
REAL ANALYSIS MATH 608
HOMEWORK #7

Problem 1. Let X be a normed vector space and Y ⊂ X be a vector subspace such that Y , X (the closure is
with respect tot the norm topology). Show that there exists x∗ ∈ X∗, x∗ , 0, and x∗(y) = 0 for all y ∈ Y.

Hint: Use a geometric form of Hahn-Banach theorem.

Solution. Let x0 ∈ X \Y , and apply the second geometric form of the HBT to the closed convex set C1 = Y ,
and the compact convex set C2 = {x0}. Then, there is a non-zero functional x∗ ∈ X∗, and α ∈ R such that
x∗(x) < α < x∗(x0),∀y ∈ Y . If there exists y0 ∈ Y such that x∗(y0) , 0 we can assume w.l.o.g. that x∗(y0) > 0
and then x∗(ty0) = tx∗(y0) < α for all t > 0, contradiction! Therefore, x∗

|Y = 0. �

Problem 2. Let X be a normed space and C ⊂ X be a subset.
(1) Show that if C is weakly-closed then it is norm-closed.
(2) Show that if C is convex and norm-closed then it is weakly-closed.
(3) (Mazur’s Theorem) Show that if C is convex, then C

‖·‖
= C

w
, i.e. weak and norm closure coincide

for convex subsets.
(4) Show that if {xn}

∞
n=1 converges weakly to x ∈ X, then there is a sequence of convex combination of

elements in {xn : n ∈ N} that converges in norm to x.

Hint: For (2) use a geometric form of Hahn-Banach theorem. For (4) consider the convex hull of {xn : n ∈
N}, i.e. the smallest convex set that contains {xn : n ∈ N}, and show that the convex hull of a set consists of
all the convex combinations of elements in the set.

Solution. (1) By definition since every weakly open set is norm open (and then take complements).
(2) If C = X there is nothing to show. So let x0 ∈ X \C. By the second form of the geometric HBT,

there is a non-zero functional x∗ ∈ X∗, and α ∈ R such that x∗(x0) < α < x∗(z),∀z ∈ C. Therefore,
U = (x∗)−1((−∞,α)) is a weak open set that contains x0 and such that U ⊂ X \C since U ∩C = ∅.
This means that X \C is weakly open and thus C is weakly closed.

(3) Every weakly closed set is norm closed, and hence C
‖·‖
⊂C

w
. It is easy to see that C

‖·‖
is convex and

obviously closed, and since C ⊂ C
‖·‖

which is weakly closed by (2) we have that C
w
⊂ C

‖·‖
(since

C
w

is the smallest weakly closed set that contains C).
(4) By assumption x ∈ {xn : n > 1}

w
⊂ conv{xn : n > 1}

w
= conv{xn : n > 1}

‖·‖
(by (3)). Therefore, there

is (yn) ∈ conv{xn : n > 1} such that yn→ x in norm. But for any set A in a vector space, the convex
hull of A satisfies conv(A) = {

∑n
i=1λiai : n > 1, (ai)n

i=1 ∈ A, (λi)n
i=1 ∈ [0,∞),

∑n
i λi = 1} (one inclusion

follows from a simple induction on the definition of convexity, for the other inclusion you need to
show that the set on the right is convex).

�

Problem 3. Let F = R or C and define

c0(N;F) def
= {{xn}

∞
n=1 ⊂ F : lim

n→∞
xn = 0}.
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For x = {xn}
∞
n=1 ∈ c0(N;F) define ‖x‖∞ = supn∈N |xn|.

(1) Show that (c0(N;F),‖ · ‖∞) is a normed vector space.
(2) Show that (c0(N;F),‖ · ‖∞) is a Banach space.

Solution. It is clear that ‖ · ‖ is a norm on c0.
Using a result of class (Theorem 7.1.4 ) we let (x(n)) be a sequence in c0, so that

∑∞
n=1 ‖x

(n)‖ < ∞, and
have to show that there is an x ∈ c0 so that ‖

∑n
i=1 x(i)− x‖ → 0 if n→∞.

Write for n ∈ N x(n) as (x(n)
m )m∈N ⊂ K with limm→∞ x(n)

m = 0. For fixed m ∈ N we notice that∑
n∈N

|x(n)
m | 6

∑
n∈N

‖x(n)‖ <∞.

Since K is complete, we deduce that for each m ∈ N there is a number ym ∈ K so that ym = limn→∞
∑n

i=1 x(i)
m .

We have to show that y = (ym) ∈ c0 and that ‖y−
∑n

j=1 x( j)‖c0 → 0, for n→∞.
Let ε > 0 and we need to find m ∈N so that |yk| < ε for all k >m (this would prove that y = (yk) ∈ c0). First

choose N ∈ N so that
∞∑

n=N+1

‖x(n)‖ < ε/2.

Then choose m ∈ N, so that for all k > m it follows that |
∑N

n=1 x(n)
k | 6 ε/2.

Now note that for all k > m we have:

|yk| 6
∣∣∣∣yk −

N∑
n=1

x(n)
k

∣∣∣∣+ ∣∣∣∣ N∑
n=1

x(n)
k

∣∣∣∣
=

∣∣∣∣ ∞∑
n=N+1

x(n)
k

∣∣∣∣+ε/2
6

∞∑
n=N+1

‖x(n)‖+ε/2 < ε.

Since we started out with an arbitrary ε > 0, and found an m ∈ N so that |yk| < ε, for k > m, we showed
that x ∈ c0.

In order show that limn→∞ ‖y−
∑n

i=1 x(i)‖ = 0 we let ε > 0 and choose N ∈ N so that
∑∞

j=N ‖x
( j)‖ < ε. Then

it follows for n > N

∥∥∥∥y−
n∑

i=1

x(i)
∥∥∥∥ = sup

k∈N

∣∣∣∣yk −

n∑
i=1

x(i)
k

∣∣∣∣ = sup
k∈N

∣∣∣∣ ∑
j=n+1

x( j)
k

∣∣∣∣ 6 ∑
j=n+1

‖x( j)‖ < ε.

�

Problem 4. Let (X,M,µ) be a measure space and denote Lp(µ) := Lp(X,M,µ) for 1 6 p <∞.

(1) If f ∈ L2(µ), g ∈ L3(µ) and h ∈ L6(µ), show that f gh ∈ L1(µ) and

‖ f gh‖1 6 ‖ f ‖2 · ‖g‖3 · ‖h‖6.

(2) Formulate a generalization for the product of finitely many functions, and prove it.
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Solution. We note that 2
3 + 2

6 = 1. So applying the Hölder inequality to p = 3
2 and q = 3 = 6

2 and the functions
|g|2 and |h|2 implies that ∥∥∥|g|2|h|2∥∥∥ 6 ∥∥∥|g|2∥∥∥3/2 ·

∥∥∥|h|2∥∥∥3

=

(∫
|g|3 dµ

)2/3

·

(∫
|g|3 dµ

)1/3

= ‖g‖23 · ‖h‖
2
6.

This implies that gh ∈ L2(µ) again applying the Hölder inequality to p = q = 1
2 and the functions f and |g||h|

implies that
‖ f ·g ·h‖ 6 ‖ f ‖2 6

∥∥∥hg‖2 6 ‖ f ‖2‖g‖3 · ‖h‖2.
The generalization is the following:

Let p1, p2, . . . , pn ∈ (1,∞) and assume that
1
p1

+
1
p2

+ . . .+
1
pn

= 1

and if fi ∈ Lpi(µ) for i = 1,2, . . . ,n, then the product f = f1 · f2 · . . . · fn is in L1(µ) and

‖ f1 · f2 · . . . · fn‖1 6 ‖ f1‖p1 · ‖ f2‖p2 · . . . · ‖ fn‖pn .

This can be easily proven by induction using the first part as induction step.
�

Problem 5. Let X be an infinite dimensional normed vector space. Show that S X
w

= BX , i.e. the weak-
closure of the unit sphere of X is the unit ball of X.

Hint: Use Mazur’s Theorem for one inclusion. For the other inclusion, show that every weak-neighborhood
of a point x0 ∈ BX \S X contains an affine line which eventually intersects the sphere.

Solution. Since S X ⊂ BX then S X
w
⊂ BX

w
= BX (since BX is convex and norm closed and Mazur’s theorem).

For the other inclusion, let x0 ∈ BX \S X and V = {x ∈ X : |x∗i (x− x0)| < ε,∀1 6 i 6 n} be a weak neighborhood
of x0 for some x∗1, . . . , x

∗
n ∈ X∗ and ε > 0. The following claim was essentially proved in class when showing

that any weakly open set is unbounded.

Claim 1. There is z0 ∈ X \ {0} such that x0 +Rz0 ⊂ V.

Assuming Claim 1, let ϕ(t) = ‖x0 + tz0‖ for all t ∈ R. It follows from the triangle inequality that ϕ is
‖z0‖-Lipschitz (and hence continuous). Moreover, ϕ(0) = ‖x0‖ < 1 and ϕ(t) > |t|‖z0‖−‖x0‖ →|t|→∞ ∞. By the
intermediate value theorem, there exists t0 ∈ R such that ϕ(t0) = 1, i.e. ‖x0 + t0z0‖ = 1. We have shown that
x0 + t0z0 ∈ S X ∩V , and hence x0 ∈ S X

w
, and hence BX = (BX \S X)∪S X ⊂ S X

w
. �
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