REAL ANALYSIS MATH 608 HOMEWORK #7

Problem 1. Let X be a normed vector space and $Y \subset X$ be a vector subspace such that $\overline{Y} \neq X$ (the closure is with respect tot the norm topology). Show that there exists $x^* \in X^*$, $x^* \neq 0$, and $x^*(y) = 0$ for all $y \in Y$.

Hint: Use a geometric form of Hahn-Banach theorem.

Solution. Let $x_0 \in X \setminus \overline{Y}$, and apply the second geometric form of the HBT to the closed convex set $C_1 = \overline{Y}$, and the compact convex set $C_2 = \{x_0\}$. Then, there is a non-zero functional $x^* \in X^*$, and $\alpha \in \mathbb{R}$ such that $x^*(x) < \alpha < x^*(x_0), \forall y \in \overline{Y}$. If there exists $y_0 \in Y$ such that $x^*(y_0) \neq 0$ we can assume w.l.o.g. that $x^*(y_0) > 0$ and then $x^*(ty_0) = tx^*(y_0) < \alpha$ for all t > 0, contradiction! Therefore, $x_{|Y|}^* = 0$.

Problem 2. Let X be a normed space and $C \subset X$ be a subset.

- (1) Show that if C is weakly-closed then it is norm-closed.
- (2) Show that if C is convex and norm-closed then it is weakly-closed.
- (3) (Mazur's Theorem) Show that if C is convex, then $\overline{C}^{\|\cdot\|} = \overline{C}^w$, i.e. weak and norm closure coincide for convex subsets.
- (4) Show that if $\{x_n\}_{n=1}^{\infty}$ converges **weakly** to $x \in X$, then there is a sequence of convex combination of elements in $\{x_n : n \in \mathbb{N}\}$ that converges in **norm** to x.

Hint: For (2) use a geometric form of Hahn-Banach theorem. For (4) consider the convex hull of $\{x_n : n \in \mathbb{N}\}$, i.e. the smallest convex set that contains $\{x_n : n \in \mathbb{N}\}$, and show that the convex hull of a set consists of all the convex combinations of elements in the set.

Solution. (1) By definition since every weakly open set is norm open (and then take complements).

- (2) If C = X there is nothing to show. So let $x_0 \in X \setminus C$. By the second form of the geometric HBT, there is a non-zero functional $x^* \in X^*$, and $\alpha \in \mathbb{R}$ such that $x^*(x_0) < \alpha < x^*(z), \forall z \in C$. Therefore, $U = (x^*)^{-1}((-\infty, \alpha))$ is a weak open set that contains x_0 and such that $U \subset X \setminus C$ since $U \cap C = \emptyset$. This means that $X \setminus C$ is weakly open and thus *C* is weakly closed.
- (3) Every weakly closed set is norm closed, and hence $\overline{C}^{\|\cdot\|} \subset \overline{C}^w$. It is easy to see that $\overline{C}^{\|\cdot\|}$ is convex and obviously closed, and since $C \subset \overline{C}^{\|\cdot\|}$ which is weakly closed by (2) we have that $\overline{C}^w \subset \overline{C}^{\|\cdot\|}$ (since \overline{C}^w is the smallest weakly closed set that contains *C*).
- (4) By assumption $x \in \overline{\{x_n : n \ge 1\}}^w \subset \overline{conv\{x_n : n \ge 1\}}^w = \overline{conv\{x_n : n \ge 1\}}^{\|\cdot\|}$ (by (3)). Therefore, there is $(y_n) \in conv\{x_n : n \ge 1\}$ such that $y_n \to x$ in norm. But for any set *A* in a vector space, the convex hull of *A* satisfies $conv(A) = \{\sum_{i=1}^n \lambda_i a_i : n \ge 1, (a_i)_{i=1}^n \in A, (\lambda_i)_{i=1}^n \in [0, \infty), \sum_i^n \lambda_i = 1\}$ (one inclusion follows from a simple induction on the definition of convexity, for the other inclusion you need to show that the set on the right is convex).

Problem 3. Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and define

$$c_0(\mathbb{N};\mathbb{F}) \stackrel{\text{def}}{=} \{\{x_n\}_{n=1}^{\infty} \subset \mathbb{F} \colon \lim_{n \to \infty} x_n = 0\}.$$

1.6

For $x = \{x_n\}_{n=1}^{\infty} \in c_0(\mathbb{N}; \mathbb{F})$ define $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$.

- (1) Show that $(c_0(\mathbb{N};\mathbb{F}), \|\cdot\|_{\infty})$ is a normed vector space.
- (2) Show that $(c_0(\mathbb{N}; \mathbb{F}), \|\cdot\|_{\infty})$ is a Banach space.

Solution. It is clear that $\|\cdot\|$ is a norm on c_0 .

Using a result of class (Theorem 7.1.4) we let $(x^{(n)})$ be a sequence in c_0 , so that $\sum_{n=1}^{\infty} ||x^{(n)}|| < \infty$, and have to show that there is an $x \in c_0$ so that $\|\sum_{i=1}^n x^{(i)} - x\| \to 0$ if $n \to \infty$. Write for $n \in \mathbb{N}$ $x^{(n)}$ as $(x_m^{(n)})_{m \in \mathbb{N}} \subset \mathbb{K}$ with $\lim_{m \to \infty} x_m^{(n)} = 0$. For fixed $m \in \mathbb{N}$ we notice that

$$\sum_{n\in\mathbb{N}}|x_m^{(n)}|\leqslant \sum_{n\in\mathbb{N}}||x^{(n)}||<\infty.$$

Since \mathbb{K} is complete, we deduce that for each $m \in \mathbb{N}$ there is a number $y_m \in \mathbb{K}$ so that $y_m = \lim_{n \to \infty} \sum_{i=1}^n x_m^{(i)}$.

We have to show that $y = (y_m) \in c_0$ and that $||y - \sum_{j=1}^n x^{(j)}||_{c_0} \to 0$, for $n \to \infty$. Let $\varepsilon > 0$ and we need to find $m \in \mathbb{N}$ so that $|y_k| < \varepsilon$ for all $k \ge m$ (this would prove that $y = (y_k) \in c_0$). First

$$\sum_{n=N+1}^{\infty} \|x^{(n)}\| < \varepsilon/2.$$

Then choose $m \in \mathbb{N}$, so that for all $k \ge m$ it follows that $|\sum_{n=1}^{N} x_k^{(n)}| \le \varepsilon/2$.

Now note that for all $k \ge m$ we have:

choose $N \in \mathbb{N}$ so that

$$|y_k| \leq \left| y_k - \sum_{n=1}^N x_k^{(n)} \right| + \left| \sum_{n=1}^N x_k^{(n)} \right|$$
$$= \left| \sum_{n=N+1}^\infty x_k^{(n)} \right| + \varepsilon/2$$
$$\leq \sum_{n=N+1}^\infty ||x^{(n)}|| + \varepsilon/2 < \varepsilon.$$

Since we started out with an arbitrary $\varepsilon > 0$, and found an $m \in \mathbb{N}$ so that $|y_k| < \varepsilon$, for $k \ge m$, we showed that $x \in c_0$.

In order show that $\lim_{n\to\infty} ||y - \sum_{i=1}^n x^{(i)}|| = 0$ we let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ so that $\sum_{i=N}^{\infty} ||x^{(i)}|| < \varepsilon$. Then it follows for $n \ge N$

$$\left\| y - \sum_{i=1}^{n} x^{(i)} \right\| = \sup_{k \in \mathbb{N}} \left| y_k - \sum_{i=1}^{n} x_k^{(i)} \right| = \sup_{k \in \mathbb{N}} \left| \sum_{j=n+1} x_k^{(j)} \right| \le \sum_{j=n+1} \| x^{(j)} \| < \varepsilon.$$

Problem 4. Let (X, \mathcal{M}, μ) be a measure space and denote $L_p(\mu) := L_p(X, \mathcal{M}, \mu)$ for $1 \le p < \infty$.

(1) If $f \in L_2(\mu)$, $g \in L_3(\mu)$ and $h \in L_6(\mu)$, show that $fgh \in L_1(\mu)$ and

$$||fgh||_1 \leq ||f||_2 \cdot ||g||_3 \cdot ||h||_6.$$

(2) Formulate a generalization for the product of finitely many functions, and prove it.

Solution. We note that $\frac{2}{3} + \frac{2}{6} = 1$. So applying the Hölder inequality to $p = \frac{3}{2}$ and $q = 3 = \frac{6}{2}$ and the functions $|g|^2$ and $|h|^2$ implies that

$$\begin{split} \left\| |g|^{2} |h|^{2} \right\| &\leq \left\| |g|^{2} \right\|_{3/2} \cdot \left\| |h|^{2} \right\|_{3} \\ &= \left(\int |g|^{3} \, d\mu \right)^{2/3} \cdot \left(\int |g|^{3} \, d\mu \right)^{1/3} \\ &= \|g\|_{3}^{2} \cdot \|h\|_{6}^{2}. \end{split}$$

This implies that $gh \in L_2(\mu)$ again applying the Hölder inequality to $p = q = \frac{1}{2}$ and the functions f and |g||h| implies that

 $||f \cdot g \cdot h|| \le ||f||_2 \le ||hg||_2 \le ||f||_2 ||g||_3 \cdot ||h||_2.$

The generalization is the following:

Let $p_1, p_2, \ldots, p_n \in (1, \infty)$ and assume that

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n} = 1$$

and if $f_i \in L_{p_i}(\mu)$ for i = 1, 2, ..., n, then the product $f = f_1 \cdot f_2 \cdot ... \cdot f_n$ is in $L_1(\mu)$ and

$$||f_1 \cdot f_2 \cdot \ldots \cdot f_n||_1 \leq ||f_1||_{p_1} \cdot ||f_2||_{p_2} \cdot \ldots \cdot ||f_n||_{p_n}$$

This can be easily proven by induction using the first part as induction step.

	-	

Problem 5. Let X be an infinite dimensional normed vector space. Show that $\overline{S_X}^w = B_X$, i.e. the weakclosure of the unit sphere of X is the unit ball of X.

Hint: Use Mazur's Theorem for one inclusion. For the other inclusion, show that every weak-neighborhood of a point $x_0 \in B_X \setminus S_X$ contains an affine line which eventually intersects the sphere.

Solution. Since $S_X \subset B_X$ then $\overline{S_X}^w \subset \overline{B_X}^w = B_X$ (since B_X is convex and norm closed and Mazur's theorem). For the other inclusion, let $x_0 \in B_X \setminus S_X$ and $V = \{x \in X : |x_i^*(x-x_0)| < \varepsilon, \forall 1 \le i \le n\}$ be a weak neighborhood of x_0 for some $x_1^*, \ldots, x_n^* \in X^*$ and $\varepsilon > 0$. The following claim was essentially proved in class when showing that any weakly open set is unbounded.

Claim 1. There is $z_0 \in X \setminus \{0\}$ such that $x_0 + \mathbb{R}z_0 \subset V$.

Assuming Claim 1, let $\varphi(t) = ||x_0 + tz_0||$ for all $t \in \mathbb{R}$. It follows from the triangle inequality that φ is $||z_0||$ -Lipschitz (and hence continuous). Moreover, $\varphi(0) = ||x_0|| < 1$ and $\varphi(t) \ge |t|||z_0|| - ||x_0|| \rightarrow |t| \rightarrow \infty \infty$. By the intermediate value theorem, there exists $t_0 \in \mathbb{R}$ such that $\varphi(t_0) = 1$, i.e. $||x_0 + t_0z_0|| = 1$. We have shown that $x_0 + t_0z_0 \in S_X \cap V$, and hence $x_0 \in \overline{S_X}^w$, and hence $B_X = (B_X \setminus S_X) \cup S_X \subset \overline{S_X}^w$.