REAL ANALYSIS MATH 608 HOMEWORK #7

Problem 1. Let *X* be a normed vector space and $Y \subset X$ be a vector subspace such that $\overline{Y} \neq X$ (the closure is *with respect tot the norm topology). Show that there exists* $x^* \in X^*$, $x^* \neq 0$, and $x^*(y) = 0$ *for all* $y \in Y$.

Hint: Use a geometric form of Hahn-Banach theorem.

Solution. Let $x_0 \in X \setminus \overline{Y}$, and apply the second geometric form of the HBT to the closed convex set $C_1 = \overline{Y}$, and the compact convex set $C_2 = \{x_0\}$. Then, there is a non-zero functional $x^* \in X^*$, and $\alpha \in \mathbb{R}$ such that $x^*(x) \le \alpha \le x^*(x_0)$ $\forall y \in \overline{Y}$. If there exists $y_0 \in Y$ such that $x^*(y_0) \neq 0$ we can assume $y_$ $x^*(x) < \alpha < x^*(x_0)$, $\forall y \in \overline{Y}$. If there exists *y*₀ ∈ *Y* such that $x^*(y_0) \neq 0$ we can assume w.l.o.g. that $x^*(y_0) > 0$
and then $x^*(ty_0) = tx^*(y_0) < \alpha$ for all $t > 0$ contradiction! Therefore $x^* = 0$ and then $x^*(t y_0) = t x^*(y_0) < \alpha$ for all $t > 0$, contradiction! Therefore, $x^*_{|Y} = 0$.

Problem 2. *Let X be a normed space and* $C \subset X$ *be a subset.*

- *(1) Show that if C is weakly-closed then it is norm-closed.*
- *(2) Show that if C is convex and norm-closed then it is weakly-closed.*
- *(3) (Mazur's Theorem) Show that if C is convex, then* $\overline{C}^{\|\cdot\|} = \overline{C}^w$, *i.e. weak and norm closure coincide for convex subsets.*
- (4) *Show that if* $\{x_n\}_{n=1}^{\infty}$ *n*=1 *converges weakly to x* ∈ *X, then there is a sequence of convex combination of elements in* $\{x_n : n \in \mathbb{N}\}\$ *that converges in norm to x.*

Hint: For (2) use a geometric form of Hahn-Banach theorem. For (4) consider the convex hull of $\{x_n : n \in \mathbb{R}\}$ N}, i.e. the smallest convex set that contains $\{x_n : n \in \mathbb{N}\}$, and show that the convex hull of a set consists of all the convex combinations of elements in the set.

Solution. (1) By definition since every weakly open set is norm open (and then take complements).

- (2) If $C = X$ there is nothing to show. So let $x_0 \in X \setminus C$. By the second form of the geometric HBT, there is a non-zero functional $x^* \in X^*$, and $\alpha \in \mathbb{R}$ such that $x^*(x_0) < \alpha < x^*(z)$, $\forall z \in C$. Therefore,
 $U = (x^*)^{-1}((-\infty, \alpha))$ is a weak open set that contains x_0 and such that $U \subset X \setminus C$ since $U \cap C = \emptyset$. $U = (x^*)^{-1}((-\infty, \alpha))$ is a weak open set that contains x_0 and such that $U \subset X \setminus C$ since $U \cap C = \emptyset$.
This means that *X* $\setminus C$ is weakly open and thus *C* is weakly closed This means that $X \setminus C$ is weakly open and thus *C* is weakly closed.
- (3) Every weakly closed set is norm closed, and hence $\overline{C}^{\|\cdot\|} \subset \overline{C}^w$. It is easy to see that $\overline{C}^{\|\cdot\|}$ is convex and obviously closed, and since $C \subset \overline{C}^{\|\cdot\|}$ which is weakly closed by (2) we have that $\overline{C}^w \subset \overline{C}^{\|\cdot\|}$ (since \overline{C}^w is the smallest weakly closed set that contains *C*).
- (4) By assumption $x \in \overline{\{x_n : n \ge 1\}}^w \subset \overline{conv\{x_n : n \ge 1\}}^w = \overline{conv\{x_n : n \ge 1\}}^{\| \cdot \|}$ (by (3)). Therefore, there is $(y_n) \in conv\{x_n : n \ge 1\}$ such that $y_n \to x$ in norm. But for any set *A* in a vector space, the convex hull of A satisfies $conv(A) = {\sum_{i=1}^{n} \lambda_i a_i : n \ge 1, (a_i)_{i=1}^{n} \in A, (\lambda_i)_{i=1}^{n} \in [0, \infty), \sum_{i=1}^{n} \lambda_i = 1}$ (one inclusion follows from a simple induction on the definition of convexity for the other inclusion you need to follows from a simple induction on the definition of convexity, for the other inclusion you need to show that the set on the right is convex).

 \Box

Problem 3. Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and define

$$
c_0(\mathbb{N}; \mathbb{F}) \stackrel{\text{def}}{=} \{ \{x_n\}_{n=1}^{\infty} \subset \mathbb{F}: \lim_{n \to \infty} x_n = 0 \}.
$$

For $x = \{x_n\}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} \in c_0(\mathbb{N}; \mathbb{F})$ *define* $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$ *.*

- *(1) Show that* $(c_0(\mathbb{N}; \mathbb{F}), \|\cdot\|_{\infty})$ *is a normed vector space.*
- *(2) Show that* $(c_0(\mathbb{N}; \mathbb{F}), ||\cdot||_{\infty})$ *is a Banach space.*

Solution. It is clear that $\|\cdot\|$ is a norm on c_0 .

Using a result of class (Theorem 7.1.4) we let $(x^{(n)})$ be a sequence in c_0 , so that $\sum_{n=1}^{\infty} ||x^{(n)}|| < \infty$, and $x^{(n)} \ge 0$ show that there is an $x \in c_0$ so that $||\sum_{n=1}^n ||x^{(n)}|| < \infty$, and have to show that there is an $x \in c_0$ so that $\left\| \sum_{i=1}^n x^{(i)} - x \right\| \to 0$ if $n \to \infty$.

Write for $n \in \mathbb{N}$ $x^{(n)}$ as $(x_m^{(n)})_{m \in \mathbb{N}} \subset \mathbb{K}$ with $\lim_{m \to \infty} x_m^{(n)} = 0$. For fixed $m \in \mathbb{N}$ we notice that

$$
\sum_{n\in\mathbb{N}}|x_m^{(n)}|\leq \sum_{n\in\mathbb{N}}\|x^{(n)}\|<\infty.
$$

Since K is complete, we deduce that for each $m \in \mathbb{N}$ there is a number $y_m \in \mathbb{K}$ so that $y_m = \lim_{n \to \infty} \sum_{i=1}^n x_m^{(i)}$. We have to show that $y = (y_m) \in c_0$ and that $||y - \sum_{j=1}^n x^{(j)}||_{c_0} \to 0$, for $n \to \infty$.

Let $\varepsilon > 0$ and we need to find $m \in \mathbb{N}$ so that $|y_k| < \varepsilon$ for all $k \ge m$ (this would prove that $y = (y_k) \in c_0$). First choose $N \in \mathbb{N}$ so that

$$
\sum_{n=N+1}^{\infty} ||x^{(n)}|| < \varepsilon/2.
$$

Then choose $m \in \mathbb{N}$, so that for all $k \ge m$ it follows that $\sum_{n=1}^{N} x_k^{(n)}$ $\binom{n}{k} \leqslant \varepsilon/2.$

Now note that for all $k \ge m$ we have:

$$
|y_k| \le |y_k - \sum_{n=1}^N x_k^{(n)}| + \left| \sum_{n=1}^N x_k^{(n)} \right|
$$

=
$$
\left| \sum_{n=N+1}^\infty x_k^{(n)} \right| + \varepsilon/2
$$

$$
\le \sum_{n=N+1}^\infty ||x^{(n)}|| + \varepsilon/2 < \varepsilon.
$$

Since we started out with an arbitrary $\varepsilon > 0$, and found an $m \in \mathbb{N}$ so that $|y_k| < \varepsilon$, for $k \ge m$, we showed that $x \in c_0$.

In order show that $\lim_{n\to\infty} ||y - \sum_{i=1}^n x^{(i)}|| = 0$ we let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ so that $\sum_{j=N}^{\infty} ||x^{(j)}|| < \varepsilon$. Then it follows for $n \ge N$

$$
\left\| y - \sum_{i=1}^{n} x^{(i)} \right\| = \sup_{k \in \mathbb{N}} \left| y_k - \sum_{i=1}^{n} x_k^{(i)} \right| = \sup_{k \in \mathbb{N}} \left| \sum_{j=n+1} x_k^{(j)} \right| \le \sum_{j=n+1} \| x^{(j)} \| < \varepsilon.
$$

Problem 4. *Let* (X, M, μ) *be a measure space and denote* $L_p(\mu) := L_p(X, M, \mu)$ *for* $1 \leq p < \infty$ *.*

(1) If $f \in L_2(\mu)$, $g \in L_3(\mu)$ *and* $h \in L_6(\mu)$ *, show that* $fgh \in L_1(\mu)$ *and*

$$
||fgh||_1 \le ||f||_2 \cdot ||g||_3 \cdot ||h||_6.
$$

(2) Formulate a generalization for the product of finitely many functions, and prove it.

Solution. We note that $\frac{2}{3} + \frac{2}{6}$ $\frac{2}{6}$ = 1. So applying the Hölder inequality to $p = \frac{3}{2}$ $\frac{3}{2}$ and *q* = 3 = $\frac{6}{2}$ $\frac{6}{2}$ and the functions $|g|^2$ and $|h|^2$ implies that

$$
\| |g|^2 |h|^2 \| \le \| |g|^2 \|_{3/2} \cdot \| |h|^2 \|_3
$$

= $\left(\int |g|^3 d\mu \right)^{2/3} \cdot \left(\int |g|^3 d\mu \right)^{1/3}$
= $||g||_3^2 \cdot ||h||_6^2$.

This implies that $gh \in L_2(\mu)$ again applying the Hölder inequality to $p = q = \frac{1}{2}$
implies that $\frac{1}{2}$ and the functions *f* and $|g||h|$ implies that

 $||f \cdot g \cdot h|| \le ||f||_2 \le ||hg||_2 \le ||f||_2 ||g||_3 \cdot ||h||_2.$

The generalization is the following:

Let $p_1, p_2,..., p_n \in (1,\infty)$ and assume that

$$
\frac{1}{p_1} + \frac{1}{p_2} + \ldots + \frac{1}{p_n} =
$$

= 1

and if $f_i \in L_{p_i}(\mu)$ for $i = 1, 2, ..., n$, then the product $f = f_1 \cdot f_2 \cdot ... \cdot f_n$ is in $L_1(\mu)$ and

$$
||f_1 \cdot f_2 \cdot \ldots \cdot f_n||_1 \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \cdot \ldots \cdot ||f_n||_{p_n}.
$$

This can be easily proven by induction using the first part as induction step.

Problem 5. Let X be an infinite dimensional normed vector space. Show that $\overline{S_X}^w = B_X$, i.e. the weak*closure of the unit sphere of X is the unit ball of X.*

Hint: Use Mazur's Theorem for one inclusion. For the other inclusion, show that every weak-neighborhood of a point $x_0 \in B_X \setminus S_X$ contains an affine line which eventually intersects the sphere.

Solution. Since $S_X \subset B_X$ then $\overline{S_X}^w \subset \overline{B_X}^w = B_X$ (since B_X is convex and norm closed and Mazur's theorem). For the other inclusion, let $x_0 \in B_X \setminus S_X$ and $V = \{x \in X : |x_i^*| \leq x \}$ $\left| \begin{array}{l} \n\dot{x} + \dot{y} = -\dot{x} \\
\dot{y} + \dot{y} = -\dot{x} \\
\dot{y} = \dot{y} \\
\dot{y$ of x_0 for some x_1^* ^{*}₁,..., $x_n^* \in X^*$ and $\varepsilon > 0$. The following claim was essentially proved in class when showing open set is unbounded that any weakly open set is unbounded.

Claim 1. *There is* $z_0 \in X \setminus \{0\}$ *such that* $x_0 + \mathbb{R}z_0 \subset V$.

Assuming Claim 1, let $\varphi(t) = ||x_0 + tz_0||$ for all $t \in \mathbb{R}$. It follows from the triangle inequality that φ is $||z_0||$ -Lipschitz (and hence continuous). Moreover, $\varphi(0) = ||x_0|| < 1$ and $\varphi(t) \ge |t| ||z_0|| - ||x_0|| \rightarrow_{|t| \rightarrow \infty} \infty$. By the intermediate value theorem, there exists *t*₀ ∈ ℝ such that $\varphi(t_0) = 1$, i.e. $||x_0 + t_0z_0|| = 1$. We have shown that $x_0 + t_0z_0 \in S_X \cap V$, and hence $x_0 \in S_X^{\text{w}}$, and hence $B_X = (B_X \setminus S_X) \cup S_X \subset S_X^{\text{w}}$. $x_0 + t_0 z_0 \in S_X \cap V$, and hence $x_0 \in \overline{S_X}^w$, and hence $B_X = (B_X \setminus S_X) \cup S_X \subset \overline{S_X}^w$. В последните последните село в последните село в сел
Село в село в село