
REAL ANALYSIS MATH 608
HOMEWORK #8

Problem 1. Let (X,M,µ) be a measure space. Show that:
(1) For all f ∈ L1(µ),g ∈ L∞(µ) we have f g ∈ L1(µ) and ‖ f g‖1 6 ‖ f ‖1‖g‖∞, with equality if and only if
|g| = ‖g‖∞, µ-a.e. on { f , 0}.

(2) { fn}n is a Cauchy sequence in L∞(µ) if and only if there is A ∈M with µ(Ac) = 0 such that

lim
n,k→∞

sup
x∈A
| fn(x)− fk(x)| = 0.

(3) L∞(µ) is a Banach space.

Solution. (1)
∫
| f g|dµ 6 ‖g‖∞

∫
| f |dµ = ‖g‖∞‖ f ‖1. If µ({|g| < ‖g‖∞}∩ { f , 0}) > 0 then | f |(‖g‖∞− |g|) is a

measurable function that is positive on a set of positive measure and thus
∫
| f |‖g‖∞− | f g|dµ > 0, i.e.

‖ f g‖1 < ‖ f ‖1‖g‖∞. The sufficient condition is clear.
(2) For the necessary condition, let ε > 0, then {| fn− fk| > ε} = ({| fn− fk| > ε}∩A)∪ ({| fn− fk| > ε}∩Ac)

and hence µ({| fn− fk| > ε}) 6 µ({| fn− fk| > ε}∩A) + 0. But there is n0 > 1 such that for all n,k > n0,
supx∈A| fn(x)− fk(x)|< ε, and thus µ({| fn− fk|> ε}) = 0, i.e. ‖ fn− fk‖∞ 6 εwhenever n,k > n0. Assume
now that ( fn)n is Cauchy for ‖ · ‖∞, and given ε > 0 let n0 > 1 such that for all n,k > n0 one has
‖ fn− fk‖∞ 6 ε. Let An,k

def
= {x ∈ X : | fn(x)− fk(x)| > ‖ fn− fk‖∞} and A = X \∪n,kAn,k = X∩∩n,k(Ac

n,k).
For all x ∈ A, n,k > 1, | fn(x)− fk(x)| 6 ‖ fn− fk‖∞ and hence ( fn− fk)n,k converges uniformly to 0 on
A. Now, µ(∪n,kAn,k) 6

∑
n,k µ(An,k) = 0 since µ(An,k) = 0 for all n,k > 1.

(3) If ( fn)n is Cauchy for the sup norm then by (2) it is Cauchy for the uniform norm outside a set
of measure 0 and the completness of the sup norm follows from from completness of the uniform
norm.

�

Problem 2. Let 1 6 p < q < r 6∞, and consider the norm ‖ f ‖Lp∩Lr

def
= ‖ f ‖p + ‖ f ‖r on Lp∩Lr. Show that

(1) (Lp∩Lr,‖ · ‖Lp∩Lr ) is a Banach space.
(2) Show that the formal inclusion ι : Lp∩Lr→ Lq is continuous.

Solution.
�

Problem 3. Let H be a Hilbert space, S ⊂ H, and recall that

S ⊥ =
{
x ∈ H : x ⊥ y, for all y ∈ S

}
.

Show that S ⊥⊥ is the smallest closed linear subspace of H containing S .

Solution. Let E be the smallest closed linear space that contains S . For any set S , S ⊥ is closed and linear.
Indeed, if x,y ∈ S ⊥ then < s, x + λy >=< s, x > +λ̄ < s,y >= 0 for all s ∈ S , and hence x + λy ∈ S ⊥. If
(xn)n ⊂ S ⊥ such that xn→ x, then for all s ∈ S , n > 1 < s, xn >= 0 and by continuity of the scalar product (CS
inequality) we have that < s, x>= 0, i.e. x ∈ S ⊥. Observe now that S ⊂ S ⊥⊥. Indeed, if s ∈ S and y ∈ S ⊥, then
< s,y >= 0, and hence S ⊂ (S ⊥)⊥ = S ⊥⊥. Therefore by minimality of E one has S ⊂ E ⊂ S ⊥⊥. Assume now
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that x ∈ S ⊥⊥. If pE denotes the orthogonal projection on E (which exists since E is a closed subspace of a
Hilbert space), then x = pE(x)+ x− pE(x) and pE(x)⊥ (x− pE(x)). We want to show that x = pE(x) and thus
x ∈ E. But this is true as ‖x− pE(x)‖2 =< x− pE(x), x− pE(x) >=< x− pE(x), x >= 0 since x ∈ S ⊥⊥ ⊂ E⊥⊥

(A ⊂ B =⇒ B⊥ ⊂ A⊥) and x− pE(x) ∈ E⊥. Thus we have S ⊂ E = S ⊥⊥

Remark 1. Note that E = span(S ) def
=

{∑n
i=1λixi : n ∈ N, x1, . . . , xn ∈ S ,λ1, . . . ,λn ∈ F

}
. Indeed E ⊂ span(S )

(since the closure of a linear space is a linear space that is closed), but since E is a linear space containing S
one has span(S )⊂ E (Since span(S ) is the smallest linear space containing S ) and taking closure span(S )⊂
E since E is closed. So in any normed vector space the closest linear space containing S is span(S ).

�

Problem 4.
(1) Show that if X is separable then the weak-∗ topology on BX∗ is metrizable.
(2) Show that if X∗ is separable then the weak topology on BX is metrizable.

Hint: For (1) consider d(x∗,y∗) =
∑∞

n=1 2−n|(x∗ − y∗)(zn)| where {zn}n is dense in BX . For (2) mimic the
argument in (1).

Solution.
(1) Since X is separable we can pick a sequence {zn}n that is dense in BX . For any x∗,y∗ ∈ BX∗ let

d(x∗,y∗) def
=

∑∞
n=1 2−n|(x∗ − y∗)(zn)|. It is clear that d is a symmetric map BX∗ × BX∗ → [0,2] that

satisfies the triangle inequality. In order to show that two topologies are equivalent (i.e. have the
same open sets) we need to verify that every neighborhood in a neighborhood basis for one topol-
ogy contains a neighborhood for the other, and vice versa (remember that a set is open if it is a
neighborhood of all its points). Given a ball Bd(x∗,r) we need to find x1, · · · , xn ∈ X and ε > 0 such
that {y∗ ∈ BX∗ : |(x∗− y∗)(xi)| < ε,1 6 i 6 n} := Vx∗,x1,...,xn,ε ⊂ Bd(x∗,r). If N > 1 is such that 1

2N−1 <
r
2 ,

consider y∗ ∈ Vx∗,z1,...,zN ,r/2, then
∞∑

n=1

2−n|(x∗− y∗)(zn)| =
N∑

n=1

2−n|(x∗− y∗)(zn)|+
∞∑

n=N+1

2−n|(x∗− y∗)(zn)|

6
N∑

n=1

2−n r
2

+

∞∑
n=N

1
2n

<
r
2

+
1

2N−1 < r,

and hence Vx∗,z1,...,zN ,r/N ⊂ Bd(x∗,r).
Now consider Vx∗,x1,...,xk ,ε. Since Vx∗,λx1,...,λxk ,λε = Vx∗,x1,...,xk ,ε for any λ > 0, one can assume that

maxi ‖xi‖ 6 1. For all 1 6 i 6 k let z ji such that ‖z ji − xi‖ <
ε
4 , and assume (after relabelling if needed)

that j1 6 j2 6 . . . 6 jk. Then, if y∗ ∈ Bd(x∗, ε
2 jk+1 ) then

∑∞
n=1 2−n|(x∗− y∗)(zn)| 6 ε

2 jk+1 and in particular
for all 1 6 n 6 jk, |(x∗ − y∗)(zn)| < ε

2 2n− jk 6 ε
2 . Therefore, for all 1 6 i 6 k one has |(x∗ − y∗)(xi)| 6

|(x∗− y∗)(xi− z ji)|+ |(x∗− y∗)(z ji)| < 2‖xi− z ji‖+
ε
2 < ε, i.e. Bd(x∗, ε

2 jk+1 ) ⊂ Vx∗,x1,...,xk ,ε.
(2) This is verbatim the same proof modulo swapping the role of X and X∗. Since X∗ is separable we

can pick a sequence {z∗n}n that is dense in BX∗ . For any x,y ∈ BX let d(x,y) def
=

∑∞
n=1 2−n|z∗n(x− y)|. It

is clear that d is a symmetric map BX ×BX → [0,2] that satisfies the triangle inequality. In order to
show that two topologies are equivalent (i.e. have the same open sets) we need to verify that every
neighborhood in a neighborhood basis for one topology contains a neighborhood for the other, and
vice versa (remember that a set is open if it is a neighborhood of all its points). Given a ball Bd(x,r)
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we need to find x∗1, · · · , x
∗
n ∈ X∗ and ε > 0 such that {y ∈ BX : |x∗i (x− y)| < ε,1 6 i 6 n} := Vx,x∗1,...,x

∗
n,ε ⊂

Bd(x,r). If N > 1 is such that 1
2N−1 <

r
2 , consider y ∈ Vx,z∗1,...,z

∗
N ,r/2, then

∞∑
n=1

2−n|z∗n(x− y)| =
N∑

n=1

2−n|z∗n(x− y)|+
∞∑

n=N+1

2−n|z∗n(x− y)|

6
N∑

n=1

2−n r
2

+

∞∑
n=N

1
2n

<
r
2

+
1

2N−1 < r,

and hence Vx,z∗1,...,z
∗
N ,r/N ⊂ Bd(x,r).

Now consider Vx,x∗1,...,x
∗
k ,ε

. Since Vx,λx∗1,...,λx∗k ,λε = Vx,x∗1,...,x
∗
k ,ε

for any λ > 0, one can assume that
maxi ‖x∗i ‖ 6 1. For all 1 6 i 6 k let z∗ji such that ‖z∗ji − x∗i ‖ <

ε
4 , and assume (after relabelling if needed)

that j1 6 j2 6 . . . 6 jk. Then, if y ∈ Bd(x, ε
2 jk+1 ) then

∑∞
n=1 2−n|z∗n(x−y)| 6 ε

2 jk+1 and in particular for all
1 6 n 6 jk, |z∗n(x−y)| < ε

2 2n− jk 6 ε
2 . Therefore, for all 1 6 i 6 k one has |x∗i (x−y)| 6 |(x∗i − z∗ji)(x−y)|+

|z∗ji(x− y)| < 2‖x∗i − z∗ji‖+
ε
2 < ε, i.e. Bd(x, ε

2 jk+1 ) ⊂ Vx,x∗1,...,x
∗
k ,ε

.
�

Problem 5. Let 1 6 p < q < r 6∞, and consider the norm on Lp + Lr given by

‖ f ‖Lp+Lr

def
= inf{‖g‖p + ‖h‖r : f = g + h ∈ Lp + Lr}.

Show that
(1) (Lp + Lr,‖ · ‖Lp+Lr ) is a Banach space.
(2) Show that the formal inclusion ι : Lq→ Lp + Lr is continuous.

Solution.
�
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