REAL ANALYSIS MATH 608 HOMEWORK #9

Problem 1. Show that

- (1) Every Hilbert space has an orthonormal basis.
- (2) Every separable Hilbert space has a countable orthonormal basis.
- (3) All the orthonormal bases of a Hilbert space have the same cardinality.

Hint: For (2) Gramm-Schmidt procedure. For (3) Schroeder-Bernstein theorem.

Problem 2. Let H be a Hilbert space.

- (1) Given $x, y \in H$, show that if for all $\alpha \in \mathbb{F}$, $||x + \alpha y|| \ge ||x||$ then $x \perp y$.
- (2) Let P be a bounded linear projection on H. Show that the following assertions are equivalent (a) P is a orthogonal projection
 - (b) $\langle Px, y \rangle = \langle x, Py \rangle$, for all $x, y \in H$.
 - (c) ||P|| = 1

Problem 3.

- (1) Show that the dual of a Hilbert space is a Hilbert space.
- (2) Show that every Hilbert space is reflexive.

Hint: Representation theorem.

Problem 4. Let Y be a subspace of a Banach space X. Show that

- (1) If Y is topologically complemented, then Y is closed and admits a topological complement.
- (2) If Y is closed and admits a topological complement, then Y is topologically complemented.

Hint: Closed Graph Theorem.

Problem 5. Let $U: H_1 \rightarrow H_2$ be a surjective linear map. Show that U preserves the scalar products if and only if U is an isometric isomorphism.

Hint: Polarization identity.