REAL ANALYSIS MATH 608 HOMEWORK \#9

Problem 1. Show that
(1) Every Hilbert space has an orthonormal basis.
(2) Every separable Hilbert space has a countable orthonormal basis.
(3) All the orthonormal bases of a Hilbert space have the same cardinality.

Hint: (1) Zorn's lemma - (2) Gramm-Schmidt - (3) Bessel's inequality and Schroeder-Bernstein
Solution. (1) This is a typical Zorn's lemma argument. Let $\Theta \stackrel{\text { def }}{=}\left\{\left(u_{i}\right)_{i \in I}\right.$ orthonormal collection in $\left.H\right\}$, partially ordered by inclusion. Then $\Theta \neq \emptyset$ since $\{h /\|h\|\}$ is vacuously orthonormal whenever $h \neq 0$. Let $\left(C_{i}\right)_{i}$ be a chain in Θ, then $\cup_{i} C_{i}$ is an orthonormal collection which contains all the C_{i} 's by definition. By Zorn's lemma there is a maximal orthonormal family $\left\{u_{i}\right\}_{i}$ which is one of the various characterizations of being an orthonormal basis.
(2) Let $\left\{h_{n}\right\}_{n}$ be a dense sequence in H. By discarding terms if needed one can assume without loss of generality that $\left\{h_{n}\right\}_{n}$ is a linearly independent sequence and that $\operatorname{span}\left\{h_{n}: n \geqslant 1\right\}$ is dense. After applying the Gramm-Schmidt process to the sequence we obtain an orthonormal sequence whose linear span is dense. Such a sequence must be an orthonormal basis, for otherwise we can find $v \neq 0$ such that $\left\langle v, h_{n}\right\rangle=0$ for all $n \geqslant 1$, and hence $v \in\left[\operatorname{span}\left\{h_{n}: n \geqslant 1\right\}\right]^{\perp}$. By continuity of the scalar product it follows that $v \in \overline{\operatorname{span}\left\{h_{n}: n \geqslant 1\right\}^{\perp}}=H^{\perp}=\{0\}$; a contradiction.
(3) Let $\left\{u_{i}\right\}_{i \in I}$ and $\left\{v_{j}\right\}_{j \in J}$ be two orthonormal bases for a Hilbert space H. If I and J are finite sets then H is isometrically isomorphic to $\ell_{2}^{\operatorname{card}(I)}$ and to $\ell_{2}^{\operatorname{card}(J)}$. By a dimensionality argument, necessarily $\operatorname{card}(I)=\operatorname{card}(J)$. Assume now that I and J are infinite sets. If follows from Bessel's inequality that for all $i \in I$, the set $A_{i} \stackrel{\text { def }}{\stackrel{ }{2}}\left\{j \in J:\left\langle u_{i}, v_{j}\right\rangle \neq 0\right\} \subset J$ is at most countable. Since $v_{j} \neq 0$ there must be a $i_{j} \in I$ such that $\left\langle u_{i_{j}}, v_{j}\right\rangle \neq 0$ (since $\left\{u_{i}\right\}_{i}$ is an orthonormal basis). Thus $J=\cup_{i \in I} A_{i}$ and $\operatorname{card}(J) \leqslant \operatorname{card}(I) \times \operatorname{card}(\mathbb{N})=\operatorname{card}(I)$ since $\operatorname{card}(I) \geqslant \operatorname{card}(\mathbb{N})$. Exchanging the role of the two bases we get that $\operatorname{card}(I) \leqslant \operatorname{card}(J)$. We just showed that $\operatorname{card}(J) \leqslant \operatorname{card}(I)$ and $\operatorname{card}(I) \leqslant \operatorname{card}(J)$, and it follows from Schroeder-Bernstein theorem that $\operatorname{card}(I)=\operatorname{card}(J)$.

Problem 2. Let H be a Hilbert space.
(1) Given $x, y \in H$, show that $x \perp y$ if and only if for all $\alpha \in \mathbb{F}\|x+\alpha y\| \geqslant\|x\|$.
(2) Let P be a bounded linear projection on H. Show that the following assertions are equivalent
(a) P is a orthogonal projection
(b) $\langle P x, y\rangle=\langle x, P y\rangle$, for all $x, y \in H$.
(c) $\|P\|=1$

Solution. (1) Observe that if $\langle x, y\rangle=0$ then $\|x+\alpha y\|^{2}=\|x\|^{2}+|\alpha|^{2}\|y\|^{2} \geqslant|\alpha|^{2}\|y\|^{2}$, and thus $\|x+\alpha y\| \geqslant$ $\mid \alpha\| \| y\|\geqslant \alpha\| y \|$. On the other hand, if for all $\alpha,\|x+\alpha y\| \geqslant\|x\|$ then by taking square and developing them with scalar products we have that $-\operatorname{Re}(\alpha<y, x\rangle) \leqslant|\alpha|^{2} \|\left. y\right|^{2}$ and if $\langle y, x\rangle \neq 0$ we can certainly find an α that will lead to a contradiction (make sure you understand why the argument works for complex scalars).
(2) Assume that P is an orthogonal projection, then

$$
<P x, y>=<P x, P y>+<P x, y-P y>=<P x, P y>=<P x-x, P y>+<x, P y>=<x, P y>
$$

where we used that $P(X)$ is orthogonal to $(I-P)(X)$ twice. If (b) holds then for all $x, y \in H$,

$$
<P x, y-P y>=<P x, y>-<P x, P y>=<P x, y>-<P^{2} x, y>=<P x, y>-<P x, y>=0
$$

i.e. $P(X)$ is orthogonal to $(I-P)(X)$ and hence P is the orthogonal projection. Assume now that $\|P\|=1$. For any projection $\|P x\|=\left\|P^{2} x\right\| \leqslant\left\|P^{2}\right\|\|x\| \leqslant\|P\|^{2}\|x\|$ and thus $\|P\| \geqslant 1$ (alternatively $\|P x\|=\|x\|$ for all $x \in P(X)$), and thus $\|P\| \geqslant 1$ for any bounded projection. The point here is that $\|P\| \geqslant 1$ characterizes orthogonal projections. If P is orthogonal then for all $x \in H, P x \perp(x-P x)$ and by (1) $\|P x\| \leqslant\|P x+x-P x\|=\|x\|$, i.e. $\|P\| \leqslant 1$. Assuming now that norm $P \leqslant 1$, then for all α, we need to show that $\operatorname{Ker}(P)=(I-P)(X)$ is orthogonal to $P(X)$. So let $y \in \operatorname{Ker}(P), z \in P(X)$ and $\lambda \in \mathbb{F}$, then $\|z\|=\|P z\|=\|P(z+\lambda y)\| \leqslant\|z+\lambda y\|$, and by (1) it follows that $z \perp y$.

Problem 3.

(1) Show that the dual of a Hilbert space is a Hilbert space.
(2) Show that every Hilbert space is reflexive.

Hint: Representation theorem.
Solution. (1) The dual of H is the vector space of bounded linear functional on H equipped with the norm $\|T\|_{H^{*}}=\sup _{\|x\| \leqslant 1}\|T x\|$. There is no reason why $\|\cdot\|_{H^{*}}$ should come from a product scalar, but because of Riesz representation theorem it does! Indeed, let $J_{1}: H \rightarrow H^{*}$ such that $J_{1}(x)(y)=<$ $y, x>_{H}$. Then by the representation theorem, J_{1} is a bijection and and $J_{1}^{-1}: H^{*} \rightarrow H$ is an anti-linear isometry. On H^{*}, define

$$
<u^{*}, v^{*}>_{J_{1}}=\overline{<J_{1}^{-1}\left(u^{*}\right), J_{1}^{-1}\left(u^{*}\right)>_{H}}
$$

and because J_{1}^{-1} is anti-linear it defines a scalar product. We denote by $\|\cdot\|_{J_{1}}$ the norm induced by this scalar product. Then,

$$
\left\|u^{*}\right\|_{J_{1}}^{2}=<u^{*}, u^{*}>_{J_{1}}=\overline{<J_{1}^{-1}\left(u^{*}\right), J_{1}^{-1}\left(u^{*}\right)>_{H}}=\left\|J_{1}^{-1}\left(u^{*}\right)\right\|_{H}^{2}=\left\|u^{*}\right\|_{H^{*}}^{2}
$$

where we use in the last equality that J_{1}^{-1} is an isometry, and hence $\|\cdot\|_{H^{*}}$ is induced by a scalar product, i.e. H^{*} is a Hilbert space.
(2) We need to verify that the canonical isometric embedding $\delta: H \rightarrow H^{* *}$ defined by $\delta(h)\left(y^{*}\right)=y^{*}(h)$ is surjective. Consider the operator $\Delta: H \rightarrow H^{* *}$ given by $\Delta=J_{2} \circ J_{1}$ where $J_{2}: H^{*} \rightarrow H^{* *}$ is the anti-linear surjective isometry given by Riesz representation theorem (which applies here since by (1) H^{*} is a Hilbert space), i.e. $J_{2}:\left(H^{*},<\cdot, \cdot>_{J_{1}}\right) \rightarrow H^{* *}$ is such that $J_{2}\left(z^{*}\right)\left(y^{*}\right)=<y^{*}, z^{*}>_{J_{1}}$. We will see that $\delta=\Delta$ and hence δ will be surjective since Δ is surjective.
$\Delta(h)\left(y^{*}\right)=\left(J_{2} \circ J_{1}\right)(h)\left(y^{*}\right)=\left(J_{2}\left(J_{1}(h)\right)\right)\left(y^{*}\right)=<y^{*}, J_{1}(h)>_{J_{1}}=\overline{<J_{1}^{-1}\left(y^{*}\right), J_{1}^{-1}\left(J_{1}(h)\right)>_{H}}=<h, J_{1}^{-1}\left(y^{*}\right)>_{H}=y^{*}(h)$.

Problem 4. Let Y be a subspace of a Banach space X. Show that
(1) If Y is topologically complemented, then Y is closed and admits a topological complement.
(2) If Y is closed and admits a topological complement, then Y is topologically complemented.

Hint: Closed Graph Theorem.

Solution. (1) Let $P: X \rightarrow Y$ such that P is a bounded linear projection. Then, $X=P(X) \oplus \operatorname{ker}(P)$ (as this is true for any linear projection). Since P is continuous, $I-P$ is also continuous, and thus $Y=P(X)=\operatorname{ker}(I-P)$ and $\operatorname{ker}(P)$ are closed, i.e. Y is closed subspace that admits a a topological complement.
(2) Assume that $X=Y \oplus Z$ with Y and Z closed. Then for all $x \in X, x$ can be written uniquely as $x=y_{x}+z_{x}$ for some $y_{x} \in Y$ and $z_{x} \in Z$. The map $P: X \rightarrow Y$ defined by $P(x)=y_{x}$ is easily seen to be well defined, linear, and a projection (verify this). To show that it is continuous, it is sufficient to show that the graph of P is closed and then invoke the CGT. So assume that $x_{n} \rightarrow x$, and $P x_{n} \rightarrow y$. We need to show that $y=P x$. Since Y is closed and $\left(P x_{n}\right)_{n}$ is a sequence in Y, it follows that $y \in Y$. Since $x=y+(x-y)$ it remains to show that $x-y \in Z$, and thus by uniqueness of the decomposition we would have that $y=P x$. To show that $x-y \in Z$, observe that $x_{n}-P x_{n} \in \operatorname{ker}(P)=Z$ and since Z is closed it follows from the assumptions that $x-y=\lim _{n} x_{n}-P x_{n} \in Z$, and the proof is complete.

Problem 5. Let U : $H_{1} \rightarrow H_{2}$ be a (surjective) linear map. Show that U preserves the scalar products if and only if U is an isometry (isometric isomorphism).

Hint: Polarization identity.
Solution. If U preserves the scalar product then clearly $\|U x\|^{2}=\langle U x, U x\rangle=\langle x, x\rangle=\|x\|^{2}$, and U is an isometry. Since being an isometry implies injectivity, U is thus an isometric isomorphism whenever it is surjective. Now if U is an isometry, then by the polarization identity (twice),

$$
\begin{aligned}
<U x, U y> & =\frac{1}{4}\left(\|U x+U y\|^{2}-\|U x-U y\|^{2}+i\|U x+i U y\|^{2}-i\|U x-i U y\|^{2}\right) \\
& =\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right) \\
& =<x, y>
\end{aligned}
$$

and U preserves the scalar product.

