REAL ANALYSIS MATH 608
 HOMEWORK \#8

Problem 1. Let (X, \mathcal{M}, μ) be a measure space. Show that:
(1) For all $f \in L_{1}(\mu), g \in L_{\infty}(\mu)$ we have $f g \in L_{1}(\mu)$ and $\|f g\|_{1} \leqslant\|f\|_{1}\|g\|_{\infty}$, with equality if and only if $|g|=\|g\|_{\infty}, \mu$-a.e. on $\{f \neq 0\}$.
(2) $\left\{f_{n}\right\}_{n}$ is a Cauchy sequence in $L_{\infty}(\mu)$ if and only if there is $A \in \mathcal{M}$ with $\mu\left(A^{c}\right)=0$ such that

$$
\lim _{n, k \rightarrow \infty} \sup _{x \in A}\left|f_{n}(x)-f_{k}(x)\right|=0 .
$$

(3) $L_{\infty}(\mu)$ is a Banach space.

Solution. (1) $\int|f g| d \mu \leqslant\|g\|_{\infty} \int|f| d \mu=\|g\|_{\infty}\|f\|_{1}$. If $\mu\left(\left\{|g|<\|g\|_{\infty}\right\} \cap\{f \neq 0\}\right)>0$ then $|f|\left(\|g\|_{\infty}-|g|\right)$ is a measurable function that is positive on a set of positive measure and thus $\int|f|\|g\|_{\infty}-|f g| d \mu>0$, i.e. $\|f g\|_{1}<\|f\|_{1}\|g\|_{\infty}$. The sufficient condition is clear.
(2) For the necessary condition, let $\varepsilon>0$, then $\left\{\left|f_{n}-f_{k}\right|>\varepsilon\right\}=\left(\left\{\left|f_{n}-f_{k}\right|>\varepsilon\right\} \cap A\right) \cup\left(\left\{\left|f_{n}-f_{k}\right|>\varepsilon\right\} \cap A^{c}\right)$ and hence $\mu\left(\left\{\left|f_{n}-f_{k}\right|>\varepsilon\right\}\right) \leqslant \mu\left(\left\{\left|f_{n}-f_{k}\right|>\varepsilon\right\} \cap A\right)+0$. But there is $n_{0} \geqslant 1$ such that for all $n, k \geqslant n_{0}$, $\sup _{x \in A}\left|f_{n}(x)-f_{k}(x)\right|<\varepsilon$, and thus $\mu\left(\left\{\left|f_{n}-f_{k}\right|>\varepsilon\right\}\right)=0$, i.e. $\left\|f_{n}-f_{k}\right\|_{\infty} \leqslant \varepsilon$ whenever $n, k \geqslant n_{0}$. Assume now that $\left(f_{n}\right)_{n}$ is Cauchy for $\|\cdot\|_{\infty}$, and given $\varepsilon>0$ let $n_{0} \geqslant 1$ such that for all $n, k \geqslant n_{0}$ one has $\left\|f_{n}-f_{k}\right\|_{\infty} \leqslant \varepsilon$. Let $A_{n, k} \stackrel{\text { def }}{=}\left\{x \in X:\left|f_{n}(x)-f_{k}(x)\right|>\left\|f_{n}-f_{k}\right\|_{\infty}\right\}$ and $A=X \backslash \cup_{n, k} A_{n, k}=X \cap \cap_{n, k}\left(A_{n, k}^{c}\right)$. For all $x \in A, n, k \geqslant 1,\left|f_{n}(x)-f_{k}(x)\right| \leqslant\left\|f_{n}-f_{k}\right\|_{\infty}$ and hence $\left(f_{n}-f_{k}\right)_{n, k}$ converges uniformly to 0 on A. Now, $\mu\left(\cup_{n, k} A_{n, k}\right) \leqslant \sum_{n, k} \mu\left(A_{n, k}\right)=0$ since $\mu\left(A_{n, k}\right)=0$ for all $n, k \geqslant 1$.
(3) If $\left(f_{n}\right)_{n}$ is Cauchy for the sup norm then by (2) it is Cauchy for the uniform norm outside a set of measure 0 and the completness of the sup norm follows from from completness of the uniform norm.

Problem 2. Let $1 \leqslant p<q<r \leqslant \infty$, and consider the norm $\|f\|_{L_{p} \cap L_{r}} \stackrel{\text { def }}{=}\|f\|_{p}+\|f\|_{r}$ on $L_{p} \cap L_{r}$. Show that
(1) $\left(L_{p} \cap L_{r},\|\cdot\|_{L_{p} \cap L_{r}}\right)$ is a Banach space.
(2) Show that the formal inclusion $\iota: L_{p} \cap L_{r} \rightarrow L_{q}$ is continuous.

Solution.

Problem 3. Let H be a Hilbert space, $S \subset H$, and recall that

$$
S^{\perp}=\{x \in H: x \perp y, \text { for all } y \in S\} .
$$

Show that $S^{\perp \perp}$ is the smallest closed linear subspace of H containing S.
Solution. Let E be the smallest closed linear space that contains S. For any set S, S^{\perp} is closed and linear. Indeed, if $x, y \in S^{\perp}$ then $\langle s, x+\lambda y\rangle=\langle s, x\rangle+\bar{\lambda}\langle s, y\rangle=0$ for all $s \in S$, and hence $x+\lambda y \in S^{\perp}$. If $\left(x_{n}\right)_{n} \subset S^{\perp}$ such that $x_{n} \rightarrow x$, then for all $\left.s \in S, n \geqslant 1<s, x_{n}\right\rangle=0$ and by continuity of the scalar product (CS inequality) we have that $\langle s, x\rangle=0$, i.e. $x \in S^{\perp}$. Observe now that $S \subset S^{\perp \perp}$. Indeed, if $s \in S$ and $y \in S^{\perp}$, then $\langle s, y\rangle=0$, and hence $S \subset\left(S^{\perp}\right)^{\perp}=S^{\perp \perp}$. Therefore by minimality of E one has $S \subset E \subset S^{\perp \perp}$. Assume now
that $x \in S^{\perp \perp}$. If p_{E} denotes the orthogonal projection on E (which exists since E is a closed subspace of a Hilbert space), then $x=p_{E}(x)+x-p_{E}(x)$ and $p_{E}(x) \perp\left(x-p_{E}(x)\right)$. We want to show that $x=p_{E}(x)$ and thus $x \in E$. But this is true as $\left\|x-p_{E}(x)\right\|^{2}=<x-p_{E}(x), x-p_{E}(x)>=<x-p_{E}(x), x>=0$ since $x \in S^{\perp \perp} \subset E^{\perp \perp}$ $\left(A \subset B \Longrightarrow B^{\perp} \subset A^{\perp}\right)$ and $x-p_{E}(x) \in E^{\perp}$. Thus we have $S \subset E=S^{\perp \perp}$

Remark 1. Note that $E=\overline{\operatorname{span}(S)} \stackrel{\operatorname{def}}{=} \overline{\left\{\sum_{i=1}^{n} \lambda_{i} x_{i}: n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in S, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}\right\}}$. Indeed $E \subset \overline{\operatorname{span}(S)}$ (since the closure of a linear space is a linear space that is closed), but since E is a linear space containing S one has $\operatorname{span}(S) \subset E($ Since $\operatorname{span}(S)$ is the smallest linear space containing $S)$ and taking closure span $(S) \subset$ E since E is closed. So in any normed vector space the closest linear space containing S is $\overline{\operatorname{span}(S)}$.

Problem 4.

(1) Show that if X is separable then the weak-* topology on $B_{X^{*}}$ is metrizable.
(2) Show that if X^{*} is separable then the weak topology on B_{X} is metrizable.

Hint: For (1) consider $d\left(x^{*}, y^{*}\right)=\sum_{n=1}^{\infty} 2^{-n}\left|\left(x^{*}-y^{*}\right)\left(z_{n}\right)\right|$ where $\left\{z_{n}\right\}_{n}$ is dense in B_{X}. For (2) mimic the argument in (1).

Solution.

(1) Since X is separable we can pick a sequence $\left\{z_{n}\right\}_{n}$ that is dense in B_{X}. For any $x^{*}, y^{*} \in B_{X^{*}}$ let $d\left(x^{*}, y^{*}\right) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} 2^{-n}\left|\left(x^{*}-y^{*}\right)\left(z_{n}\right)\right|$. It is clear that d is a symmetric map $B_{X^{*}} \times B_{X^{*}} \rightarrow[0,2]$ that satisfies the triangle inequality. In order to show that two topologies are equivalent (i.e. have the same open sets) we need to verify that every neighborhood in a neighborhood basis for one topology contains a neighborhood for the other, and vice versa (remember that a set is open if it is a neighborhood of all its points). Given a ball $B_{d}\left(x^{*}, r\right)$ we need to find $x_{1}, \cdots, x_{n} \in X$ and $\varepsilon>0$ such that $\left\{y^{*} \in B_{X^{*}}:\left|\left(x^{*}-y^{*}\right)\left(x_{i}\right)\right|<\varepsilon, 1 \leqslant i \leqslant n\right\}:=V_{x^{*}, x_{1}, \ldots, x_{n}, \varepsilon} \subset B_{d}\left(x^{*}, r\right)$. If $N \geqslant 1$ is such that $\frac{1}{2^{N-1}}<\frac{r}{2}$, consider $y^{*} \in V_{x^{*}, z_{1}, \ldots, z_{N}, r / 2}$, then

$$
\begin{aligned}
\sum_{n=1}^{\infty} 2^{-n}\left|\left(x^{*}-y^{*}\right)\left(z_{n}\right)\right| & =\sum_{n=1}^{N} 2^{-n}\left|\left(x^{*}-y^{*}\right)\left(z_{n}\right)\right|+\sum_{n=N+1}^{\infty} 2^{-n}\left|\left(x^{*}-y^{*}\right)\left(z_{n}\right)\right| \\
& \leqslant \sum_{n=1}^{N} 2^{-n} \frac{r}{2}+\sum_{n=N}^{\infty} \frac{1}{2^{n}} \\
& <\frac{r}{2}+\frac{1}{2^{N-1}}<r
\end{aligned}
$$

and hence $V_{x^{*}, z_{1}, \ldots, z_{N}, r / N} \subset B_{d}\left(x^{*}, r\right)$.
Now consider $V_{x^{*}, x_{1}, \ldots, x_{k}, \varepsilon}$. Since $V_{x^{*}, \lambda x_{1}, \ldots, \lambda x_{k}, \lambda \varepsilon}=V_{x^{*}, x_{1}, \ldots, x_{k}, \varepsilon}$ for any $\lambda>0$, one can assume that $\max _{i}\left\|x_{i}\right\| \leqslant 1$. For all $1 \leqslant i \leqslant k$ let $z_{j_{i}}$ such that $\left\|z_{j_{i}}-x_{i}\right\|<\frac{\varepsilon}{4}$, and assume (after relabelling if needed) that $j_{1} \leqslant j_{2} \leqslant \ldots \leqslant j_{k}$. Then, if $y^{*} \in B_{d}\left(x^{*}, \frac{\varepsilon}{2^{j_{k}+1}}\right)$ then $\sum_{n=1}^{\infty} 2^{-n}\left|\left(x^{*}-y^{*}\right)\left(z_{n}\right)\right| \leqslant \frac{\varepsilon}{2^{j_{k}+1}}$ and in particular for all $1 \leqslant n \leqslant j_{k},\left|\left(x^{*}-y^{*}\right)\left(z_{n}\right)\right|<\frac{\varepsilon}{2} 2^{n-j_{k}} \leqslant \frac{\varepsilon}{2}$. Therefore, for all $1 \leqslant i \leqslant k$ one has $\left|\left(x^{*}-y^{*}\right)\left(x_{i}\right)\right| \leqslant$ $\left|\left(x^{*}-y^{*}\right)\left(x_{i}-z_{j_{i}}\right)\right|+\left|\left(x^{*}-y^{*}\right)\left(z_{j_{i}}\right)\right|<2\left\|x_{i}-z_{j_{i}}\right\|+\frac{\varepsilon}{2}<\varepsilon$, i.e. $B_{d}\left(x^{*}, \frac{\varepsilon}{2^{j_{k}+1}}\right) \subset V_{x^{*}, x_{1}, \ldots, x_{k}, \varepsilon}$.
(2) This is verbatim the same proof modulo swapping the role of X and X^{*}. Since X^{*} is separable we can pick a sequence $\left\{z_{n}^{*}\right\}_{n}$ that is dense in $B_{X^{*}}$. For any $x, y \in B_{X}$ let $d(x, y) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} 2^{-n}\left|z_{n}^{*}(x-y)\right|$. It is clear that d is a symmetric map $B_{X} \times B_{X} \rightarrow[0,2]$ that satisfies the triangle inequality. In order to show that two topologies are equivalent (i.e. have the same open sets) we need to verify that every neighborhood in a neighborhood basis for one topology contains a neighborhood for the other, and vice versa (remember that a set is open if it is a neighborhood of all its points). Given a ball $B_{d}(x, r)$
we need to find $x_{1}^{*}, \cdots, x_{n}^{*} \in X^{*}$ and $\varepsilon>0$ such that $\left\{y \in B_{X}:\left|x_{i}^{*}(x-y)\right|<\varepsilon, 1 \leqslant i \leqslant n\right\}:=V_{x, x_{1}^{*}, \ldots, x_{n}^{*}, \varepsilon} \subset$ $B_{d}(x, r)$. If $N \geqslant 1$ is such that $\frac{1}{2^{N-1}}<\frac{r}{2}$, consider $y \in V_{x, z_{1}^{*}, \ldots, z_{N}^{*}, r / 2}$, then

$$
\begin{aligned}
\sum_{n=1}^{\infty} 2^{-n}\left|z_{n}^{*}(x-y)\right| & =\sum_{n=1}^{N} 2^{-n}\left|z_{n}^{*}(x-y)\right|+\sum_{n=N+1}^{\infty} 2^{-n}\left|z_{n}^{*}(x-y)\right| \\
& \leqslant \sum_{n=1}^{N} 2^{-n} \frac{r}{2}+\sum_{n=N}^{\infty} \frac{1}{2^{n}} \\
& <\frac{r}{2}+\frac{1}{2^{N-1}}<r
\end{aligned}
$$

and hence $V_{x, z_{1}^{*}, \ldots, z_{N}^{*}, r / N} \subset B_{d}(x, r)$.
Now consider $V_{x, x_{1}^{*}, \ldots, x_{k}^{*}, \varepsilon}$. Since $V_{x, \lambda x_{1}^{*}, \ldots, \lambda x_{k}^{*}, \lambda \varepsilon}=V_{x, x_{1}^{*}, \ldots, x_{k}^{*}, \varepsilon}$ for any $\lambda>0$, one can assume that $\max _{i}\left\|x_{i}^{*}\right\| \leqslant 1$. For all $1 \leqslant i \leqslant k$ let $z_{j_{i}}^{*}$ such that $\left\|z_{j_{i}}^{*}-x_{i}^{*}\right\|<\frac{\varepsilon}{4}$, and assume (after relabelling if needed) that $j_{1} \leqslant j_{2} \leqslant \ldots \leqslant j_{k}$. Then, if $y \in B_{d}\left(x, \frac{\varepsilon}{2^{j k^{+1}}}\right)$ then $\sum_{n=1}^{\infty} 2^{-n}\left|z_{n}^{*}(x-y)\right| \leqslant \frac{\varepsilon}{2^{j_{k}+1}}$ and in particular for all $1 \leqslant n \leqslant j_{k},\left|z_{n}^{*}(x-y)\right|<\frac{\varepsilon}{2} 2^{n-j_{k}} \leqslant \frac{\varepsilon}{2}$. Therefore, for all $1 \leqslant i \leqslant k$ one has $\left|x_{i}^{*}(x-y)\right| \leqslant\left|\left(x_{i}^{*}-z_{j_{i}}^{*}\right)(x-y)\right|+$ $\left|z_{j_{i}}^{*}(x-y)\right|<2\left\|x_{i}^{*}-z_{j_{i}}^{*}\right\|+\frac{\varepsilon}{2}<\varepsilon$, i.e. $B_{d}\left(x, \frac{\varepsilon}{2^{j_{k}+1}}\right) \subset V_{x, x_{1}^{*}, \ldots, x_{k}^{*}, \varepsilon}$.

Problem 5. Let $1 \leqslant p<q<r \leqslant \infty$, and consider the norm on $L_{p}+L_{r}$ given by

$$
\|f\|_{L_{p}+L_{r}} \stackrel{\text { def }}{=} \inf \left\{\|g\|_{p}+\|h\|_{r}: f=g+h \in L_{p}+L_{r}\right\} .
$$

Show that
(1) $\left(L_{p}+L_{r},\|\cdot\|_{L_{p}+L_{r}}\right)$ is a Banach space.
(2) Show that the formal inclusion $\iota: L_{q} \rightarrow L_{p}+L_{r}$ is continuous.

Solution.

