REAL ANALYSIS MATH 608
HOMEWORK #9

Problem 1. Show that

(1)
(2)
(3)

Every Hilbert space has an orthonormal basis.
Every separable Hilbert space has a countable orthonormal basis.
All the orthonormal bases of a Hilbert space have the same cardinality.

Hint: (1) Zorn’s lemma — (2) Gramm-Schmidt — (3) Bessel’s inequality and Schroeder-Bernstein

Solution. (1) This is a typical Zorn’s lemma argument. Let © def {(u;)ic; orthonormal collection in H},

2)

3)

partially ordered by inclusion. Then ® # 0 since {A/||/||} is vacuously orthonormal whenever & # 0.
Let (C;); be a chain in ®, then U;C; is an orthonormal collection which contains all the C;’s by
definition. By Zorn’s lemma there is a maximal orthonormal family {u;}; which is one of the various
characterizations of being an orthonormal basis.

Let {h,}, be a dense sequence in H. By discarding terms if needed one can assume without loss
of generality that {/,}, is a linearly independent sequence and that span{h, : n > 1} is dense. After
applying the Gramm-Schmidt process to the sequence we obtain an orthonormal sequence whose
linear span is dense. Such a sequence must be an orthonormal basis, for otherwise we can find v # 0

such that < v,h, >=0 for all n > 1, and hence v € [span{h,: n > 1}]*. By continuity of the scalar
product it follows that v € span{h,: n > 1}L = H* = {0}; a contradiction.

Let {u;}ic; and {v;} je; be two orthonormal bases for a Hilbert space H. If I and J are finite sets then
H is isometrically isomorphic to f;ard(l) and to f;ﬂrdw . By a dimensionality argument, necessarily
card(l) = card(J). Assume now that / and J are infinite sets. If follows from Bessel’s inequality

that for all i € I, the set A; def {jeJ: <u;,v;>#0}CJis at most countable. Since v; # 0 there
must be a i; € I such that < Ui, vj ># 0 (since {u;}; is an orthonormal basis). Thus J = U;c;A; and
card(J) < card({) X card(IN) = card(/) since card(/) > card(N). Exchanging the role of the two bases
we get that card(/) < card(J). We just showed that card(J) < card(/) and card(/) < card(J), and it
follows from Schroeder-Bernstein theorem that card(/) = card(J).

O
Problem 2. Let H be a Hilbert space.
(1) Given x,y € H, show that x Ly if and only if for all @ € F ||x + ay|| > ||x]|.
(2) Let P be a bounded linear projection on H. Show that the following assertions are equivalent
(a) P is a orthogonal projection
(b) < Px,y>=<x,Py>, forall x,y € H.
(c) IPII=1
Solution. (1) Observe that if < x,y >= 0 then ||x+ a/y||2 = ||x||> + Ia/|2||y||2 > |a|2||y||2, and thus ||x + ay|| >

|||yl = allyll. On the other hand, if for all e, ||x + @y|| > ||x|| then by taking square and developing
them with scalar products we have that —Re(a <y, x >) < |a/|2||y||2 and if <y, x ># 0 we can certainly
find an « that will lead to a contradiction (make sure you understand why the argument works for
complex scalars).
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2)

Assume that P is an orthogonal projection, then
< Px,y >=< Px,Py >+ < Px,y— Py >=< Px,Py >=< Px—x,Py >+ < x, Py >=< x,Py >
where we used that P(X) is orthogonal to (/ — P)(X) twice. If (b) holds then for all x,y € H,
< Px,y—Py>=<Px,y>—<Px,Py>=<Px,y>-< sz,y >=< Px,y>—- < Px,y>=0,

i.e. P(X) is orthogonal to (/ — P)(X) and hence P is the orthogonal projection. Assume now that
IP|l = 1. For any projection ||Px|| = [[P*x|| < [|P?[lllx]l < [IPI*||x]| and thus ||P|| > 1 (alternatively
||Px]|| = ||x]| for all x € P(X)), and thus ||P|| > 1 for any bounded projection. The point here is that
IP]| > 1 characterizes orthogonal projections. If P is orthogonal then for all x € H, Px L (x— Px) and
by (1) [|Px]| < [|[Px+ x— Px|| = ||x]|, i.e. ||P|| < 1. Assuming now that normP < 1, then for all @, we
need to show that Ker(P) = (I — P)(X) is orthogonal to P(X). So lety € Ker(P), z€ P(X) and A € F,
then ||zl| = ||Pz]| = |P(z + Ay)|| < ||z + Ay]|, and by (1) it follows that z L y.

O
Problem 3.
(1) Show that the dual of a Hilbert space is a Hilbert space.
(2) Show that every Hilbert space is reflexive.
Hint: Representation theorem.
Solution. (1) The dual of H is the vector space of bounded linear functional on H equipped with the

2

norm ||T||g« = SUP)| <1 [ITx||. There is no reason why || - ||z should come from a product scalar, but
because of Riesz representation theorem it does! Indeed, let J,: H — H* such that J;(x)(y) =<
v,x >g. Then by the representation theorem, J; is a bijection and and J 1‘1 : H* — H is an anti-linear
isometry. On H*, define

<u' v > = <IN, I W) >y,

and because J 1‘1 is anti-linear it defines a scalar product. We denote by || -||;, the norm induced by
this scalar product. Then,

2 - — -1 2 2
117, =<u',u” > 5= < J7 @), I @) > = 107 @)l = e

where we use in the last equality that Jl‘1 is an isometry, and hence || - ||y~ is induced by a scalar
product , i.e. H* is a Hilbert space.

We need to verify that the canonical isometric embedding 6: H — H** defined by 6(h)(y*) = y*(h)
is surjective. Consider the operator A: H — H** given by A = J, o J; where J,: H* — H*™ is the
anti-linear surjective isometry given by Riesz representation theorem (which applies here since by
(1) H* is a Hilbert space), i.e. Jo: (H*,<-,->;) — H*" is such that Jo(z")(y") =< y*,z* >;, . We
will see that 6 = A and hence ¢ will be surjective since A is surjective.

AG*) = (20 DG = (L)) =<y*, J1(h) > 5= < JT6*), T (1) > =< b, J7' 67%) > 5=y (h).

O

Problem 4. Let Y be a subspace of a Banach space X. Show that

(1)
(2)

If Y is topologically complemented, then Y is closed and admits a topological complement.

If Y is closed and admits a topological complement, then Y is topologically complemented.
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Hint: Closed Graph Theorem.

Solution. (1) Let P: X — Y such that P is a bounded linear projection. Then, X = P(X) @ ker(P) (as
this is true for any linear projection). Since P is continuous, / — P is also continuous, and thus
Y = P(X) = ker(I — P) and ker(P) are closed, i.e. Y is closed subspace that admits a a topological
complement.

(2) Assume that X = Y®Z with Y and Z closed. Then for all x € X, x can be written uniquely as
X = yx+ 2z, for some y, € Y and z, € Z. The map P: X — Y defined by P(x) = y, is easily seen to
be well defined, linear, and a projection (verify this). To show that it is continuous, it is sufficient to
show that the graph of P is closed and then invoke the CGT. So assume that x,, — x, and Px, — y.
We need to show that y = Px. Since Y is closed and (Px,), is a sequence in Y, it follows that y € Y.
Since x = y+ (x—y) it remains to show that x —y € Z, and thus by uniqueness of the decomposition
we would have that y = Px. To show that x—y € Z, observe that x,, — Px,, € ker(P) = Z and since Z is
closed it follows from the assumptions that x —y = lim, x,, — Px, € Z, and the proof is complete.

O

Problem 5. Let U: Hy — H; be a (surjective) linear map. Show that U preserves the scalar products if and
only if U is an isometry (isometric isomorphism).

Hint: Polarization identity.

Solution. If U preserves the scalar product then clearly Ux|? =< Ux,Ux >=< x,x >= ||x]|?, and U is an
isometry. Since being an isometry implies injectivity, U is thus an isometric isomorphism whenever it is
surjective. Now if U is an isometry, then by the polarization identity (twice),

1
<Ux,Uy> = Z(IIUx+ Uyl? = \Ux = Uyl? +illUx+iUy|? = illUx—iUy|[*)
1 L
= 4—‘(||x+y||2 —[lx = yI* + dllxc + iyll* = illx = iyl[*)

=X,y >,

and U preserves the scalar product. O



