REAL ANALYSIS MATH 608 HOMEWORK #8

Problem 1. Let (X, \mathcal{M}, μ) be a measure space. Show that:

- (1) For all $f \in L_1(\mu)$, $g \in L_{\infty}(\mu)$ we have $fg \in L_1(\mu)$ and $||fg||_1 \leq ||f||_1 ||g||_{\infty}$, with equality if and only if $g = ||g||_{\infty}$, μ -a.e. on $\{f \neq 0\}$.
- (2) $\{f_n\}_n$ is a Cauchy sequence in $L_{\infty}(\mu)$ if and only if there is $A \in \mathcal{M}$ with $\mu(A^c) = 0$ such that $\lim_{n,k\to\infty} \sup_{x\in A} |f_n(x) f_k(x)| = 0$.
- (3) $L_{\infty}(\mu)$ is a Banach space.

Problem 2. Let $1 \le p < q < r \le \infty$, and consider the norm $||f||_{L_p \cap L_r} \stackrel{\text{def}}{=} ||f||_p + ||f||_r$ on $L_p \cap L_r$. Show that

- (1) $(L_p \cap L_r, \|\cdot\|_{L_p \cap L_r})$ is a Banach space.
- (2) Show that the formal inclusion $\iota: L_p \cap L_r \to L_q$ is continuous.

Problem 3. Let H be a Hilbert space, $S \subset H$, and recall that

$$S^{\perp} = \{ x \in H \colon x \perp y, \text{ for all } y \in S \}.$$

Show that $S^{\perp\perp}$ is the smallest closed linear subspace of H containing S.

Problem 4.

- (1) Show that if X is separable then the weak-* topology on B_{X^*} is metrizable.
- (2) Show that if X^* is separable then the weak topology on B_X is metrizable.

Hint: For (1) consider $d(x^*, y^*) = \sum_{n=1}^{\infty} 2^{-n} |(x^* - y^*)(z_n)|$ where $\{z_n\}_n$ is dense in B_X . For (2) mimic the argument in (1).

Problem 5. Let $1 \le p < q < r \le \infty$, and consider the norm on $L_p + L_r$ given by

$$||f||_{L_p+L_r} \stackrel{\text{def}}{=} \inf\{||g||_p + ||h||_r \colon f = g + h \in L_p + L_r\}.$$

Show that

(1) $(L_p + L_r, \|\cdot\|_{L_p+L_r})$ is a Banach space.

(2) Show that the formal inclusion $\iota: L_q \to L_p + L_r$ is continuous.