
REAL ANALYSIS MATH 608
HOMEWORK #9

Problem 1. Show that

(1) Every Hilbert space has an orthonormal basis.
(2) Every separable Hilbert space has a countable orthonormal basis.
(3) All the orthonormal bases of a Hilbert space have the same cardinality.

Hint: (1) Zorn’s lemma – (2) Gramm-Schmidt – (3) Bessel’s inequality and Schroeder-Bernstein

Solution. (1) This is a typical Zorn’s lemma argument. Let Θ
def
= {(ui)i∈I orthonormal collection in H},

partially ordered by inclusion. Then Θ , ∅ since {h/‖h‖} is vacuously orthonormal whenever h , 0.
Let (Ci)i be a chain in Θ, then ∪iCi is an orthonormal collection which contains all the Ci’s by
definition. By Zorn’s lemma there is a maximal orthonormal family {ui}i which is one of the various
characterizations of being an orthonormal basis.

(2) Let {hn}n be a dense sequence in H. By discarding terms if needed one can assume without loss
of generality that {hn}n is a linearly independent sequence and that span{hn : n > 1} is dense. After
applying the Gramm-Schmidt process to the sequence we obtain an orthonormal sequence whose
linear span is dense. Such a sequence must be an orthonormal basis, for otherwise we can find v , 0
such that < v,hn >= 0 for all n > 1, and hence v ∈ [span{hn : n > 1}]⊥. By continuity of the scalar
product it follows that v ∈ span{hn : n > 1}

⊥
= H⊥ = {0}; a contradiction.

(3) Let {ui}i∈I and {v j} j∈J be two orthonormal bases for a Hilbert space H. If I and J are finite sets then
H is isometrically isomorphic to `card(I)

2 and to `card(J)
2 . By a dimensionality argument, necessarily

card(I) = card(J). Assume now that I and J are infinite sets. If follows from Bessel’s inequality
that for all i ∈ I, the set Ai

def
= { j ∈ J : < ui,v j >, 0} ⊂ J is at most countable. Since v j , 0 there

must be a i j ∈ I such that < ui j ,v j >, 0 (since {ui}i is an orthonormal basis). Thus J = ∪i∈IAi and
card(J) 6 card(I)× card(N) = card(I) since card(I) > card(N). Exchanging the role of the two bases
we get that card(I) 6 card(J). We just showed that card(J) 6 card(I) and card(I) 6 card(J), and it
follows from Schroeder-Bernstein theorem that card(I) = card(J).

�

Problem 2. Let H be a Hilbert space.

(1) Given x,y ∈ H, show that x ⊥ y if and only if for all α ∈ F ‖x +αy‖ > ‖x‖.
(2) Let P be a bounded linear projection on H. Show that the following assertions are equivalent

(a) P is a orthogonal projection
(b) < Px,y >=< x,Py >, for all x,y ∈ H.
(c) ‖P‖ = 1

Solution. (1) Observe that if < x,y >= 0 then ‖x +αy‖2 = ‖x‖2 + |α|2‖y‖2 > |α|2‖y‖2, and thus ‖x +αy‖ >
|α|‖y‖ > α‖y‖. On the other hand, if for all α, ‖x +αy‖ > ‖x‖ then by taking square and developing
them with scalar products we have that −Re(α < y, x >) 6 |α|2‖y‖2 and if < y, x >, 0 we can certainly
find an α that will lead to a contradiction (make sure you understand why the argument works for
complex scalars).
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(2) Assume that P is an orthogonal projection, then

< Px,y >=< Px,Py > + < Px,y−Py >=< Px,Py >=< Px− x,Py > + < x,Py >=< x,Py >

where we used that P(X) is orthogonal to (I−P)(X) twice. If (b) holds then for all x,y ∈ H,

< Px,y−Py >=< Px,y > − < Px,Py >=< Px,y > − < P2x,y >=< Px,y > − < Px,y >= 0,

i.e. P(X) is orthogonal to (I − P)(X) and hence P is the orthogonal projection. Assume now that
‖P‖ = 1. For any projection ‖Px‖ = ‖P2x‖ 6 ‖P2‖‖x‖ 6 ‖P‖2‖x‖ and thus ‖P‖ > 1 (alternatively
‖Px‖ = ‖x‖ for all x ∈ P(X)), and thus ‖P‖ > 1 for any bounded projection. The point here is that
‖P‖ > 1 characterizes orthogonal projections. If P is orthogonal then for all x ∈ H, Px⊥ (x−Px) and
by (1) ‖Px‖ 6 ‖Px + x−Px‖ = ‖x‖, i.e. ‖P‖ 6 1. Assuming now that normP 6 1, then for all α, we
need to show that Ker(P) = (I −P)(X) is orthogonal to P(X). So let y ∈ Ker(P), z ∈ P(X) and λ ∈ F,
then ‖z‖ = ‖Pz‖ = ‖P(z +λy)‖ 6 ‖z +λy‖, and by (1) it follows that z ⊥ y.

�

Problem 3.
(1) Show that the dual of a Hilbert space is a Hilbert space.
(2) Show that every Hilbert space is reflexive.

Hint: Representation theorem.

Solution. (1) The dual of H is the vector space of bounded linear functional on H equipped with the
norm ‖T‖H∗ = sup‖x‖61 ‖T x‖. There is no reason why ‖ · ‖H∗ should come from a product scalar, but
because of Riesz representation theorem it does! Indeed, let J1 : H → H∗ such that J1(x)(y) =<
y, x >H . Then by the representation theorem, J1 is a bijection and and J−1

1 : H∗→ H is an anti-linear
isometry. On H∗, define

< u∗,v∗ >J1= < J−1
1 (u∗), J−1

1 (u∗) >H ,

and because J−1
1 is anti-linear it defines a scalar product. We denote by ‖ · ‖J1 the norm induced by

this scalar product. Then,

‖u∗‖2J1
=< u∗,u∗ >J1= < J−1

1 (u∗), J−1
1 (u∗) >H = ‖J−1

1 (u∗)‖2H = ‖u∗‖2H∗

where we use in the last equality that J−1
1 is an isometry, and hence ‖ · ‖H∗ is induced by a scalar

product , i.e. H∗ is a Hilbert space.
(2) We need to verify that the canonical isometric embedding δ : H→ H∗∗ defined by δ(h)(y∗) = y∗(h)

is surjective. Consider the operator ∆ : H → H∗∗ given by ∆ = J2 ◦ J1 where J2 : H∗ → H∗∗ is the
anti-linear surjective isometry given by Riesz representation theorem (which applies here since by
(1) H∗ is a Hilbert space), i.e. J2 : (H∗,< ·, · >J1)→ H∗∗ is such that J2(z∗)(y∗) =< y∗,z∗ >J1 . We
will see that δ = ∆ and hence δ will be surjective since ∆ is surjective.

∆(h)(y∗) = (J2◦ J1)(h)(y∗) = (J2(J1(h)))(y∗) =< y∗, J1(h)>J1=< J−1
1 (y∗), J−1

1 (J1(h)) >H =< h, J−1
1 (y∗)>H= y∗(h).

�

Problem 4. Let Y be a subspace of a Banach space X. Show that
(1) If Y is topologically complemented, then Y is closed and admits a topological complement.
(2) If Y is closed and admits a topological complement, then Y is topologically complemented.
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Hint: Closed Graph Theorem.

Solution. (1) Let P : X → Y such that P is a bounded linear projection. Then, X = P(X)⊕ ker(P) (as
this is true for any linear projection). Since P is continuous, I − P is also continuous, and thus
Y = P(X) = ker(I − P) and ker(P) are closed, i.e. Y is closed subspace that admits a a topological
complement.

(2) Assume that X = Y ⊕ Z with Y and Z closed. Then for all x ∈ X, x can be written uniquely as
x = yx + zx for some yx ∈ Y and zx ∈ Z. The map P : X → Y defined by P(x) = yx is easily seen to
be well defined, linear, and a projection (verify this). To show that it is continuous, it is sufficient to
show that the graph of P is closed and then invoke the CGT. So assume that xn→ x, and Pxn→ y.
We need to show that y = Px. Since Y is closed and (Pxn)n is a sequence in Y , it follows that y ∈ Y .
Since x = y + (x− y) it remains to show that x− y ∈ Z, and thus by uniqueness of the decomposition
we would have that y = Px. To show that x−y ∈ Z, observe that xn−Pxn ∈ ker(P) = Z and since Z is
closed it follows from the assumptions that x− y = limn xn−Pxn ∈ Z, and the proof is complete.

�

Problem 5. Let U : H1→ H2 be a (surjective) linear map. Show that U preserves the scalar products if and
only if U is an isometry (isometric isomorphism).

Hint: Polarization identity.

Solution. If U preserves the scalar product then clearly ‖Ux‖2 =< Ux,Ux >=< x, x >= ‖x‖2, and U is an
isometry. Since being an isometry implies injectivity, U is thus an isometric isomorphism whenever it is
surjective. Now if U is an isometry, then by the polarization identity (twice),

< Ux,Uy > =
1
4

(‖Ux + Uy‖2−‖Ux−Uy‖2 + i‖Ux + iUy‖2− i‖Ux− iUy‖2)

=
1
4

(‖x + y‖2−‖x− y‖2 + i‖x + iy‖2− i‖x− iy‖2)

=< x,y >,

and U preserves the scalar product. �
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