
REAL ANALYSIS MATH 608
HOMEWORK #6

Problem 1. Let X be a finite dimensional vector space (over F ∈ {R,C}) and let e1,e2, . . . ,en be an algebraic
basis of X. For x =

∑n
j=1 a je j ∈ X, consider the norm ‖x‖1

def
=

∑n
j=1 |a j|.

(1) Show that the unit sphere of (X,‖ · ‖1), i.e. the set S X
def
= {x ∈ X : ‖x‖1 = 1} is compact in the topology

defined by ‖ · ‖1.
(2) Show that all norms on X are equivalent, i.e. for every norm ‖ · ‖ on X there are constant CX ,cX > 0,

such that cX‖x‖ 6 ‖x‖1 6CX‖x‖, for all x ∈ X.

Solution. (1) Let x(k) =
∑n

j=1 a(k)
j e j ∈ S X , for k ∈ N note that for each j ∈ {1,2, . . .n}, (a(k)

j )k∈N ⊂ {ξ ∈ K :
|ξ| = 1}. We find therefore an infinite N ⊂ N so that

a j = lim
k∈N,k→∞

a(k))
j

exists for all j ∈ {1,2 . . .}. Let x =
∑n

j=1 a je j. Then

‖x‖1 =
n∑

j=1

|a j| = lim
k∈N,k→∞

n∑
j=1

|a(k)
j | = 1,

and

‖x− x(k)‖1 =

n∑
j=1

|a j−a(k)
j | = 1→k∈N,k→∞ 0.

Thus, every sequence in S X has a subsequence which converges to an element of S X . Thus S X is
compact.

(2) Let ‖ · ‖ be any norm on X. Put C = max j=1,2...n ‖e j‖. Then (property of norm) 0 < C <∞. Let T be
the identity on X, but think of it as a linear map from (X,‖ · ‖1) to (X,‖ · ‖).

Since for x =
∑n

j=1 a je j ∈ X

‖x‖ = ‖T (x)‖ =
∥∥∥∥ n∑

j=1

a je j

∥∥∥∥ 6 n∑
j=1

|a j|‖e j‖ 6C‖x‖1

T is a bounded linear operator with ‖T‖ 6 C. This implies that the image of S X = {x ∈ X : ‖x‖1}
is compact in (X,‖ · ‖). And since 0 < S X and since ‖ · ‖ is a ‖ · ‖-continuous function on X (simply
meaning that if xn converges to x in (X,‖ · ‖) then ‖xn‖ converges to ‖x‖) it follows that c :=min{‖x‖ :
x ∈ S X} exists and c > 0. We deduce that for x ∈ X

C‖x‖1 > ‖x‖ = ‖x‖1
∥∥∥∥ x
‖x‖1

∥∥∥∥ > c‖x‖1,

which proves our claim (c).
�

Problem 2.
(1) Assume that (X,‖ · ‖) is a normed vector space and that Y is a closed proper subspace of X. Show

that for any ε > 0 there is an x ∈ X such that ‖x‖ = 1 and d(x,Y) > 1−ε.
(2) Let (X,‖ · ‖) be an infinite-dimensional normed vector space and ε ∈ (0,1). Show that there is a

sequence {xn}
∞
n=1 ⊂ X, with ‖xn‖ = 1, for all n ∈ N, and ‖x j− xi‖ > (1−ε), whenever i , j.
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(3) What can you deduce from (2) about the topological properties of the unit ball BX = {x ∈ X,‖x‖ 6 1}
of any infinite-dimensional normed vector space X.

Hint: For (2) you can use the fact that every finite-dimensional subspace is closed (which essentially
follows from Problem 1, do you see why?).

Solution. (1) Y is a proper and closed subspace, thus not dense in X. So choose x0 ∈ X, with dist(x0,Y)=
infy∈Y ‖x0− y‖ > 0. Given ε > 0 choose y0 ∈ Y so that

dist(x0,Y) = inf
y∈Y
‖x0+ y‖ > ‖x0+ y0‖(1−ε).

Finally let x = (x0+ y0)/‖x0+ y0‖. It follows that ‖x‖ = 1 and

dist(x,Y) = ‖x0+ y0‖
−1 ·dist(x0+ y0,Y)

= ‖x0+ y0‖
−1 · inf

y∈Y
‖x0+ y0+ y‖

= ‖x0+ y0‖
−1 · inf

y∈Y
‖x0+ y‖ > 1−ε.

(2) By induction we choose x1, x2, . . . in S X so that ‖x j− xi‖> (1−ε) whenever i, j. Choose x1 arbitrary
and assume that x1, . . . xn have been chosen. Let Y be the space generated by x1, . . . , xn. Y is a closed
and proper subspace of X. By (1), there is an xn+1 so that ‖xn+1‖ = 1 and d(xn+1,Y) > (1− ε). Thus
for all i = 1,2 . . .n,

‖xn+1− xi‖ > dist(xn+1,Y) > (1−ε).
(3) It is not compact since in a compact metric space there is no infinite separated sequence.

�

Problem 3. Let X and Y be two Banach spaces. The adjoint of a map T : X→ Y is the map T ∗ : Y∗→ X∗

defined by T ∗(y∗)(x) = y∗(T x), for all y∗ ∈ Y∗, x ∈ X.
(1) Show that if T : X → Y is linear and bounded, then the adjoint T ∗ : Y∗ → X∗ is also linear and

bounded and ‖T‖ = ‖T ∗‖.
(2) Show that if T is an isomorphism (resp. onto isometry) then T ∗ is an isomorphism (resp. onto

isometry).

Proof. First note that for y∗1,y
∗
2 ∈ Y∗ , λ ∈ K and x ∈ X we have

T ∗(y∗1+ y∗2)(x) = (y∗1+ y∗2)(T (x)) = y∗1(T (x))+ y∗2(T (x)) = (T ∗(y∗1)+T ∗(y∗2))(x)

and
T ∗(λy∗1)(x) = (λy∗1)(T (x)) = λT ∗(y∗1))(x).

Thus T ∗ is linear.
Secondly we show ‖T ∗‖ = ‖T‖.

‖T ∗‖ = sup
y∗∈BY∗

‖T ∗(y∗)‖ = sup
y∗∈BY∗

sup
x∈BX

∣∣∣y∗(T (x))
∣∣∣ = sup

x∈BX

∥∥∥T (x)
∥∥∥ = ‖T‖

(In the third “=” we are using the Hahn Banach Theorem).
Now assume that T is an onto isomorphism and thus T is surjective for some numbers 0 < c 6C we have

c‖x‖ 6 ‖T (x)‖ 6C‖x‖ for all x ∈ X

(with c =C = 1 if T is an isometry).
Let y∗ ∈ Y∗. Since cBY ⊂ T (BX) ⊂CBY , it follows that

‖T ∗(y∗)‖ = sup
x∈BX

‖y∗(T (x))‖ = sup
y∈T (BX)

‖y∗(y)‖6 supy∈Y,‖y‖6C |y
∗(y)| =C supy∈Y,‖y‖61

∣∣∣y∗(y)
∣∣∣ =C‖y∗‖.

> supy∈Y,‖y‖6c |y
∗(y)| = csupy∈Y,‖y‖61

∣∣∣y∗(y)
∣∣∣ = c‖y∗‖.
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Also the proof shows that if T is an isometry, and thus we can choose c =C = 1, T ∗ is also an isometry.
We still have to show that T is surjective. Let x∗ ∈ X∗ and put y∗ = x∗ ◦T−1. Then

T ∗(y∗) = y∗ ◦T = x∗ ◦T−1 ◦T = x∗.

�

Problem 4. Show that a linear functional f on a normed vector space X is bounded if and only if ker( f ) def
=

f −1({0}) is closed.

Hint: For the non-trivial implication you might want to use a Hahn-Banach argument.

Solution. ⇒ is clear since bounded linear functionals on a normed linear space are continuous, and the
preimages of closed sets under continuous maps are closed.
⇐ W.l.o.g. f is not the zero functional (which is clearly bounded). So let x0 ∈ X with f (x0) , 0, say
f (x0) = 1 (after multiplication with the right scalar). Then we can write every x ∈ X as x = f (x)x0 + y with
y ∈ Y = f −1({0}) (simply note that x− f (x)x0 must be in f −1({0})). Now use Theorem of Hahn-Banach
(more precisely Theorem 7.2.6 from the notes) to get a linear bounded functional g on X so that g|Y = 0 and
g(x0) , 0. After multiplying g with the right scalar we may assume g(x0) = 1. Now we claim that g = f , and
thus f must be continuous.

Indeed for all x ∈ X we find y ∈ Y with x = f (x)x0+ y, and thus

g(x) = g( f (x)x0+ y) = f (x)g(x0)+g(y) = f (x).

�

Problem 5. Let {xn}
∞
n=1 be a sequence in a Banach space X that converges to x ∈ X for the weak topology.

Show that
(1) {xn}

∞
n=1 is bounded,

(2) ‖x‖ 6 liminfn→∞ ‖xn‖,
Let {x∗n}

∞
n=1 be a sequence in the dual X∗ of a Banach space X that converges to x∗ ∈ X∗ for the weak-∗

topology. Show that
(1) {x∗n}

∞
n=1 is bounded,

(2) ‖x∗‖ 6 liminfn→∞ ‖x∗n‖.
Bonus question: Can you spot where and/or if completeness of X is needed at all?

Hint:
3 out of the 4 statements are consequences of a consequence of Baire category theorem and/or of a conse-
quence of Hahn-Banach theorem.

Solution. These statements are classical and extremely useful consequences of the UBP and of HBT.
(1) For n > 1, consider the map Tn : X∗→ F given by Tn(x∗) = x∗(xn). Clearly, Tn is linear and |Tn(x∗)| =
|x∗(xn)| 6 ‖x∗‖ · ‖xn‖ is bounded with ‖Tn‖ 6 ‖xn‖. In fact ‖Tn‖ = ‖xn‖, since it follows from HBT
that there is x∗n ∈ X∗, with ‖x∗n‖ = 1 and x∗n(xn) = ‖xn‖. Now, for all x∗ ∈ X∗, (x∗(xn))n converges
by assumption, and hence (Tn(x∗))n is bounded for all x∗ ∈ X∗. By the UBP (here we need the
completeness of X∗ which is automatic), we have that supn ‖Tn‖ = supn ‖xn‖ <∞.

(2) By HBT let x∗ ∈ S X∗ such that x∗(x) = ‖x‖. Then, x∗(xn) 6 ‖x∗‖ · ‖xn‖ = ‖xn‖ and taking liminf on
both sides we have ‖x‖ = x∗(x) 6 liminfn ‖xn‖ (since {xn}

∞
n=1 converges weakly to x).

(1) For n > 1, the maps x∗n : X→ F are linear and bounded by assumption. Now, for all x ∈ X, (x∗n(x))n
converges by assumption, and hence (x∗n(x))n is bounded for all x ∈ X. By the UBP (here we use that
X is a Banach space), we have that supn ‖x

∗
n‖ <∞.

(2) Let x ∈ S X . Then, |x∗n(x)| 6 ‖x∗n‖ · ‖x‖ = ‖x
∗
n‖. Since {x∗n}

∞
n=1 converges weak-∗ to x∗, taking liminf on

both sides we have |x∗(x)|6 liminfn ‖xn‖ (by continuity of the module), and hence ‖x∗‖6 liminfn ‖xn‖.
�
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