REAL ANALYSIS MATH 608 HOMEWORK #9

Problem 1. Show that

- (1) Every Hilbert space has an orthonormal basis.
- (2) Every separable Hilbert space has a countable orthonormal basis.
- (3) All the orthonormal bases of a Hilbert space have the same cardinality.

Hint: (1) Zorn's lemma – (2) Gramm-Schmidt – (3) Bessel's inequality and Schroeder-Bernstein

- Solution. (1) This is a typical Zorn's lemma argument. Let $\Theta \stackrel{\text{def}}{=} \{(u_i)_{i \in I} \text{ orthonormal collection in } H\}$, partially ordered by inclusion. Then $\Theta \neq \emptyset$ since $\{h/||h||\}$ is vacuously orthonormal whenever $h \neq 0$. Let $(C_i)_i$ be a chain in Θ , then $\cup_i C_i$ is an orthonormal collection which contains all the C_i 's by definition. By Zorn's lemma there is a maximal orthonormal family $\{u_i\}_i$ which is one of the various characterizations of being an orthonormal basis.
 - (2) Let {h_n}_n be a dense sequence in *H*. By discarding terms if needed one can assume without loss of generality that {h_n}_n is a linearly independent sequence and that span{h_n: n ≥ 1} is dense. After applying the Gramm-Schmidt process to the sequence we obtain an orthonormal sequence whose linear span is dense. Such a sequence must be an orthonormal basis, for otherwise we can find v ≠ 0 such that < v, h_n >= 0 for all n ≥ 1, and hence v ∈ [span{h_n: n ≥ 1}][⊥]. By continuity of the scalar product it follows that v ∈ span{h_n: n ≥ 1}[⊥] = H[⊥] = {0}; a contradiction.
 - (3) Let $\{u_i\}_{i \in I}$ and $\{v_j\}_{j \in J}$ be two orthonormal bases for a Hilbert space *H*. If *I* and *J* are finite sets then *H* is isometrically isomorphic to $\ell_2^{\operatorname{card}(I)}$ and to $\ell_2^{\operatorname{card}(J)}$. By a dimensionality argument, necessarily $\operatorname{card}(I) = \operatorname{card}(J)$. Assume now that *I* and *J* are infinite sets. If follows from Bessel's inequality that for all $i \in I$, the set $A_i \stackrel{\text{def}}{=} \{j \in J : \langle u_i, v_j \rangle \neq 0\} \subset J$ is at most countable. Since $v_j \neq 0$ there must be a $i_j \in I$ such that $\langle u_{i_j}, v_j \rangle \neq 0$ (since $\{u_i\}_i$ is an orthonormal basis). Thus $J = \bigcup_{i \in I} A_i$ and $\operatorname{card}(J) \leq \operatorname{card}(I) \times \operatorname{card}(\mathbb{N}) = \operatorname{card}(I)$ since $\operatorname{card}(I) \geq \operatorname{card}(I)$ and $\operatorname{card}(I) \leq \operatorname{card}(J)$, and it follows from Schroeder-Bernstein theorem that $\operatorname{card}(I) = \operatorname{card}(J)$.

Problem 2. Let H be a Hilbert space.

- (1) Given $x, y \in H$, show that $x \perp y$ if and only if for all $\alpha \in \mathbb{F} ||x + \alpha y|| \ge ||x||$.
- (2) Let P be a bounded linear projection on H. Show that the following assertions are equivalent
 - (a) P is a orthogonal projection
 - (b) $\langle Px, y \rangle = \langle x, Py \rangle$, for all $x, y \in H$.
 - (c) ||P|| = 1
- Solution. (1) Observe that if $\langle x, y \rangle = 0$ then $||x + \alpha y||^2 = ||x||^2 + |\alpha|^2 ||y||^2 \ge |\alpha|^2 ||y||^2$, and thus $||x + \alpha y|| \ge |\alpha|||y|| \ge \alpha ||y||$. On the other hand, if for all α , $||x + \alpha y|| \ge ||x||$ then by taking square and developing them with scalar products we have that $-Re(\alpha < y, x >) \le |\alpha|^2 ||y||^2$ and if $\langle y, x \rangle \ne 0$ we can certainly find an α that will lead to a contradiction (make sure you understand why the argument works for complex scalars).

(2) Assume that *P* is an orthogonal projection, then

$$< Px, y > = < Px, Py > + < Px, y - Py > = < Px, Py > = < Px - x, Py > + < x, Py > = < x, Py < x, Py > = < x, Py$$

where we used that P(X) is orthogonal to (I - P)(X) twice. If (b) holds then for all $x, y \in H$,

$$< Px, y - Py > = < Px, y > - < Px, Py > = < Px, y > - < P^{2}x, y > = < Px, y > - < Px, y > = 0,$$

i.e. P(X) is orthogonal to (I - P)(X) and hence P is the orthogonal projection. Assume now that ||P|| = 1. For any projection $||Px|| = ||P^2x|| \le ||P^2||||x|| \le ||P||^2||x||$ and thus $||P|| \ge 1$ (alternatively ||Px|| = ||x|| for all $x \in P(X)$), and thus $||P|| \ge 1$ for any bounded projection. The point here is that $||P|| \ge 1$ characterizes orthogonal projections. If P is orthogonal then for all $x \in H$, $Px \perp (x - Px)$ and by (1) $||Px|| \le ||Px+x-Px|| = ||x||$, i.e. $||P|| \le 1$. Assuming now that *norm* $P \le 1$, then for all α , we need to show that Ker(P) = (I - P)(X) is orthogonal to P(X). So let $y \in Ker(P)$, $z \in P(X)$ and $\lambda \in \mathbb{F}$, then $||z|| = ||Pz|| = ||P(z + \lambda y)|| \le ||z + \lambda y||$, and by (1) it follows that $z \perp y$.

Problem 3.

- (1) Show that the dual of a Hilbert space is a Hilbert space.
- (2) Show that every Hilbert space is reflexive.

Hint: Representation theorem.

Solution. (1) The dual of *H* is the vector space of bounded linear functional on *H* equipped with the norm $||T||_{H^*} = \sup_{||x|| \le 1} ||Tx||$. There is no reason why $|| \cdot ||_{H^*}$ should come from a product scalar, but because of Riesz representation theorem it does! Indeed, let $J_1: H \to H^*$ such that $J_1(x)(y) = \langle y, x \rangle_H$. Then by the representation theorem, J_1 is a bijection and and $J_1^{-1}: H^* \to H$ is an anti-linear isometry. On H^* , define

$$< u^*, v^* >_{J_1} = < J_1^{-1}(u^*), J_1^{-1}(u^*) >_H,$$

and because J_1^{-1} is anti-linear it defines a scalar product. We denote by $\|\cdot\|_{J_1}$ the norm induced by this scalar product. Then,

$$||u^*||_{J_1}^2 = \langle u^*, u^* \rangle_{J_1} = \overline{\langle J_1^{-1}(u^*), J_1^{-1}(u^*) \rangle_H} = ||J_1^{-1}(u^*)||_H^2 = ||u^*||_{H^*}^2$$

where we use in the last equality that J_1^{-1} is an isometry, and hence $\|\cdot\|_{H^*}$ is induced by a scalar product, i.e. H^* is a Hilbert space.

(2) We need to verify that the canonical isometric embedding δ: H → H** defined by δ(h)(y*) = y*(h) is surjective. Consider the operator Δ: H → H** given by Δ = J₂ ∘ J₁ where J₂: H* → H** is the anti-linear surjective isometry given by Riesz representation theorem (which applies here since by (1) H* is a Hilbert space), i.e. J₂: (H*, < ·, ·>J₁) → H** is such that J₂(z*)(y*) = < y*, z* >J₁. We will see that δ = Δ and hence δ will be surjective since Δ is surjective.

$$\Delta(h)(y^*) = (J_2 \circ J_1)(h)(y^*) = (J_2(J_1(h)))(y^*) = \langle y^*, J_1(h) \rangle_{J_1} = \langle J_1^{-1}(y^*), J_1^{-1}(J_1(h)) \rangle_H = \langle h, J_1^{-1}(y^*) \rangle_H = y^*(h)$$

Problem 4. Let Y be a subspace of a Banach space X. Show that

- (1) If Y is topologically complemented, then Y is closed and admits a topological complement.
- (2) If Y is closed and admits a topological complement, then Y is topologically complemented.

Hint: Closed Graph Theorem.

- Solution. (1) Let $P: X \to Y$ such that P is a bounded linear projection. Then, $X = P(X) \oplus \ker(P)$ (as this is true for any linear projection). Since P is continuous, I P is also continuous, and thus $Y = P(X) = \ker(I P)$ and $\ker(P)$ are closed, i.e. Y is closed subspace that admits a a topological complement.
 - (2) Assume that $X = Y \oplus Z$ with Y and Z closed. Then for all $x \in X$, x can be written uniquely as $x = y_x + z_x$ for some $y_x \in Y$ and $z_x \in Z$. The map $P: X \to Y$ defined by $P(x) = y_x$ is easily seen to be well defined, linear, and a projection (verify this). To show that it is continuous, it is sufficient to show that the graph of P is closed and then invoke the CGT. So assume that $x_n \to x$, and $Px_n \to y$. We need to show that y = Px. Since Y is closed and $(Px_n)_n$ is a sequence in Y, it follows that $y \in Y$. Since x = y + (x y) it remains to show that $x y \in Z$, and thus by uniqueness of the decomposition we would have that y = Px. To show that $x y \in Z$, observe that $x_n Px_n \in \ker(P) = Z$ and since Z is closed it follows from the assumptions that $x y = \lim_n x_n Px_n \in Z$, and the proof is complete.

Problem 5. Let $U: H_1 \rightarrow H_2$ be a (surjective) linear map. Show that U preserves the scalar products if and only if U is an isometry (isometric isomorphism).

Hint: Polarization identity.

Solution. If U preserves the scalar product then clearly $||Ux||^2 = \langle Ux, Ux \rangle = \langle x, x \rangle = ||x||^2$, and U is an isometry. Since being an isometry implies injectivity, U is thus an isometric isomorphism whenever it is surjective. Now if U is an isometry, then by the polarization identity (twice),

$$\langle Ux, Uy \rangle = \frac{1}{4} (||Ux + Uy||^2 - ||Ux - Uy||^2 + i||Ux + iUy||^2 - i||Ux - iUy||^2)$$

= $\frac{1}{4} (||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2)$
= $\langle x, y \rangle$,

and U preserves the scalar product.