖x‖ : x , 0

}
· ‖x‖, for all x ∈ X.

(3) Assume that Y is complete, and let
∑

n Tn be absolutely convergent in L(X,Y), i.e.,

C =

∞∑
n=1

‖Tn‖ =

∞∑
n=1

sup
x∈BX

‖Tn(x)‖ <∞.

This implies that for fixed x ∈ X the series
∑∞

n=1 Tn(x) is absolutely convergent and thus (since Y is
complete) convergent to an element which we denote by S (x). It is then easy to verify that the map
x 7→ S (x) is a linear operator and that for x , 0

‖S (x)‖ = ‖x‖ · ‖S (x/‖x‖)‖ = ‖x‖ ·
∥∥∥∥ ∞∑

n=1

Tn(x/‖x‖)
∥∥∥∥ 6 ‖x‖ ∞∑

n=1

‖Tn‖ = C‖x‖,

which implies that S ∈ L(X,Y). Moreover, for x ∈ BX , and n ∈ N∥∥∥∥S (x)−
n∑

j=1

T j(x)
∥∥∥∥ 6 ∞∑

j=n+1

‖T j(x)‖ 6
∞∑

j=n+1

‖T j‖.

and thus ∥∥∥∥S −
n∑

j=1

T j

∥∥∥∥ 6 ∞∑
j=n+1

‖T j‖ →n→∞ 0.

Therefore
∑

n Tn converge to S in L(X,Y), and we conclude that L(X,Y) is complete for the operator
norm.

�
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