REAL ANALYSIS MATH 608 HOMEWORK #8

Problem 1. Let (X, \mathcal{M}, μ) be a measure space. Show that:

- (1) For all $f \in L_1(\mu)$, $g \in L_{\infty}(\mu)$ we have $fg \in L_1(\mu)$ and $||fg||_1 \leq ||f||_1 ||g||_{\infty}$, with equality if and only if $|g| = ||g||_{\infty}$, μ -a.e. on $\{f \neq 0\}$.
- (2) $\{f_n\}_n$ is a Cauchy sequence in $L_{\infty}(\mu)$ if and only if there is $A \in \mathcal{M}$ with $\mu(A^c) = 0$ such that

$$\lim_{n,k\to\infty}\sup_{x\in A}|f_n(x)-f_k(x)|=0.$$

(3) $L_{\infty}(\mu)$ is a Banach space.

- Solution. (1) $\int |fg|d\mu \le ||g||_{\infty} \int |f|d\mu = ||g||_{\infty} ||f||_1$. If $\mu(\{|g| < ||g||_{\infty}\} \cap \{f \ne 0\}) > 0$ then $|f|(||g||_{\infty} |g|)$ is a measurable function that is positive on a set of positive measure and thus $\int |f|||g||_{\infty} |fg|d\mu > 0$, i.e. $||fg||_1 < ||f||_1 ||g||_{\infty}$. The sufficient condition is clear.
 - (2) For the necessary condition, let $\varepsilon > 0$, then $\{|f_n f_k| > \varepsilon\} = (\{|f_n f_k| > \varepsilon\} \cap A) \cup (\{|f_n f_k| > \varepsilon\} \cap A^c)$ and hence $\mu(\{|f_n - f_k| > \varepsilon\}) \le \mu(\{|f_n - f_k| > \varepsilon\} \cap A) + 0$. But there is $n_0 \ge 1$ such that for all $n, k \ge n_0$, $\sup_{x \in A} |f_n(x) - f_k(x)| < \varepsilon$, and thus $\mu(\{|f_n - f_k| > \varepsilon\}) = 0$, i.e. $||f_n - f_k||_{\infty} \le \varepsilon$ whenever $n, k \ge n_0$. Assume now that $(f_n)_n$ is Cauchy for $\|\cdot\|_{\infty}$, and given $\varepsilon > 0$ let $n_0 \ge 1$ such that for all $n, k \ge n_0$ one has $||f_n - f_k||_{\infty} \le \varepsilon$. Let $A_{n,k} \stackrel{\text{def}}{=} \{x \in X : |f_n(x) - f_k(x)| > ||f_n - f_k||_{\infty}\}$ and $A = X \setminus \bigcup_{n,k} A_{n,k} = X \cap \bigcap_{n,k} (A_{n,k}^c)$. For all $x \in A, n, k \ge 1$, $|f_n(x) - f_k(x)| \le ||f_n - f_k||_{\infty}$ and hence $(f_n - f_k)_{n,k}$ converges uniformly to 0 on A. Now, $\mu(\bigcup_{n,k} A_{n,k}) \le \sum_{n,k} \mu(A_{n,k}) = 0$ since $\mu(A_{n,k}) = 0$ for all $n, k \ge 1$.
 - (3) If $(f_n)_n$ is Cauchy for the sup norm then by (2) it is Cauchy for the uniform norm outside a set of measure 0 and the completness of the sup norm follows from from completness of the uniform norm.

Problem 2. Let $1 \le p < q < r \le \infty$, and consider the norm $||f||_{L_p \cap L_r} \stackrel{\text{def}}{=} ||f||_p + ||f||_r$ on $L_p \cap L_r$. Show that

- (1) $(L_p \cap L_r, \|\cdot\|_{L_p \cap L_r})$ is a Banach space.
- (2) Show that the formal inclusion $\iota: L_p \cap L_r \to L_q$ is continuous.

Solution.

Problem 3. Let *H* be a Hilbert space, $S \subset H$, and recall that

$$S^{\perp} = \{ x \in H \colon x \perp y, \text{ for all } y \in S \}.$$

Show that $S^{\perp\perp}$ is the smallest closed linear subspace of H containing S.

Solution. Let *E* be the smallest closed linear space that contains *S*. For any set *S*, S^{\perp} is closed and linear. Indeed, if $x, y \in S^{\perp}$ then $\langle s, x + \lambda y \rangle = \langle s, x \rangle + \overline{\lambda} \langle s, y \rangle = 0$ for all $s \in S$, and hence $x + \lambda y \in S^{\perp}$. If $(x_n)_n \subset S^{\perp}$ such that $x_n \to x$, then for all $s \in S$, $n \ge 1 < s$, $x_n \ge 0$ and by continuity of the scalar product (CS inequality) we have that $\langle s, x \rangle = 0$, i.e. $x \in S^{\perp}$. Observe now that $S \subset S^{\perp \perp}$. Indeed, if $s \in S$ and $y \in S^{\perp}$, then $\langle s, y \rangle = 0$, and hence $S \subset (S^{\perp})^{\perp} = S^{\perp \perp}$. Therefore by minimality of *E* one has $S \subset E \subset S^{\perp \perp}$. Assume now that $x \in S^{\perp\perp}$. If p_E denotes the orthogonal projection on E (which exists since E is a closed subspace of a Hilbert space), then $x = p_E(x) + x - p_E(x)$ and $p_E(x) \perp (x - p_E(x))$. We want to show that $x = p_E(x)$ and thus $x \in E$. But this is true as $||x - p_E(x)||^2 = \langle x - p_E(x), x - p_E(x) \rangle = \langle x - p_E(x), x \rangle = 0$ since $x \in S^{\perp\perp} \subset E^{\perp\perp}$ $(A \subset B \implies B^{\perp} \subset A^{\perp})$ and $x - p_E(x) \in E^{\perp}$. Thus we have $S \subset E = S^{\perp\perp}$

Remark 1. Note that $E = \overline{span(S)} \stackrel{\text{def}}{=} \overline{\left\{\sum_{i=1}^{n} \lambda_i x_i : n \in \mathbb{N}, x_1, \dots, x_n \in S, \lambda_1, \dots, \lambda_n \in \mathbb{F}\right\}}$. Indeed $E \subset \overline{span(S)}$ (since the closure of a linear space is a linear space that is closed), but since E is a linear space containing S one has $span(S) \subset E$ (Since span(S) is the smallest linear space containing S) and taking $closure \overline{span(S)} \subset E$ since E is closed. So in any normed vector space the closest linear space containing S is $\overline{span(S)}$.

Problem 4.

- (1) Show that if X is separable then the weak-* topology on B_{X^*} is metrizable.
- (2) Show that if X^* is separable then the weak topology on B_X is metrizable.

Hint: For (1) consider $d(x^*, y^*) = \sum_{n=1}^{\infty} 2^{-n} |(x^* - y^*)(z_n)|$ where $\{z_n\}_n$ is dense in B_X . For (2) mimic the argument in (1).

Solution.

(1) Since X is separable we can pick a sequence $\{z_n\}_n$ that is dense in B_X . For any $x^*, y^* \in B_{X^*}$ let $d(x^*, y^*) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} 2^{-n} | (x^* - y^*)(z_n) |$. It is clear that d is a symmetric map $B_{X^*} \times B_{X^*} \to [0, 2]$ that satisfies the triangle inequality. In order to show that two topologies are equivalent (i.e. have the same open sets) we need to verify that every neighborhood in a neighborhood basis for one topology contains a neighborhood for the other, and vice versa (remember that a set is open if it is a neighborhood of all its points). Given a ball $B_d(x^*, r)$ we need to find $x_1, \dots, x_n \in X$ and $\varepsilon > 0$ such that $\{y^* \in B_{X^*} : |(x^* - y^*)(x_i)| < \varepsilon, 1 \le i \le n\} := V_{x^*, x_1, \dots, x_n, \varepsilon} \subset B_d(x^*, r)$. If $N \ge 1$ is such that $\frac{1}{2^{N-1}} < \frac{r}{2}$, consider $y^* \in V_{x^*, z_1, \dots, z_N, r/2}$, then

$$\begin{split} \sum_{n=1}^{\infty} 2^{-n} |(x^* - y^*)(z_n)| &= \sum_{n=1}^{N} 2^{-n} |(x^* - y^*)(z_n)| + \sum_{n=N+1}^{\infty} 2^{-n} |(x^* - y^*)(z_n)| \\ &\leq \sum_{n=1}^{N} 2^{-n} \frac{r}{2} + \sum_{n=N}^{\infty} \frac{1}{2^n} \\ &< \frac{r}{2} + \frac{1}{2^{N-1}} < r, \end{split}$$

and hence $V_{x^*,z_1,\ldots,z_N,r/N} \subset B_d(x^*,r)$.

Now consider $V_{x^*,x_1,...,x_k,\varepsilon}$. Since $V_{x^*,\lambda x_1,...,\lambda x_k,\lambda\varepsilon} = V_{x^*,x_1,...,x_k,\varepsilon}$ for any $\lambda > 0$, one can assume that $\max_i ||x_i|| \leq 1$. For all $1 \leq i \leq k$ let z_{j_i} such that $||z_{j_i} - x_i|| < \frac{\varepsilon}{4}$, and assume (after relabelling if needed) that $j_1 \leq j_2 \leq ... \leq j_k$. Then, if $y^* \in B_d(x^*, \frac{\varepsilon}{2^{j_k+1}})$ then $\sum_{n=1}^{\infty} 2^{-n} |(x^* - y^*)(z_n)| \leq \frac{\varepsilon}{2^{j_k+1}}$ and in particular for all $1 \leq n \leq j_k$, $|(x^* - y^*)(z_n)| < \frac{\varepsilon}{2} 2^{n-j_k} \leq \frac{\varepsilon}{2}$. Therefore, for all $1 \leq i \leq k$ one has $|(x^* - y^*)(x_i)| \leq |(x^* - y^*)(x_i - z_{j_i})| + |(x^* - y^*)(z_{j_i})| < 2||x_i - z_{j_i}|| + \frac{\varepsilon}{2} < \varepsilon$, i.e. $B_d(x^*, \frac{\varepsilon}{2^{j_k+1}}) \subset V_{x^*,x_1,...,x_k,\varepsilon}$. (2) This is verbatim the same proof modulo swapping the role of X and X*. Since X* is separable we

(2) This is verbatim the same proof modulo swapping the role of X and X^{*}. Since X^{*} is separable we can pick a sequence $\{z_n^*\}_n$ that is dense in B_{X^*} . For any $x, y \in B_X$ let $d(x, y) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} 2^{-n} |z_n^*(x-y)|$. It is clear that d is a symmetric map $B_X \times B_X \to [0,2]$ that satisfies the triangle inequality. In order to show that two topologies are equivalent (i.e. have the same open sets) we need to verify that every neighborhood in a neighborhood basis for one topology contains a neighborhood for the other, and vice versa (remember that a set is open if it is a neighborhood of all its points). Given a ball $B_d(x, r)$

we need to find $x_1^*, \dots, x_n^* \in X^*$ and $\varepsilon > 0$ such that $\{y \in B_X : |x_i^*(x-y)| < \varepsilon, 1 \le i \le n\} := V_{x,x_1^*,\dots,x_n^*,\varepsilon} \subset B_d(x,r)$. If $N \ge 1$ is such that $\frac{1}{2^{N-1}} < \frac{r}{2}$, consider $y \in V_{x,z_1^*,\dots,z_N^*,r/2}$, then

$$\begin{split} \sum_{n=1}^{\infty} 2^{-n} |z_n^*(x-y)| &= \sum_{n=1}^{N} 2^{-n} |z_n^*(x-y)| + \sum_{n=N+1}^{\infty} 2^{-n} |z_n^*(x-y)| \\ &\leq \sum_{n=1}^{N} 2^{-n} \frac{r}{2} + \sum_{n=N}^{\infty} \frac{1}{2^n} \\ &< \frac{r}{2} + \frac{1}{2^{N-1}} < r, \end{split}$$

and hence $V_{x,z_1^*,...,z_N^*,r/N} \subset B_d(x,r)$.

Now consider $V_{x,x_1^*,...,x_k^*,\varepsilon}$. Since $V_{x,\lambda x_1^*,...,\lambda x_k^*,\lambda\varepsilon} = V_{x,x_1^*,...,x_k^*,\varepsilon}$ for any $\lambda > 0$, one can assume that $\max_i ||x_i^*|| \le 1$. For all $1 \le i \le k$ let $z_{j_i}^*$ such that $||z_{j_i}^* - x_i^*|| \le \frac{\varepsilon}{4}$, and assume (after relabelling if needed) that $j_1 \le j_2 \le ... \le j_k$. Then, if $y \in B_d(x, \frac{\varepsilon}{2^{j_k+1}})$ then $\sum_{n=1}^{\infty} 2^{-n} |z_n^*(x-y)| \le \frac{\varepsilon}{2^{j_k+1}}$ and in particular for all $1 \le n \le j_k, |z_n^*(x-y)| < \frac{\varepsilon}{2} 2^{n-j_k} \le \frac{\varepsilon}{2}$. Therefore, for all $1 \le i \le k$ one has $|x_i^*(x-y)| \le |(x_i^* - z_{j_i}^*)(x-y)| + |z_{j_i}^*(x-y)| < 2||x_i^* - z_{j_i}^*|| + \frac{\varepsilon}{2} < \varepsilon$, i.e. $B_d(x, \frac{\varepsilon}{2^{j_k+1}}) \subset V_{x,x_1^*,...,x_k^*,\varepsilon}$.

Problem 5. Let $1 \le p < q < r \le \infty$, and consider the norm on $L_p + L_r$ given by

$$||f||_{L_p+L_r} \stackrel{\text{def}}{=} \inf\{||g||_p + ||h||_r \colon f = g + h \in L_p + L_r\}.$$

Show that

- (1) $(L_p + L_r, \|\cdot\|_{L_p+L_r})$ is a Banach space.
- (2) Show that the formal inclusion $\iota: L_q \to L_p + L_r$ is continuous.

Solution.