REAL ANALYSIS MATH 608
 HOMEWORK \#7

Problem 1. Let X be a normed vector space and $Y \subset X$ be a vector subspace such that $\bar{Y} \neq X$ (the closure is with respect tot the norm topology). Show that there exists $x^{*} \in X^{*}, x^{*} \neq 0$, and $x^{*}(y)=0$ for all $y \in Y$.

Hint: Use a geometric form of Hahn-Banach theorem.

Problem 2. Let X be a normed space and $C \subset X$ be a subset.
(1) Show that if C is weakly-closed then it is norm-closed.
(2) Show that if C is convex and norm-closed then it is weakly-closed.
(3) (Mazur's Theorem) Show that if C is convex, then $\bar{C}^{\|\cdot\|}=\bar{C}^{w}$, i.e. weak and norm closure coincide for convex subsets.
(4) Show that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges weakly to $x \in X$, then there is a sequence of convex combination of elements in $\left\{x_{n}: n \in \mathbb{N}\right\}$ that converges in norm to x.

Hint: For (2) use a geometric form of Hahn-Banach theorem. For (4) consider the convex hull of $\left\{x_{n}: n \in\right.$ $\mathbb{N}\}$, i.e. the smallest convex set that contains $\left\{x_{n}: n \in \mathbb{N}\right\}$, and show that the convex hull of a set consists of all the convex combinations of elements in the set.

Problem 3. Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} and define

$$
c_{0}(\mathbb{N} ; \mathbb{F}) \stackrel{\text { def }}{=}\left\{\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{F}: \lim _{n \rightarrow \infty} x_{n}=0\right\} .
$$

For $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in c_{0}(\mathbb{N} ; \mathbb{F})$ define $\|x\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$.
(1) Show that $\left(c_{0}(\mathbb{N} ; \mathbb{F}),\|\cdot\|_{\infty}\right)$ is a normed vector space.
(2) Show that $\left(c_{0}(\mathbb{N} ; \mathbb{F}),\|\cdot\|_{\infty}\right)$ is a Banach space.

Problem 4. Let (X, \mathcal{M}, μ) be a measure space and denote $L_{p}(\mu):=L_{p}(X, \mathcal{M}, \mu)$ for $1 \leqslant p<\infty$.
(1) If $f \in L_{2}(\mu), g \in L_{3}(\mu)$ and $h \in L_{6}(\mu)$, show that $f g h \in L_{1}(\mu)$ and

$$
\|f g h\|_{1} \leqslant\|f\|_{2} \cdot\|g\|_{3} \cdot\|h\|_{6} .
$$

(2) Formulate a generalization for the product of finitely many functions, and prove it.

Problem 5. Let X be an infinite dimensional normed vector space. Show that ${\overline{S_{X}}}^{w}=B_{X}$, i.e. the weakclosure of the unit sphere of X is the unit ball of X.

Hint: Use Mazur's Theorem for one inclusion. For the other inclusion, show that every weak-neighborhood of a point $x_{0} \in B_{X} \backslash S_{X}$ contains an affine line which eventually intersects the sphere.

