REAL ANALYSIS MATH 608
 HOMEWORK \#6

Problem 1. Let X be a finite dimensional vector space (over $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$) and let $e_{1}, e_{2}, \ldots, e_{n}$ be an algebraic basis of X. For $x=\sum_{j=1}^{n} a_{j} e_{j} \in X$, consider the norm $\|x\|_{1} \stackrel{\text { def }}{=} \sum_{j=1}^{n}\left|a_{j}\right|$.
(1) Show that the unit sphere of $\left(X,\|\cdot\|_{1}\right)$, i.e. the set $S_{X} \stackrel{\text { def }}{=}\left\{x \in X:\|x\|_{1}=1\right\}$ is compact in the topology defined by $\|\cdot\|_{1}$.
(2) Show that all norms on X are equivalent, i.e. for every norm $\|\cdot\|$ on X there are constant $C_{X}, c_{X}>0$, such that $c_{X}\|x\| \leqslant\|x\|_{1} \leqslant C_{X}\|x\|$, for all $x \in X$.

Solution. (1) Let $x^{(k)}=\sum_{j=1}^{n} a_{j}^{(k)} e_{j} \in S_{X}$, for $k \in \mathbb{N}$ note that for each $j \in\{1,2, \ldots n\},\left(a_{j}^{(k)}\right)_{k \in \mathbb{N}} \subset\{\xi \in \mathbb{K}$: $|\xi|=1\}$. We find therefore an infinite $N \subset \mathbb{N}$ so that

$$
a_{j}=\lim _{k \in \mathbb{N}, k \rightarrow \infty} a_{j}^{(k))}
$$

exists for all $j \in\{1,2 \ldots\}$. Let $x=\sum_{j=1}^{n} a_{j} e_{j}$. Then

$$
\|x\|_{1}=\sum_{j=1}^{n}\left|a_{j}\right|=\lim _{k \in \mathbb{N}, k \rightarrow \infty} \sum_{j=1}^{n}\left|a_{j}^{(k)}\right|=1,
$$

and

$$
\left\|x-x^{(k)}\right\|_{1}=\sum_{j=1}^{n}\left|a_{j}-a_{j}^{(k)}\right|=1 \rightarrow_{k \in \mathbb{N}, k \rightarrow \infty} 0
$$

Thus, every sequence in S_{X} has a subsequence which converges to an element of S_{X}. Thus S_{X} is compact.
(2) Let $\|\cdot\|$ be any norm on X. Put $C=\max _{j=1,2 \ldots n}\left\|e_{j}\right\|$. Then (property of norm) $0<C<\infty$. Let T be the identity on X, but think of it as a linear map from $\left(X,\|\cdot\|_{1}\right)$ to $(X,\|\cdot\|)$.

Since for $x=\sum_{j=1}^{n} a_{j} e_{j} \in X$

$$
\|x\|=\|T(x)\|=\left\|\sum_{j=1}^{n} a_{j} e_{j}\right\| \leqslant \sum_{j=1}^{n}\left|a_{j}\right|\left\|e_{j}\right\| \leqslant C\|x\|_{1}
$$

T is a bounded linear operator with $\|T\| \leqslant C$. This implies that the image of $S_{X}=\left\{x \in X:\|x\|_{1}\right\}$ is compact in $(X,\|\cdot\|)$. And since $0 \notin S_{X}$ and since $\|\cdot\|$ is a $\|\cdot\|$-continuous function on X (simply meaning that if x_{n} converges to x in $(X,\|\cdot\|)$ then $\left\|x_{n}\right\|$ converges to $\left.\|x\|\right)$ it follows that $c:=\min \{\|x\|$: $\left.x \in S_{X}\right\}$ exists and $c>0$. We deduce that for $x \in X$

$$
C\|x\|_{1} \geqslant\|x\|=\|x\|_{1}\left\|\frac{x}{\|x\|_{1}}\right\| \geqslant c\|x\|_{1},
$$

which proves our claim (c).

Problem 2.

(1) Assume that $(X,\|\cdot\|)$ is a normed vector space and that Y is a closed proper subspace of X. Show that for any $\varepsilon>0$ there is an $x \in X$ such that $\|x\|=1$ and $d(x, Y)>1-\varepsilon$.
(2) Let $(X,\|\cdot\|)$ be an infinite-dimensional normed vector space and $\varepsilon \in(0,1)$. Show that there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$, with $\left\|x_{n}\right\|=1$, for all $n \in \mathbb{N}$, and $\left\|x_{j}-x_{i}\right\| \geqslant(1-\varepsilon)$, whenever $i \neq j$.
(3) What can you deduce from (2) about the topological properties of the unit ball $B_{X}=\{x \in X,\|x\| \leqslant 1\}$ of any infinite-dimensional normed vector space X.
Hint: For (2) you can use the fact that every finite-dimensional subspace is closed (which essentially follows from Problem 1, do you see why?).

Solution. (1) Y is a proper and closed subspace, thus not dense in X. So choose $x_{0} \in X$, with $\operatorname{dist}\left(x_{0}, Y\right)=$ $\inf _{y \in Y}\left\|x_{0}-y\right\|>0$. Given $\varepsilon>0$ choose $y_{0} \in Y$ so that

$$
\operatorname{dist}\left(x_{0}, Y\right)=\inf _{y \in Y}\left\|x_{0}+y\right\|>\left\|x_{0}+y_{0}\right\|(1-\varepsilon) .
$$

Finally let $x=\left(x_{0}+y_{0}\right) /\left\|x_{0}+y_{0}\right\|$. It follows that $\|x\|=1$ and

$$
\begin{aligned}
\operatorname{dist}(x, Y) & =\left\|x_{0}+y_{0}\right\|^{-1} \cdot \operatorname{dist}\left(x_{0}+y_{0}, Y\right) \\
& =\left\|x_{0}+y_{0}\right\|^{-1} \cdot \inf _{y \in Y}\left\|x_{0}+y_{0}+y\right\| \\
& =\left\|x_{0}+y_{0}\right\|^{-1} \cdot \inf _{y \in Y}\left\|x_{0}+y\right\|>1-\varepsilon .
\end{aligned}
$$

(2) By induction we choose x_{1}, x_{2}, \ldots in S_{X} so that $\left\|x_{j}-x_{i}\right\| \geqslant(1-\varepsilon)$ whenever $i \neq j$. Choose x_{1} arbitrary and assume that $x_{1}, \ldots x_{n}$ have been chosen. Let Y be the space generated by x_{1}, \ldots, x_{n}. Y is a closed and proper subspace of X. By (1), there is an x_{n+1} so that $\left\|x_{n+1}\right\|=1$ and $d\left(x_{n+1}, Y\right)>(1-\varepsilon)$. Thus for all $i=1,2 \ldots n$,

$$
\left\|x_{n+1}-x_{i}\right\| \geqslant \operatorname{dist}\left(x_{n+1}, Y\right)>(1-\varepsilon) .
$$

(3) It is not compact since in a compact metric space there is no infinite separated sequence.

Problem 3. Let X and Y be two Banach spaces. The adjoint of a map $T: X \rightarrow Y$ is the map $T^{*}: Y^{*} \rightarrow X^{*}$ defined by $T^{*}\left(y^{*}\right)(x)=y^{*}(T x)$, for all $y^{*} \in Y^{*}, x \in X$.
(1) Show that if $T: X \rightarrow Y$ is linear and bounded, then the adjoint $T^{*}: Y^{*} \rightarrow X^{*}$ is also linear and bounded and $\|T\|=\left\|T^{*}\right\|$.
(2) Show that if T is an isomorphism (resp. onto isometry) then T^{*} is an isomorphism (resp. onto isometry).
Proof. First note that for $y_{1}^{*}, y_{2}^{*} \in Y^{*}, \lambda \in \mathbb{K}$ and $x \in X$ we have

$$
T^{*}\left(y_{1}^{*}+y_{2}^{*}\right)(x)=\left(y_{1}^{*}+y_{2}^{*}\right)(T(x))=y_{1}^{*}(T(x))+y_{2}^{*}(T(x))=\left(T^{*}\left(y_{1}^{*}\right)+T^{*}\left(y_{2}^{*}\right)\right)(x)
$$

and

$$
\left.T^{*}\left(\lambda y_{1}^{*}\right)(x)=\left(\lambda y_{1}^{*}\right)(T(x))=\lambda T^{*}\left(y_{1}^{*}\right)\right)(x) .
$$

Thus T^{*} is linear.
Secondly we show $\left\|T^{*}\right\|=\|T\|$.

$$
\left\|T^{*}\right\|=\sup _{y^{*} \in B_{Y^{*}}}\left\|T^{*}\left(y^{*}\right)\right\|=\sup _{y^{*} \in B_{Y^{*}}} \sup _{x \in B_{X}}\left|y^{*}(T(x))\right|=\sup _{x \in B_{X}}\|T(x)\|=\|T\|
$$

(In the third " $=$ " we are using the Hahn Banach Theorem).
Now assume that T is an onto isomorphism and thus T is surjective for some numbers $0<c \leqslant C$ we have

$$
c\|x\| \leqslant\|T(x)\| \leqslant C\|x\| \text { for all } x \in X
$$

(with $c=C=1$ if T is an isometry).
Let $y^{*} \in Y^{*}$. Since $c B_{Y} \subset T\left(B_{X}\right) \subset C B_{Y}$, it follows that

$$
\begin{aligned}
\left\|T^{*}\left(y^{*}\right)\right\| & =\sup _{x \in B_{X}}\left\|y^{*}(T(x))\right\|=\sup _{y \in T\left(B_{X}\right)}\left\|y^{*}(y)\right\| \\
& \left\{\begin{array}{l}
\leqslant \sup _{y \in Y,\|y\| \leqslant c}\left|y^{*}(y)\right|=C \sup _{y \in Y\|y\| \leq 1}\left|y^{*}(y)\right|=C\left\|y^{*}\right\| . \\
\end{array} \geqslant \sup _{y \in Y,\|y\| \leq c}\left|y^{*}(y)\right|=c \sup _{y \in Y,\|y\| \leq 1}\left|y^{*}(y)\right|=c\left\|y^{*}\right\| .\right.
\end{aligned}
$$

Also the proof shows that if T is an isometry, and thus we can choose $c=C=1, T^{*}$ is also an isometry.
We still have to show that T is surjective. Let $x^{*} \in X^{*}$ and put $y^{*}=x^{*} \circ T^{-1}$. Then

$$
T^{*}\left(y^{*}\right)=y^{*} \circ T=x^{*} \circ T^{-1} \circ T=x^{*} .
$$

Problem 4. Show that a linear functional f on a normed vector space X is bounded if and only if $\operatorname{ker}(f) \stackrel{\text { def }}{=}$ $f^{-1}(\{0\})$ is closed.

Hint: For the non-trivial implication you might want to use a Hahn-Banach argument.
Solution. \Rightarrow is clear since bounded linear functionals on a normed linear space are continuous, and the preimages of closed sets under continuous maps are closed.
\Leftarrow W.l.o.g. f is not the zero functional (which is clearly bounded). So let $x_{0} \in X$ with $f\left(x_{0}\right) \neq 0$, say $f\left(x_{0}\right)=1$ (after multiplication with the right scalar). Then we can write every $x \in X$ as $x=f(x) x_{0}+y$ with $y \in Y=f^{-1}(\{0\})$ (simply note that $x-f(x) x_{0}$ must be in $f^{-1}(\{0\})$). Now use Theorem of Hahn-Banach (more precisely Theorem 7.2.6 from the notes) to get a linear bounded functional g on X so that $\left.g\right|_{Y}=0$ and $g\left(x_{0}\right) \neq 0$. After multiplying g with the right scalar we may assume $g\left(x_{0}\right)=1$. Now we claim that $g=f$, and thus f must be continuous.

Indeed for all $x \in X$ we find $y \in Y$ with $x=f(x) x_{0}+y$, and thus

$$
g(x)=g\left(f(x) x_{0}+y\right)=f(x) g\left(x_{0}\right)+g(y)=f(x) .
$$

Problem 5. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in a Banach space X that converges to $x \in X$ for the weak topology. Show that
(1) $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded,
(2) $\|x\| \leqslant \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$,

Let $\left\{x_{n}^{*}\right\}_{n=1}^{\infty}$ be a sequence in the dual X^{*} of a Banach space X that converges to $x^{*} \in X^{*}$ for the weak-* topology. Show that
(1) $\left\{x_{n}^{*}\right\}_{n=1}^{\infty}$ is bounded,
(2) $\left\|x^{*}\right\| \leqslant \liminf _{n \rightarrow \infty}\left\|x_{n}^{*}\right\|$.

Bonus question: Can you spot where and/or if completeness of X is needed at all?
Hint:
3 out of the 4 statements are consequences of a consequence of Baire category theorem and/or of a consequence of Hahn-Banach theorem.

Solution. These statements are classical and extremely useful consequences of the UBP and of HBT.
(1) For $n \geqslant 1$, consider the map $T_{n}: X^{*} \rightarrow \mathbb{F}$ given by $T_{n}\left(x^{*}\right)=x^{*}\left(x_{n}\right)$. Clearly, T_{n} is linear and $\left|T_{n}\left(x^{*}\right)\right|=$ $\left|x^{*}\left(x_{n}\right)\right| \leqslant\left\|x^{*}\right\| \cdot\left\|x_{n}\right\|$ is bounded with $\left\|T_{n}\right\| \leqslant\left\|x_{n}\right\|$. In fact $\left\|T_{n}\right\|=\left\|x_{n}\right\|$, since it follows from HBT that there is $x_{n}^{*} \in X^{*}$, with $\left\|x_{n}^{*}\right\|=1$ and $x_{n}^{*}\left(x_{n}\right)=\left\|x_{n}\right\|$. Now, for all $x^{*} \in X^{*},\left(x^{*}\left(x_{n}\right)\right)_{n}$ converges by assumption, and hence $\left(T_{n}\left(x^{*}\right)\right)_{n}$ is bounded for all $x^{*} \in X^{*}$. By the UBP (here we need the completeness of X^{*} which is automatic), we have that $\sup _{n}\left\|T_{n}\right\|=\sup _{n}\left\|x_{n}\right\|<\infty$.
(2) By HBT let $x^{*} \in S_{X^{*}}$ such that $x^{*}(x)=\|x\|$. Then, $x^{*}\left(x_{n}\right) \leqslant\left\|x^{*}\right\| \cdot\left\|x_{n}\right\|=\left\|x_{n}\right\|$ and taking liminf on both sides we have $\|x\|=x^{*}(x) \leqslant \liminf _{n}\left\|x_{n}\right\|\left(\right.$ since $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges weakly to $\left.x\right)$.
(1) For $n \geqslant 1$, the maps $x_{n}^{*}: X \rightarrow \mathbb{F}$ are linear and bounded by assumption. Now, for all $x \in X,\left(x_{n}^{*}(x)\right)_{n}$ converges by assumption, and hence $\left(x_{n}^{*}(x)\right)_{n}$ is bounded for all $x \in X$. By the UBP (here we use that X is a Banach space), we have that $\sup _{n}\left\|x_{n}^{*}\right\|<\infty$.
(2) Let $x \in S_{X}$. Then, $\left|x_{n}^{*}(x)\right| \leqslant\left\|x_{n}^{*}\right\| \cdot\|x\|=\left\|x_{n}^{*}\right\|$. Since $\left\{x_{n}^{*}\right\}_{n=1}^{\infty}$ converges weak-* to x^{*}, taking liminf on both sides we have $\left|x^{*}(x)\right| \leqslant \liminf _{n}\left\|x_{n}\right\|$ (by continuity of the module), and hence $\left\|x^{*}\right\| \leqslant \liminf _{n}\left\|x_{n}\right\|$.

