REAL ANALYSIS MATH 608 HOMEWORK #6

Problem 1. Let X be a finite dimensional vector space (over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$) and let e_1, e_2, \ldots, e_n be an algebraic basis of X. For $x = \sum_{j=1}^n a_j e_j \in X$, consider the norm $||x||_1 \stackrel{\text{def}}{=} \sum_{j=1}^n |a_j|$.

- (1) Show that the unit sphere of $(X, \|\cdot\|_1)$, i.e. the set $S_X \stackrel{\text{def}}{=} \{x \in X : \|x\|_1 = 1\}$ is compact in the topology *defined by* $\|\cdot\|_1$.
- (2) Show that all norms on X are equivalent, i.e. for every norm $\|\cdot\|$ on X there are constant $C_X, c_X > 0$, such that $c_X \|x\| \le \|x\|_1 \le C_X \|x\|$, for all $x \in X$.

Solution. (1) Let $x^{(k)} = \sum_{j=1}^{n} a_j^{(k)} e_j \in S_X$, for $k \in \mathbb{N}$ note that for each $j \in \{1, 2, ..., n\}$, $(a_j^{(k)})_{k \in \mathbb{N}} \subset \{\xi \in \mathbb{K} : |\xi| = 1\}$. We find therefore an infinite $N \subset \mathbb{N}$ so that

$$a_j = \lim_{k \in \mathbb{N}, k \to \infty} a_j^{(k)}$$

exists for all $j \in \{1, 2...\}$. Let $x = \sum_{j=1}^{n} a_j e_j$. Then

$$||x||_1 = \sum_{j=1}^n |a_j| = \lim_{k \in \mathbb{N}, k \to \infty} \sum_{j=1}^n |a_j^{(k)}| = 1,$$

and

$$||x - x^{(k)}||_1 = \sum_{j=1}^n |a_j - a_j^{(k)}| = 1 \rightarrow_{k \in \mathbb{N}, k \rightarrow \infty} 0.$$

Thus, every sequence in S_X has a subsequence which converges to an element of S_X . Thus S_X is compact.

(2) Let $\|\cdot\|$ be any norm on *X*. Put $C = \max_{j=1,2...n} \|e_j\|$. Then (property of norm) $0 < C < \infty$. Let *T* be the identity on *X*, but think of it as a linear map from $(X, \|\cdot\|_1)$ to $(X, \|\cdot\|)$.

Since for $x = \sum_{j=1}^{n} a_j e_j \in X$

$$||x|| = ||T(x)|| = \left\| \sum_{j=1}^{n} a_j e_j \right\| \le \sum_{j=1}^{n} |a_j|||e_j|| \le C ||x||_1$$

T is a bounded linear operator with $||T|| \le C$. This implies that the image of $S_X = \{x \in X : ||x||_1\}$ is compact in $(X, ||\cdot||)$. And since $0 \notin S_X$ and since $||\cdot||$ is a $||\cdot||$ -continuous function on *X* (simply meaning that if x_n converges to x in $(X, ||\cdot||)$ then $||x_n||$ converges to ||x||) it follows that $c := \min\{||x|| : x \in S_X\}$ exists and c > 0. We deduce that for $x \in X$

$$C||x||_1 \ge ||x|| = ||x||_1 \left\| \frac{x}{||x||_1} \right\| \ge c||x||_1,$$

which proves our claim (c).

Problem 2.

- (1) Assume that $(X, \|\cdot\|)$ is a normed vector space and that Y is a closed proper subspace of X. Show that for any $\varepsilon > 0$ there is an $x \in X$ such that ||x|| = 1 and $d(x, Y) > 1 \varepsilon$.
- (2) Let $(X, \|\cdot\|)$ be an infinite-dimensional normed vector space and $\varepsilon \in (0, 1)$. Show that there is a sequence $\{x_n\}_{n=1}^{\infty} \subset X$, with $\|x_n\| = 1$, for all $n \in \mathbb{N}$, and $\|x_j x_i\| \ge (1 \varepsilon)$, whenever $i \neq j$.

(3) What can you deduce from (2) about the topological properties of the unit ball $B_X = \{x \in X, ||x|| \le 1\}$ of any infinite-dimensional normed vector space *X*.

Hint: For (2) you can use the fact that every finite-dimensional subspace is closed (which essentially follows from Problem 1, do you see why?).

Solution. (1) *Y* is a proper and closed subspace, thus not dense in *X*. So choose $x_0 \in X$, with dist $(x_0, Y) = \inf_{y \in Y} ||x_0 - y|| > 0$. Given $\varepsilon > 0$ choose $y_0 \in Y$ so that

$$dist(x_0, Y) = \inf_{y \in Y} ||x_0 + y|| > ||x_0 + y_0||(1 - \varepsilon).$$

Finally let $x = (x_0 + y_0)/||x_0 + y_0||$. It follows that ||x|| = 1 and

$$dist(x, Y) = ||x_0 + y_0||^{-1} \cdot dist(x_0 + y_0, Y)$$

= $||x_0 + y_0||^{-1} \cdot \inf_{y \in Y} ||x_0 + y_0 + y||$
= $||x_0 + y_0||^{-1} \cdot \inf_{y \in Y} ||x_0 + y|| > 1 - \varepsilon.$

(2) By induction we choose $x_1, x_2, ...$ in S_X so that $||x_j - x_i|| \ge (1 - \varepsilon)$ whenever $i \ne j$. Choose x_1 arbitrary and assume that $x_1, ..., x_n$ have been chosen. Let *Y* be the space generated by $x_1, ..., x_n$. *Y* is a closed and proper subspace of *X*. By (1), there is an x_{n+1} so that $||x_{n+1}|| = 1$ and $d(x_{n+1}, Y) > (1 - \varepsilon)$. Thus for all i = 1, 2...n,

$$||x_{n+1} - x_i|| \ge \operatorname{dist}(x_{n+1}, Y) > (1 - \varepsilon).$$

(3) It is not compact since in a compact metric space there is no infinite separated sequence.

- **Problem 3.** Let X and Y be two Banach spaces. The adjoint of a map $T: X \to Y$ is the map $T^*: Y^* \to X^*$ defined by $T^*(y^*)(x) = y^*(Tx)$, for all $y^* \in Y^*, x \in X$.
 - (1) Show that if $T: X \to Y$ is linear and bounded, then the adjoint $T^*: Y^* \to X^*$ is also linear and bounded and $||T|| = ||T^*||$.
 - (2) Show that if T is an isomorphism (resp. onto isometry) then T^{*} is an isomorphism (resp. onto isometry).

Proof. First note that for $y_1^*, y_2^* \in Y^*$, $\lambda \in \mathbb{K}$ and $x \in X$ we have

$${}^{*}(y_{1}^{*} + y_{2}^{*})(x) = (y_{1}^{*} + y_{2}^{*})(T(x)) = y_{1}^{*}(T(x)) + y_{2}^{*}(T(x)) = (T^{*}(y_{1}^{*}) + T^{*}(y_{2}^{*}))(x)$$

and

$$T^*(\lambda y_1^*)(x) = (\lambda y_1^*)(T(x)) = \lambda T^*(y_1^*))(x).$$

Thus T^* is linear.

Secondly we show $||T^*|| = ||T||$.

Т

$$||T^*|| = \sup_{y^* \in B_{Y^*}} ||T^*(y^*)|| = \sup_{y^* \in B_{Y^*}} \sup_{x \in B_X} |y^*(T(x))| = \sup_{x \in B_X} ||T(x)|| = ||T||$$

(In the third "=" we are using the Hahn Banach Theorem).

Now assume that T is an onto isomorphism and thus T is surjective for some numbers $0 < c \le C$ we have

 $c||x|| \le ||T(x)|| \le C||x||$ for all $x \in X$

(with c = C = 1 if T is an isometry).

Let $y^* \in Y^*$. Since $cB_Y \subset T(B_X) \subset CB_Y$, it follows that

$$\begin{aligned} \|T^*(y^*)\| &= \sup_{x \in B_X} \|y^*(T(x))\| = \sup_{y \in T(B_X)} \|y^*(y)\| \\ &\left\{ \leq \sup_{y \in Y, \|y\| \leq C} |y^*(y)| = C \sup_{y \in Y, \|y\| \leq 1} |y^*(y)| = C \|y^*\|. \\ &\geq \sup_{y \in Y, \|y\| \leq c} |y^*(y)| = c \sup_{y \in Y, \|y\| \leq 1} |y^*(y)| = c \|y^*\|. \end{aligned} \end{aligned}$$

Also the proof shows that if T is an isometry, and thus we can choose c = C = 1, T^* is also an isometry. We still have to show that T is surjective. Let $x^* \in X^*$ and put $y^* = x^* \circ T^{-1}$. Then

$$T^*(y^*) = y^* \circ T = x^* \circ T^{-1} \circ T = x^*.$$

Problem 4. Show that a linear functional f on a normed vector space X is bounded if and only if ker $(f) \stackrel{\text{def}}{=} f^{-1}(\{0\})$ is closed.

Hint: For the non-trivial implication you might want to use a Hahn-Banach argument.

Solution. \Rightarrow is clear since bounded linear functionals on a normed linear space are continuous, and the preimages of closed sets under continuous maps are closed.

 \Leftarrow W.l.o.g. *f* is not the zero functional (which is clearly bounded). So let $x_0 \in X$ with $f(x_0) \neq 0$, say $f(x_0) = 1$ (after multiplication with the right scalar). Then we can write every $x \in X$ as $x = f(x)x_0 + y$ with $y \in Y = f^{-1}(\{0\})$ (simply note that $x - f(x)x_0$ must be in $f^{-1}(\{0\})$). Now use Theorem of Hahn-Banach (more precisely Theorem 7.2.6 from the notes) to get a linear bounded functional *g* on *X* so that $g|_Y = 0$ and $g(x_0) \neq 0$. After multiplying *g* with the right scalar we may assume $g(x_0) = 1$. Now we claim that g = f, and thus *f* must be continuous.

Indeed for all $x \in X$ we find $y \in Y$ with $x = f(x)x_0 + y$, and thus

$$g(x) = g(f(x)x_0 + y) = f(x)g(x_0) + g(y) = f(x).$$

Problem 5. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in a Banach space X that converges to $x \in X$ for the weak topology. Show that

- (1) $\{x_n\}_{n=1}^{\infty}$ is bounded,
- (2) $||x|| \leq \liminf_{n \to \infty} ||x_n||,$

Let $\{x_n^*\}_{n=1}^{\infty}$ be a sequence in the dual X^* of a Banach space X that converges to $x^* \in X^*$ for the weak-* topology. Show that

- (1) $\{x_n^*\}_{n=1}^{\infty}$ is bounded,
- (2) $||x^*|| \leq \liminf_{n \to \infty} ||x_n^*||$.

Bonus question: Can you spot where and/or if completeness of X is needed at all?

Hint:

3 out of the 4 statements are consequences of a consequence of Baire category theorem and/or of a consequence of Hahn-Banach theorem.

Solution. These statements are classical and extremely useful consequences of the UBP and of HBT.

- (1) For $n \ge 1$, consider the map $T_n: X^* \to \mathbb{F}$ given by $T_n(x^*) = x^*(x_n)$. Clearly, T_n is linear and $|T_n(x^*)| = |x^*(x_n)| \le ||x^*|| \cdot ||x_n||$ is bounded with $||T_n|| \le ||x_n||$. In fact $||T_n|| = ||x_n||$, since it follows from HBT that there is $x_n^* \in X^*$, with $||x_n^*|| = 1$ and $x_n^*(x_n) = ||x_n||$. Now, for all $x^* \in X^*$, $(x^*(x_n))_n$ converges by assumption, and hence $(T_n(x^*))_n$ is bounded for all $x^* \in X^*$. By the UBP (here we need the completeness of X^* which is automatic), we have that $\sup_n ||T_n|| = \sup_n ||x_n|| < \infty$.
- (2) By HBT let $x^* \in S_{X^*}$ such that $x^*(x) = ||x||$. Then, $x^*(x_n) \leq ||x^*|| \cdot ||x_n|| = ||x_n||$ and taking limit on both sides we have $||x|| = x^*(x) \leq \liminf_n ||x_n||$ (since $\{x_n\}_{n=1}^{\infty}$ converges weakly to x).
- (1) For n≥ 1, the maps x_n^{*}: X → F are linear and bounded by assumption. Now, for all x ∈ X, (x_n^{*}(x))_n converges by assumption, and hence (x_n^{*}(x))_n is bounded for all x ∈ X. By the UBP (here we use that X is a Banach space), we have that sup_n ||x_n^{*}|| < ∞.
- (2) Let $x \in S_X$. Then, $|x_n^*(x)| \le ||x_n^*|| \cdot ||x|| = ||x_n^*||$. Since $\{x_n^*\}_{n=1}^{\infty}$ converges weak-* to x^* , taking liminf on both sides we have $|x^*(x)| \le \liminf_n ||x_n||$ (by continuity of the module), and hence $||x^*|| \le \liminf_n ||x_n||$.