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Chapter 1

Introduction to Mathematical
Logic

1.1 Statements and predicates
A mathematical proof should not be subject to personal interpretation and to avoid
ambiguity we need to restrict our attention to certain types of declarative sentences.

Definition 1: Statement

A statement is any declarative sentence that has a truth value (either true or
false).

Characteristics of statements:

• a statement has a truth value;

• a statement is either true or false;

• a statement cannot be neither true nor false;

• a statement cannot be true and false.

We will often represent statements with capital letters, such as P, Q, ... Mathe-
matical statements are commonly written with symbols for convenience but should be
thought of as full-fledged sentences.
Example 1. P : 3+5 = 8, is a statement.
Example 2. P : 3+5 = 9, is a statement.

Definition 2: Predicate

A predicate is any declarative sentence containing one or more variables that
is not a statement but becomes a statement when the variables are assigned
values.
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6 CHAPTER 1. INTRODUCTION TO MATHEMATICAL LOGIC

A predicate is usually written P(n), Q(x,y), and variants thereof, depending on the
number of variables and the letters used for the variables.
Example 3. P(x) : x+1 = 2, is a predicate with one variable.
Example 4. P(m,n) : n+m is odd, is a predicate with two variables.
Exercise 1. Are the following sentences statements, predicates or none of these?

1. Michael Phelps won 23 gold medals.

2. 3+5=8

3. 3+5=9

4. Today is cold.

5. x+5=8

6. table+5=8

7. This sentence is false.

1.2 Logical connectives
We have introduced two types of expressions that we will use in our mathematical
proofs: statements and predicates. We can build more complicated expressions using
the basic logical connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction).
Terminology. Expressions of the form P∧Q, P∨Q, ¬P, (¬P)∧ (Q∨¬R), and so on,
where P and Q are considered as variables representing statements are called statement
forms. They are not actually statements themselves but become statements when the
variables P and Q are replaced by statements.

1.2.1 Negation, disjunction, conjunction

Definition 3: Negation

If P is a statement, the negation of P is the statement “not P”. We use the
notation ¬P, which reads “not P” for the negation of P.

If P is a statement only the following two cases can occur: either (P is true and ¬P
is false) or (P is false and ¬P is true).

Truth tables for statement forms are tables that give the truth value of the statement
form in terms of the truth values of the variables and are used to rigorously define the
action of a logical connective on the statement(s) it operates.

Definition 4: Conjunction

Let P and Q be statements. The conjunction of P and Q is the statement “P and
Q”. The notation for the conjunction of P and Q is P∧Q and reads “P and Q”.
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P ¬P
T F
F T

Table 1.1: Negation truth table

P Q P∧Q
T T T
T F F
F T F
F F F

Table 1.2: Conjunction truth table

Definition 5: Disjunction

Let P and Q be statements. The disjunction of P and Q is the statement “P or
Q”. The notation for the disjunction of P and Q is P∨Q and reads “P or Q”.

P Q P∨Q
T T T
T F T
F T T
F F F

Table 1.3: Disjunction truth table

Using logical connectives one can create new statements out of given statements.
One can naturally extend the definitions above to create new predicates out of given
predicates.

Example 5. The predicate R(x) : |x|> 3 is the disjunction of the predicates P(x) : x > 3
and Q(x) : x <−3, i.e., R(x) = P(x)∨Q(x).

Example 6. The system of linear equations{
2x+1 = 0
3y−2 = 0

is a predicate with two variables R(x,y) which is the conjunction of the predicates
P(x) : 2x+1 = 0 and Q(y) : 3y−2 = 0, i.e., R(x,y) = P(x)∧Q(y).

The disjunction is commutative, since it is plain that P∨Q and Q∨P have the same
truth tables. The same remark holds for the conjunction. We can make this observation
precise by defining the notion of logical equivalence between statement forms.
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Definition 6: Logically equivalent statement forms

We say that two statement forms are logically equivalent if they have the same
truth tables.

We sometimes use the notation ≡ for logical equivalence.
Example 7. As we just observed P∨Q ≡ Q∨P and P∧Q ≡ Q∧P.
Example 8. By looking at their truth tables it is easy to see that the statement forms P
and ¬¬P are logically equivalent.

Theorem 1: DeMorgan’s Laws

1. ¬(P∧Q) is logically equivalent to (¬P)∨ (¬Q).

2. ¬(P∨Q) is logically equivalent to (¬P)∧ (¬Q).

Proof. We just need to build the truth tables of all the statement forms involved.

P Q P∨Q P∧Q ¬[P∨Q] ¬[P∧Q] ¬P ¬Q ¬P∨¬Q ¬P∧¬Q
T T T T F F F F F F
F T T F F T T F T F
T F T F F T F T T F
F F F F T T T T T T

Exercise 2. What is the negation of the predicate 0 < x < 1. Find a useful denial of the
predicate 0 < x < 1?

Solution. By drawing a picture you can certainly guess that

¬(0 < x < 1)≡ (x ≤ 0)∨ (x ≥ 1)

(and certainly not 0≥ x≥ 1)!) But a formal and rigorous proof ,using the basic Boolean
logic rules and calculus that we have seen so far, requires unfolding the meaning of
0 < x < 1 and would go as follows:

¬(0 < x < 1)≡ ¬[(0 < x)∧ (x < 1)]≡ [¬(0 < x)]∨ [¬(x < 1)]≡ (x ≤ 0)∨ (x ≥ 1)

where we have use one DeMorgan’s Law.

Definition 7: Tautology

A statement form that is always true no matter what are the truth values of the
variables is called a tautology.
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Example 9. P∨ (¬P) is a tautology.

Definition 8: Contradiction

A statement form that is always false no matter what are the truth values of the
variables is called a contradiction.

Example 10. P∧ (¬P) is a contradiction.

Note that if S is a tautology then ¬S is a contradiction and vice-versa.

1.2.2 Implication, contrapositive, converse, biconditional
Roughly speaking an implication is a statement with an “if-then” structure. The “if”
part of the statement gives the premise or assumption that is made, and P is called the
hypothesis or antecedent. The “then” part is the conclusion that is asserted from the
premise and Q is called the conclusion or consequent.

Definition 9: Implication

Let P and Q be statements. The implication “P =⇒ Q” (read “P implies Q”)
is the statement “If P, then Q.”

There is no sense of causality in the statement “P =⇒ Q” and P might be (appar-
ently) entirely unrelated to Q. The only case when an implication is false is when P is
true and Q is false. In particular a false proposition implies anything!

P Q P =⇒ Q
T T T
F T T
T F F
F F T

Table 1.4: Implication truth table

Theorem 2

1. P =⇒ Q is logically equivalent to (¬P)∨Q.

2. ¬(P =⇒ Q) is logically equivalent to P∧¬Q.

Proof. We compare the truth tables.
For 2. we could also give a proof using DeMorgan’s law and (1), since ¬[(¬P)∨

Q]≡ (¬¬P)∧¬Q ≡ P∧¬Q.
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P Q P =⇒ Q ¬[P =⇒ Q] ¬P ¬P∨Q ¬Q P∧¬Q
T T T F F T F F
F T T F T T F F
T F F T F F T T
F F T F T T T F

Exercise 3. Let

P : The square function is differentiable at 0.
Q : The square function is continuous at 0.

Are the implications P =⇒ Q, Q =⇒ P true?

Definition 10: Contrapositive

Let P and Q be statements. The statement (¬Q) =⇒ ¬P is called the contra-
positive of the statement P =⇒ Q.

Theorem 3: Logical equivalence between an implication and its contrapos-
itive

P =⇒ Q is logically equivalent to (¬Q) =⇒ (¬P).

Proof. First observe that (P =⇒ Q)≡ (¬P)∨Q. On the other hand,

[(¬Q) =⇒ (¬P)]≡ [(¬¬Q)∨¬P]≡ [Q∨¬P]≡ [(¬P)∨Q],

and the conclusion follows.
We could also have compared the truth tables.

P Q P =⇒ Q ¬P ¬Q ¬Q =⇒ ¬P
T T T F F T
F T T T F T
T F F F T F
F F T T T T

Definition 11

Let P, Q be statements. The statement Q =⇒ P is called the converse of the
statement P =⇒ Q.

Proposition 1

P =⇒ Q is NOT logically equivalent to Q =⇒ P.
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Proof. We compare the truth tables.

P Q Q =⇒ P P =⇒ Q
T T T T
F T F T
T F T F
F F T T

Definition 12: Biconditional or equivalence

Let P and Q be statements. The statement P ⇐⇒ Q (or P iff Q, read P if and
only if Q) is the statement (P =⇒ Q)∧ (Q =⇒ P)

The statement (P =⇒ Q)∧ (Q =⇒ P) is true when P and Q are simultaneously
true or simultaneously false, and false otherwise. The symbol ⇐⇒ is called the bi-
conditional.

P Q Q =⇒ P P =⇒ Q (P =⇒ Q)∧ (Q =⇒ P)
T T T T T
F T F T F
T F T F F
F F T T T

P Q P ⇐⇒ Q
T T T
F T F
T F F
F F T

Table 1.5: Biconditional truth table

Consider the implication “P =⇒ Q”. We say that P is a sufficient condition for Q,
because in order for Q to be true it is sufficient that P be true. Also, we say that Q is a
necessary condition for P meaning that Q must be true in order for P to be true, or in
other words if Q is false then P is false.

Theorem 4

1. P ⇐⇒ Q is logically equivalent to ((¬P)∨Q)∧ ((¬Q)∨P).

2. P ⇐⇒ Q is logically equivalent to Q ⇐⇒ P.

Proof. For 1. one has
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(P ⇐⇒ Q)≡ (P =⇒ Q)∧ (Q =⇒ P)≡ ((¬P)∨Q)∧ ((¬Q)∨P)

For 2.

(P ⇐⇒ Q)≡ (P =⇒ Q)∧ (Q =⇒ P)≡ (Q =⇒ P)∧ (P =⇒ Q)≡ (Q ⇐⇒ P)

Remark 1

The placement of the parentheses in statement forms matters. As it can be
easily seen by examining their truth tables (¬P∨Q)∧ (¬Q∨P) and ¬P∨ (Q∧
¬Q)∨P are not logically equivalent (actually ¬P∨(Q∧¬Q)∨P is a tautology).

Exercise 4. Are the statement forms P∨Q, ¬P =⇒ Q, and ¬Q =⇒ P logically
equivalent?

Solution. Yes.

P Q P∨Q ¬P =⇒ Q ¬Q =⇒ P
T T T T T
T F T T T
F T T T T
F F F F F

1.3 Quantifiers
We can turn a prediaste into a statement by assigning a value to the variable, e.g. if
P(x) is the predicate “x2 +1 = 0” then P(1) is a statement (which is false) and P(i) is
a statement (which is true). Another way a predicate can be made into a statement is
by modifying it with quantifiers that acts on the free variables which live in a certain
ambient (and often implicit) universe. For example, it is clear that the declarative
sentences:

“For all x, x2 +1 = 0.”

or

“There exists x such that x2 +1 = 0.”

have a truth value and are thus genuine statements.
In general, if P(x) is a predicate, then the mathematical expression “(∃x)P(x)” (read

“there exists x such that P(x)”) is also a declarative sentence with a truth value. The
symbol ∃ is called the existential quantifier.
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Definition 13: Turning a predicate into a statement with an existential
quantifier

Let P(x) be a predicate. The declarative sentence (∃x)P(x) is a statement that
is true exactly when at least one individual element a in the ambient universe
has the property that P(a) is true.

Similarly, if P(x) is a predicate, then the mathematical expression “(∀x)P(x)” (read
“for all x, P(x)”) is a declarative sentence with a truth value. The symbol ∀ is called
the universal quantifier.

Definition 14: Turning a predicate into a statement with a universal quan-
tifier

Let P(x) be a predicate. The declarative sentence (∀x)P(x) is a statement that
is true exactly when every element a in the ambient universe has the property
that P(a) is true.

Remark 2

In practice it is usually simpler and more convenient to use the same letter for
the variable and its assigned value. We will do it from now on.

Terminology. A variable x is called a bound variable once a quantifier is applied to x.
Otherwise we say that x is a free variable.

Some statements without an explicit “for all” can also be classified as universal
statements. For instance the statement

“Every number is prime.”

is equivalent to

“For all number n, n is prime.”

The existential and universal quantifiers are closely related. It is clear that we want
the negation of the statement

“Every number is prime.”

to be

“There exists a number that is not prime.”

If we let P(n) be the predicate “n is prime”, we should all agree that the negation
of (∀n)P(n) should be (∃n)¬P(n). Similarly, the negation of an existential statement
should be a universal statement and we make the following rules.
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Definition 15: Rules of negation for quantifiers

The two basic rules to negate statements with quantifiers are:

Rule 1 the negation of the statement “(∃x)P(x)” is the statement “(∀x)¬P(x)”,

Rule 2 the negation of the statement “(∀x)P(x)” is the statement “(∃x)¬P(x)”.

When discussing the truth values of the following statements:

1. (∀x)x+5 = 8

2. (∃x)x+5 = 8

3. (∃x)x2 +1 = 0

4. (∃n)n+5 = π ,

we might disagree if, for instance, in 5. we consider n to be a natural number (it would
be false) or a real number (it would be true then). The truth values of statements that
come from binding with a quantifier the free variable of a predicate depend on the
intended universe in which the variable belong. To avoid ambiguity, we will usually
make the intended universe explicit unless it is completely clear from the context.

An important notion in mathematical logic is the notion of “membership”. To say
that a free variable belongs to a specific universe U , we write x ∈ U . If U is given,
x ∈ U is a predicate that can become a statement when we either assign a value to x or
bound the variable x with a quantifier.

Given a predicate P(x) and a universe U , consider the statement

“There exists x in the universe U such that P(x).”

What formal logical expression using what we have introduced so far (logical connec-
tives, quantifiers, and membership) would convey the right meaning of the statement
above? We need a finer degree of precision. More precisely, what we are trying to say
is that

“There exists x that is in the universe U and such that P(x).”

and the formal expression

(1.1) (∃x)[(x ∈ U )∧P(x)].

would convey the right meaning.
Similarly, we want to understand what logical expression would best describe the

statement:

“For all x in the universe U , P(x).”

Here we are not trying to say that “For all x, x is in U and P(x).”. What we are
implicitly saying is that “For all x that is in the universe U , then P(x).”, or even more
explicitly:
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“For all x, if x is in the universe U then P(x).”

The meaning of the last statement is captured by the formal expression

(1.2) (∀x)[(x ∈ U ) =⇒ P(x)].

Remark 3

The fact that an implication is true when its assumption is false is crucial here.
Indeed, if an implication could be false when its hypothesis is false then the
formal statement (∀x)[(x ∈ U ) =⇒ P(x)] would be false each time there are
elements in the ambient universe but not in the universe U of concern. The in-
tended meaning of “For all x in the universe U , P(x).” is certainly to disregard
those elements not in U and the logical definition of an implication is partially
designed to achieve this.

Remark 4

The formal statement (∃x)[(x ∈ U ) =⇒ P(x)] would not capture the intended
meaning of “There exists x in the universe U such that P(x).” Indeed, each
time we can find some a not in the universe U then the implication [(a ∈
U ) =⇒ P(a)] would be true and thus (∃x)[(x ∈ U ) =⇒ P(x)] would be true
just because there are elements in the ambient universe but not in the universe
of concern; this is not aligned with what we are trying to convey here.

Expressions of the form (1.1) and (1.2) are ubiquitous in mathematics and we need
a more convenient and concise way to write them.

Definition 16: Useful abbreviations

Let P(x) be a predicate.

1. The expression (∃x ∈ U )P(x) is an abbreviation for (∃x)[(x ∈ U )∧
P(x)], i.e.,

(∃x ∈ U )P(x)≡ (∃x)[(x ∈ U )∧P(x)].

2. The expression (∀x ∈ U )P(x) is an abbreviation for (∀x)[(x ∈ U ) =⇒
P(x)], i.e.,

(∀x ∈ U )P(x)≡ (∀x)[(x ∈ U ) =⇒ P(x)].

We certainly want the negation of

“Every natural number is prime.”

to be

“There exists a natural number that is not prime.”
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as we implicitly want to stay in the universe where the statement takes place (the set N
of natural number here). Therefore, it would be a problem if the negation of a statement
of the form (∀x ∈ U )P(x) is not (∃x ∈ U )¬P(x).

From Rule 1 and Rule 2, we can verify that the rules of negation for the abbrevia-
tions just discussed above are actually in line with our intuition.

Theorem 5: Negation of statements with quantifiers and membership

1. ¬[(∃x ∈ U )P(x)] is logically equivalent to (∀x ∈ U )¬P(x).

2. ¬[(∀x ∈ U )P(x)] is logically equivalent to (∃x ∈ U )¬P(x).

Proof. 1.

¬[(∃x ∈ U )P(x)]≡ ¬[(∃x)(x ∈ U )∧P(x)]

≡ (∀x)(¬(x ∈ U ))∨¬P(x)

≡ (∀x)[x ∈ U =⇒ ¬P(x)]

≡ (∀x ∈ U )¬P(x)

2.

¬[(∀x ∈ U )P(x)]≡ ¬[(∀x)[x ∈ U =⇒ P(x)]]

≡ (∃x)¬[x ∈ U =⇒ P(x)]

≡ (∃x)(x ∈ U )∧¬P(x)

≡ (∃x ∈ U )¬P(x)

Example 11. The negation of “(∀x)(∃y)P(x,y)” is “(∃x)¬[(∃y)P(x,y)]” which is “(∃x)(∀y)¬P(x,y)”.

Below we give example of mathematical objects whose definition involve a certain
number of quantifiers. Recall that Z = {. . . ,−2,−1,0,1,2, . . . ,} denotes the set of
integers, N= {1,2,3, . . .} the set of natural numbers.

Example 12. Let n ∈ Z. We say that n is even if and only if n is a multiple of 2, i.e.,
n = 2k for some k ∈ Z. Here it is not clearly explicit what the quantifier is, but another
way to say that an integer is even is as follows: n is even if and only if there exists
k ∈ Z such that n = 2k. More formally,

n ∈ Z is even ⇐⇒ (∃k ∈ Z) n = 2k.

Example 13. Let n ∈ Z. We say that n is odd if and only if n = 2k+1 for some k ∈ Z,
or equivalently, if and only if here exists k ∈ Z such that n = 2k+1. More formally,

n ∈ Z is odd ⇐⇒ (∃k ∈ Z) n = 2k+1.
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1.4 Statements with mixed quantifiers
It is very common for statements or definitions to involve more than one quantifier.

Example 14. We say that q is a rational number (denoted q ∈ Q) if and only if n = p
q

for some p ∈ Z and q ∈ N. More formally,

q ∈Q ⇐⇒ (∃p ∈ Z)(∃q ∈ N) q =
p
q
.

Example 15. The statement of the Fundamental Theorem of Arithmetic which says
that every natural number is a product of prime number can be written as follows.

(∀n ∈ N) (n = 1)∨ [(∃k ∈ N) (∀i ∈ {1, . . . ,k}) (∃pi a prime number) n = p1 · · · pk]

When a statement involves several quantifiers the order usually matters and one
cannot swap quantifiers without care! Let P(x,y) be a predicate with two variables.
The statement

(∀x)(∃y)P(x,y)

is in general not logically equivalent to the statement

(∃y)(∀x)P(x,y).

For instance, “For all odd number n there exists a number k ∈ Z such that n = 2k+1”
is a true statement, while “there exists a number k ∈ Z such that for all odd number n,
n = 2k+1” is clearly a false statement.

Example 16. The definition of the limit of a convergent sequence involves three quan-
tifiers. Let ℓ be a fixed real number and (xn)

∞
n=1 be a sequence of real numbers. We say

that (xn)
∞
n=1 converges to ℓ, and we write limn→∞ xn = ℓ, if for all ε > 0 there exists a

natural number N such that if n ≥ N then |xn − ℓ|< ε . Symbolically,

lim
n→∞

xn = ℓ ⇐⇒ (∀ε > 0)(∃N ∈ N)(∀n ≥ N)(|xn − ℓ|< ε).

Example 17. The definition of the limit of a function at a point involves three quanti-
fiers. Let x0 ∈ (a,b), ℓ ∈ R and f : (a,x0)∪ (x0,b)→ R. We say that ℓ is the limit of
f at x0, and we write limx→x0 f (x) = ℓ, if for all ε > 0 there exists δ > 0 such that if x
satisfies 0 < |x− x0|< δ then | f (x)− ℓ|< ε . Symbolically,

lim
x→x0

f (x) = ℓ ⇐⇒ (∀ε > 0)(∃δ > 0)(∀x)[0 < |x− x0|< δ =⇒ | f (x)− ℓ|< ε].
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Classical Proof Techniques

2.1 Modus Ponens and Modus Tollens
From the implication truth table we can deduce two elementary rules of inference.
Recall that the truth table of the implication is:

P Q P =⇒ Q
T T T
F T T
T F F
F F T

Modus Ponens is a logical argument that exploits the first row in the implication
truth table and says that “Q is true” is a valid conclusion based on the hypotheses that
“P is true” and “P =⇒ Q is true”.
Example 18. You know from your Calculus course that P( f ) =⇒ Q( f ) is true where,

P( f ) :The function f is differentiable at 0,
Q( f ) :The function f is continuous at 0.

Therefore you can conclude that a function f is continuous at 0 if you know that f is
differentiable at 0.

Modus Tollens is a logical argument that exploits the last row in the implication
truth table and says that “P is not true” is a valid conclusion based on the hypotheses
that “Q is not true” and “P =⇒ Q is true”.
Example 19. You know from your Calculus course that P( f ) =⇒ Q( f ) is true where,

P( f ) :The function f is differentiable at 0,
Q( f ) :The function f is continuous at 0.

19
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Therefore you can conclude that a function f is not differentiable at 0 if you know that
f is not continuous at 0.

2.2 Proofs of existential statements
Recall that in practice it is usually simpler and more convenient to use the same letter
for the variable and its assigned value and we will adopt this convention.

2.2.1 Existential statements of the form (∃x ∈ U )P(x)

For existential statements we proceed as follows.

Proof Technique 1: Existential statements (∃x ∈ U )P(x)

To prove directly that a statement of the form (∃x ∈U )P(x) is true we proceed
as follows:

• We must find, or simply exhibit, an element x ∈ U and demonstrate that
P(x) is true.

Example 20. Show that there exists x ∈ R such that 2x+1 = 0.

Proof of Example 20. Let x =− 1
2 . Then,

2x+1 = 2(−1
2
)+1 =−1+1 = 0.

Therefore, there exists x ∈ R such that 2x+1 = 0.

Example 21. Show that there exists x ∈ R such that x2 + x−1 = 0.

2.2.2 Uniqueness in proofs of existential statements
To prove that there exists a unique x ∈ U such that P(x) is true we can proceed in two
different ways.

Proof Technique 2: Uniqueness, first approach

• We first find, or simply exhibit, an element a ∈ U and demonstrate that
P(a) is true.

• Then, we demonstrate that if x is such that P(x) is true then necessarily
x = a.

Example 22. Prove that there is a unique x ∈ R such that 2x+1 = 0.

Proof of Example 22.
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Existence: Let x =− 1
2 . Then,

2x+1 = 2(−1
2
)+1 =−1+1 = 0.

Therefore, there is at least an x ∈ R such that 2x+1 = 0.

Uniqueness: Assume for a moment that there is another y ∈ R such that 2y+ 1 = 0.
Then, 2y =−1, and hence y =− 1

2 = x.

Conclusion: There exists a unique x ∈ R such that 2x+1 = 0.

It is important to note that in this first approach for proving uniqueness statements
the second step (uniqueness part) makes a reference to the first step (existence part),
and we must first prove the existence of an element, and then prove its uniqueness.

There is another approach for proving uniqueness statements.

Proof Technique 3: Uniqueness, second approach

• We find, or simply exhibit, an element a ∈ U and demonstrate that P(a)
is true.

• We prove that if x,y are such that if P(x) and P(y) are true then x = y,

We now give a different proof of Example 22

Alternate proof of Example 22.

Uniqueness: Assume for a moment that there are y ∈R and z ∈R such that 2y+1 = 0
and 2z+ 1 = 0. Then, 2y+ 1 = 2z+ 1, and hence 2y = 2z. Simplifying by 2
on both sides we have y = z. Therefore, there is at most one x ∈ R such that
2x+1 = 0.

Existence: Let x =− 1
2 . Then,

2x+1 = 2(−1
2
)+1 =−1+1 = 0.

Therefore, there is at least an x ∈ R such that 2x+1 = 0.

Conclusion: There exists a unique x ∈ R such that 2x+1 = 0.

Note that in this second approach the two steps (uniqueness and existence) can be
performed independently of each other as none of them makes a reference to the other
one.

Example 23. Prove that the equation x2 +2x+1 = 0 has a unique solution.
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Let P(x) be a predicate. The two approaches to prove the statement “there exists a
unique x such that P(x)” can be formally expressed using the following first order logic
formulas. For the first approach

(2.1) (∃x)[P(x)∧ ((∀y)[P(y) =⇒ (x = y)])]

and for the second approach

(2.2) [(∃x)P(x)]∧ [(∀y)(∀z)[(P(y)∧P(z)) =⇒ (y = z)]].

Both logical formulas (2.1) and (2.2) can be shown to be logically equivalent and
they are abbreviated as (∃!x)P(x). As you might have noticed, in the proof of the
uniqueness parts we are implicitly proving universal statements.

2.3 Proofs of universal statements
A universal statement is a statement of the form (∀x)P(x) where P(x) is some given
predicate. We discuss two very common occurrences of universal statements.

2.3.1 Universal statements of the form (∀x ∈ U )P(x)

We first describe how to prove statements with universal quantifiers.

Proof Technique 4: Direct proof of (∀x ∈ U )P(x)

To prove directly that a statement of the form (∀x ∈U )P(x) is true we proceed
as follows:

• We begin with “Let x be a fixed element of U .”

• Then, we must demonstrate that P(x) is true.

• Finally, we must check that no restriction other than being in U has
been imposed on x and thus our proof is valid for an arbitrary choice of
x ∈ U . If this is the case, we could conclude by saying that x was fixed
but arbitrary.

For the following example we need to define the notion of odd number.

Definition 17: Odd numbers

Let n be an integer. We say that n is odd if there exists an integer k such that
n = 2k+1. Formally,

n is odd ⇐⇒ (∃k ∈ Z)(n = 2k+1)

Example 24. Prove that for all n ∈ Z, 6n+5 is odd.
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Proof of Example 24. Let n ∈ Z be fixed. Then,

6n+5 = 6n+4+1 = 2(3n+2)+1 = 2k+1,

where k = 3n+2 ∈ Z. Therefore, 6n+5 is odd. Since n ∈ Z was fixed but arbitrary, if
follows that for all n ∈ Z, 6n+5 is odd.

Mathematicians will usually write this proof in a more condensed way by leaving
a few things implicit. They would simply write:

Let n ∈ Z. Then,

6n+5 = 6n+4+1 = 2(3n+2)+1 = 2k+1,

where k = 3n+2 ∈ Z. Therefore, 6n+5 is odd and if follows that for all n ∈ Z, 6n+5
is odd.

2.3.2 Statements of the form (∀x ∈ U )[P(x) =⇒ Q(x)]

Many of the statements we will have to prove are of the form (∀x ∈ U )[P(x) =⇒
Q(x)].

Proof Technique 5: Direct proof of (∀x ∈ U )[P(x) =⇒ Q(x)]

According to the implication truth table, to prove directly that a statement of
the form (∀x ∈ U )[P(x) =⇒ Q(x)] is true we proceed as follows:

• We begin with “Let x ∈ U , such that P(x) is true, be fixed”.

• Then, we must demonstrate that Q(x) is true.

• Finally, we must check that no restriction other than being in U and
satisfying P has been imposed on x and thus our proof is valid.

For the following example we need to define the notion of even number.

Definition 18: Even numbers

Let n be an integer. We say that n is even if there exists an integer k such that
n = 2k. Formally,

n is even ⇐⇒ (∃k ∈ Z)(n = 2k)

Example 25. Prove that for all integer n if n is even, then n2 +5n+2 is even.

Proof of Example 25. Let n ∈ Z be a fixed even integer. Then, there exists k ∈ Z such
that n = 2k, and hence

n2 +5n+2 = (2k)2 +5(2k)+2 = 4k2 +10k+2 = 2(2k2 +5k+1) = 2r,

where r = 2k2 +5k+1 ∈ Z. Therefore, n2 +5n+2 is even. Since n ∈ Z was fixed but
arbitrary even integer, if follows that for all n ∈ Z, n2 +5n+2 is even.
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Again a seasoned mathematicians will simply write the same proof as follows: Let
n ∈ Z such that n = 2k for some k ∈ Z. Then,

n2 +5n+2 = (2k)2 +5(2k)+2 = 4k2 +10k+2 = 2(2k2 +5k+1) = 2r,

where r = 2k2 + 5k+ 1 ∈ Z. Therefore n2 + 5n+ 2 is odd and it follows that for all
n ∈ Z, n2 +5n+2 is odd.

The mechanism of the proof technique above can be adjusted to handle statements
involving several universal quantifiers and implications where the assumption in the
implication does not necessarily involve the variables. For the following example we
need to define the notion of divisibility.

Definition 19: Divisibility

Let n be an integer. We say that n is divisible by the integer k (or that k divides
n), and we write k | n, if there exists an integer r such that n = rk. Formally,

k | n ⇐⇒ (∃r ∈ Z)(n = rk)

Example 26. Let a and b be integers. Prove that for all integers m and n, if 7 | a and
7 | b, then 7 | (am+bn).

2.3.3 Disproving universal statements: counterexamples

The negation of the statement (∀x)P(x) is the statement (∃x)¬P(x). Therefore to show
that a statement of the form (∀x)P(x) is false we need to find an assignment of x (still
denoted by x) such that P(x) is false.

Terminology. An assignment of the variable x such that ¬P(x) is true, is called a coun-
terexample for the statement (∀x)P(x).

We now discuss how to disprove some of the most common universal statements.

Proof Technique 6: Disproving (∀x ∈ U )P(x)

To prove that a statement of the form (∀x ∈ U )P(x) is false we proceed as
follows:

• We find an assignment of the variable x ∈ U (still denoted by x) such
that P(x) is false.

For the following example we need to define the notion of prime number.
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Definition 20: Prime numbers

Let p be a natural number. We say that p is a prime number if it is only divisible
by 1 and p itself. Formally,

p is a prime number ⇐⇒
[(p ∈ N)∧ (p > 1)∧ [(∀m ∈ N)(∀n ∈ N)[p = mn =⇒ ((m = 1)∨ (n = 1))]].

Example 27. Is the following statement true or false?
For all positive integers n, n2 +n+41 is prime.

The negation of the statement (∀x ∈ U )[P(x) =⇒ Q(x)] is the statement (∃x ∈
U )¬[P(x) =⇒ Q(x)], and thus the negation of (∀x ∈ U )[P(x) =⇒ Q(x)] is logically
equivalent to (∃x ∈ U )P(x)∧¬Q(x). Note that the negation of an implication is not
an implication!

Proof Technique 7: Disproving (∀x ∈ U )[P(x) =⇒ Q(x)]

To prove that a statement of the form (∀x ∈ U )[P(x) =⇒ Q(x)] is false we
proceed as follows:

• We find an assignment of the variable x ∈ U (still denoted by x) such
that P(x) is true and Q(x) is false.

Example 28. Prove or disprove that for all integer n, if n is even then n2 +1 is even.

2.4 Proofs by contrapositive
The statement forms P =⇒ Q and ¬Q =⇒ ¬P are logically equivalent.

Proof Technique 8: Proving the contrapositive

To prove P =⇒ Q one may choose instead to prove ¬Q =⇒ ¬P.

Example 29. Let n be an integer. If n3 is odd, then n is odd.

Example 30. For this example you can use the following fact that will be proven later:
5 does not divides n if and only if there exists an integer k and an integer i ∈ {1,2,3,4}
such that n = 5k+ i.

Prove that for every integer n, if 5 divides n2 then 5 divides n.

2.5 Proof by contradiction
A proof by contradiction is based on the observation that the statement form (¬P) =⇒
[Q∧¬Q] is logically equivalent to P.
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P Q Q∧¬Q ¬P (¬P) =⇒ [Q∧¬Q]
T T F F T
T F F F T
F T F T F
F F F T F

Therefore, in order to prove a statement P, for example, we could assume that P is
false and deduce a statement that we know is false (like 0 = 1 or 1

2 is an integer...).

Proof Technique 9: Proof by contradiction

To prove a statement P is true by contradiction we proceed as follows:

• We begin first with “Assume ¬P is true for the sake of contradiction.”

• Then, we deduce a contradiction.

• Finally, we conclude that P must be true.

Example 31. Prove that there does not exist integers m and n such that 15m+5n = 81.

Example 32. Let x ∈ R. If for all ε > 0, |x|< ε , then x = 0.

A classical use of a proof by contradiction allows us to show that some real numbers
are irrational.

Theorem 6: Irrationality of
√

2

The real number
√

2 is irrational.

Recall that a number x is irrational if it is not rational, i.e.,

¬
[
(∃p ∈ N)(∃q ∈ Z+)

[ p
q
= x

]]
Another celebrated proof by contradiction is a proof of Euclid’s Theorem. Euclid’s

Theorem says that there are infinitely many prime numbers. We recall the formal defi-
nition of a prime number.

Definition 21: Prime numbers

A natural number p is prime if

p > 1 and (∀m,n ∈ N)[p = mn =⇒ (m = 1∨n = 1)].

For now we will assume the Fundamental Theorem of Arithmetic, but we will prove
it later once we have learned what a proof using strong induction is.
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Theorem 7: Fundamental Theorem of Arithmetic

Every positive integer greater than 1 can be written as a product of primes.
Furthermore, this product of primes is unique, except for the order in which the
factors appear.

Theorem 8: Euclid’s Theorem

There are infinitely many prime numbers.

2.6 Other useful proof techniques

2.6.1 Proving biconditional statements

Since P ⇐⇒ Q is logically equivalent to (P =⇒ Q)∧ (Q =⇒ P), in order to prove
that a statement of the form P ⇐⇒ Q is true, we need to prove that P =⇒ Q AND
that Q =⇒ P.

Proof Technique 10: Biconditional statements P ⇐⇒ Q

1. Prove P =⇒ Q

and

2. prove Q =⇒ P.

Example 33. Prove that for all integer n,

n is even ⇐⇒ n+2 is even.

Example 34. Prove that for all numbers x,y ∈ R with y ≥ 0, |x| ≤ y if and only if
−y ≤ x ≤ y.

2.6.2 Proving disjunction statements

Let P and Q be statements. To prove disjunction statements we can use the observation
that P∨Q, ¬P =⇒ Q, and ¬Q =⇒ P are logically equivalent.

P Q P∨Q ¬P =⇒ Q ¬Q =⇒ P
T T T T T
T F T T T
F T T T T
F F F F F
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Proof Technique 11: Proving disjunction statements

To prove that a statement of the form P∨Q is true, we may choose either one
of the following to options:

1. Assume ¬P and prove Q,

or

2. assume ¬Q and prove P.

Example 35. Prove that for all real numbers x and y with y ≥ 0, if x2 ≥ y, then x ≥√
y

or x ≤−√
y

2.6.3 Proof by cases
Example 36. Prove that for all integer k, k(k+1) is even.

Example 37. Prove that for all real numbers x and y, |x+ y| ≤ |x|+ |y|.

Hint.

2.6.4 Working backwards
This type of technique is usually applied when proving inequalities. Here is an exam-
ple.

Example 38. Prove that for every positive real number x, one has x
x+1 < x+1

x+2 .

We need to understand why this inequality holds but when we write our proof
the inequality should only be written as the conclusion of our proof. If we want to
prove that x

x+1 < x+1
x+2 for all x > 0, then it would equivalent to proving the inequality

(x+1)(x+2)< x(x+1)
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Induction

3.1 Principle of Mathematical Induction
The principle of mathematical induction is a very powerful tool to deal with infinite ob-
jects and to prove rigorously infinitely many (in the sense that they can be enumerated)
statements.

Theorem 9: Principle of Mathematical Induction

Let P(n) be a predicate where the variable takes integer values. Suppose that
there exists k0 ∈ Z such that

P(k0) is true (the base case)

and

for all k ≥ k0, P(k+ 1) is true under the assumption that P(k) is true (the in-
duction step),

then for all k ≥ k0 P(k) is true (the conclusion).

Proof. Follows from the Induction Axiom applied to the set

Y := {n ∈ N|P(k0 +n) is true}.

The principle of mathematical induction is most commonly used with k0 = 0 or
k0 = 1.

Example 39. Show that for all integers n ≥ 1, ∑
n
i=1 i = n(n+1)

2 .

Solution: For all integers n ≥ 1, let P(n) : ∑
n
i=1 i = n(n+1)

2 .

29
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Base case: Since ∑
1
i=1 i = 1 and 1(1+1)

2 = 1, one has that ∑
1
i=1 i = 1(1+1)

2 and P(1) is
true.

Induction step: Let k ≥ 1 and assume that P(k) is true, i.e. we assume that ∑
k
i=1 i =

k(k+1)
2 . Then,

k+1

∑
i=1

i =
k

∑
i=1

i+(k+1)

=
k(k+1)

2
+(k+1) (by the induction hypothesis)

=
(k+1)(k+2)

2
,

and hence P(k+1) is true.

Conclusion: By the Principle of Mathematical Induction, one can conclude that ∀n ≥
1, P(n) is true, which means that for all n ≥ 1, ∑

n
i=1 i = n(n+1)

2 .

Example 40. Show that the following equalities hold.

1. for all n ≥ 1, ∑
n
i=1 i2 = n(n+1)(2n+1)

6 .

2. for all n ≥ 1, ∑
n
i=1 i3 = n2(n+1)2

4 .

3. for all n ≥ 1, ∑
n
i=1(2i)2 = 2n(2n+1)(2n+2)

6 .

Solutions. 1. Let P(n) be the statement “∑
n
i=1(2i−1) = n2”.

Base case Since 1 = 12, P(1) is true.

Induction Step Assume that P(n) is true, i.e. we assume that ∑
n
i=1(2i−1) = n2.

Then,

n+1

∑
i=1

(2i−1) =
n

∑
i=1

(2i−1)+(2(n+1)−1)

= n2 +(2n+1) (by the induction hypothesis)

= (n+1)2,

and hence P(n+1) is true. By the Principle of Mathematical Induction, one can
conclude that ∀n ≥ 1, P(n) is true, which means that for all n ≥ 1, ∑

n
i=1(2i−1) =

n2.

2. Let P(n) be the statement “∑
n
i=1 i2 = n(n+1)(2n+1)

6 ”.

Base case Since 12 = 1(1+1)(2+1)
6 , P(1) is true.
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Induction Step Assume that P(n) is true, i.e. we assume that∑n
i=1 i2 = n(n+1)(2n+1)

6 .
Then,

n+1

∑
i=1

i2 =
n

∑
i=1

i2 +(n+1)2

=
n(n+1)(2n+1)

6
+(n+1)2 (by the induction hypothesis)

=
n(n+1)(2n+1)+6(n+1)2

6

=
(n+1)(n(2n+1)+6(n+1))

6

=
(n+1)(2n2 +7n+6)

6

=
(n+1)(n+2)(2n+3)

6

=
(n+1)((n+1)+1)(2(n+1)+1)

6

and hence P(n+1) is true. By the Principle of Mathematical Induction, one can
conclude that ∀n ≥ 1, P(n) is true, which means that for all n ≥ 1, ∑

n
i=1 i2 =

n(n+1)(2n+1)
6 .

3. exercise

4. exercise

5. exercise

3.2 Principle of Strong Mathematical Induction

Theorem 10: Principle of Strong Mathematical Induction

Let P(n) be a predicate where the variable takes integer values. Suppose that
there exists an integer k0 such that

P(k0) is true (the base case),

and

for all k ≥ k0, P(k+ 1) is true under the assumption that for all r ∈ {k0,k0 +
1, . . . ,k} P(r) is true (the induction step),

then for all n ≥ k0 P(n) is true (the conclusion).
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Theorem 11: Fundamental Theorem of Arithmetic

Every positive integer greater than 2 can be written as a product of primes.
Furthermore, this product of primes is unique, except for the order in which the
factors appear.

Proof. Formally the statement says that for all integer n ≥ 2 there exists p1, p2, . . . , pk
prime numbers for some k ∈N such that n = p1 p2 · · · pk. We will show that it is indeed
true using the principle of strong mathematical induction. For n = 2 the statement
is clearly true since 2 is a prime number. Let n ≥ 2 and assume that for all integer
r such that 2 ≤ r ≤ n, r is a product of prime numbers. If n+ 1 is prime then the
conclusion holds. If n + 1 is not prime then there are integers 1 < a < n + 1 and
1 < b < n+ 1 such that n+ 1 = ab . Since 2 ≤ a ≤ n and 2 ≤ b ≤ n, a and b are
products of prime numbers, say a = p1 p2 · · · pk and b = q1q2 · · ·qs for some prime
numbers p1, p2, . . . , pk,q1,q2, . . . ,qs. Thus, n+ 1 = ab = (p1 p2 · · · pk)(q1q2 · · ·qs) =
p1 p2 · · · pkq1q2 · · ·qs which is a product of prime numbers. We conclude by invoking
the principle of strong mathematical induction.

Exercise 5. Consider the sequence (an)
∞
n=1 recursively defined as a1 = 1, a2 = 5 and

for all n ≥ 2, an+1 = an +2an−1. Show that for all n ≥ 1, an = 2n +(−1)n.

Solution: For all n ∈ N, let P(n) be the predicate an = 2n +(−1)n.

Base case: Since a1 = 1 and 21 +(−1)1 = 2− 1 = 1, one has that a1 = 21 +(−1)1

and P(1) is true.

Induction step: Let k ≥ 1 and assume that for all r ∈ {1,2, . . . ,k} P(r) is true, i.e.
we assume that for all r ∈ {1,2, . . . ,k} ar = 2r +(−1)r. We want to show that
P(k + 1) is true. In this problem, the case k = 1 has to be treated separately.
If k = 1, observe that P(2) is true (regardless of the truth value of P(1)) since
22 + (−1)2 = 5 = a2 and thus in particular if P(1) is true then P(2) is true.
Otherwise, if k ≥ 2, assuming P(1),P(2), . . . ,P(k) are true, then

ak+1 = ak +2ak−1 (here we need k ≥ 2 since a0 is not defined)

= 2k +(−1)k +2(2k−1 +(−1)k−1) (by the induction hypothesis)

= 2 ·2k +(−1)k−1(−1+2)

= 2k+1 +(−1)k+1 (since (−1)k+1 = (−1)k−1),

and hence P(k+1) is true.

Conclusion: By the Principle of Strong Mathematical Induction, one can conclude
that for all n ≥ 1, P(n) is true, which means that for all n ≥ 1, an = 2n +(−1)n.

The more traditional way to write your solution is as follows.
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Alternate Solution: For all n ∈ N, let P(n) be the predicate an = 2n +(−1)n.
Since a1 = 1 and 21 + (−1)1 = 2 − 1 = 1, one has that a1 = 21 + (−1)1 and

P(1) is true. Since 22 + (−1)2 = 5 = a2, P(2) is also true. Let k ≥ 2, and assume
P(1),P(2), . . . ,P(k) are true, then

ak+1 = ak +2ak−1 (here we need k ≥ 2 since a0 is not defined)

= 2k +(−1)k +2(2k−1 +(−1)k−1) (by the induction hypothesis)

= 2 ·2k +(−1)k−1(−1+2)

= 2k+1 +(−1)k+1 (since (−1)k+1 = (−1)k−1),

and hence P(k+1) is true. By the Principle of Strong Mathematical Induction, one can
conclude that for all n≥ 1, P(n) is true, which means that for all n≥ 1, an = 2n+(−1)n.
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Chapter 4

Introduction to Elementary Set
Theory

4.1 Sets and subsets
We won’t give a formal definition of the notion of a set but we will understand the word
set as an undefined term which refers to a collection of objects. The objects in a set are
called elements and we use the notation x ∈ X to express that the element x is in the set
X . The notion of membership is also not formally defined and is part of the concept of
a set. We use the abbreviation x /∈ X for ¬(x ∈ X).

Axiom There is a set with no elements which is called the empty set and is denoted by
/0.

Observe that x ∈ /0 is always false regardless of the element x that is under consid-
eration, and thus x /∈ /0 is always true.

Example 41. Classical sets.

1. N := {1,2,3, . . .}, the natural numbers.

2. Z := {. . . ,−2,−1,0,1,2, . . .}, the integers

3. Q := { p
q | p ∈ Z,q ∈ N}, the rational numbers.

4. R, the real numbers

Definition 22: Truth set of a predicate

Let P(x) be a predicate and U be the ambient set. The set

A := {x ∈ U | P(x) is true}

is called the truth set of the predicate P(x).

35
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Example 42.

1. {x ∈ Z | (∃k ∈ Z)[x = 5k]}

2. {x ∈ R | (x > 0)∧ (x2 ∈ Z+)}

Definition 23: Sets of the form nZ

Let n ∈ Z. We define a set denoted nZ as follows:

nZ := {x ∈ Z | (∃k ∈ Z)[x = nk]}

For instance, 5Z is the set {x ∈ Z | (∃k ∈ Z)[x = 5k]} which is also sometimes
simply described as {5k | k ∈ Z}.

Example 43. Let a < b be real numbers. There are 9 types of elementary intervals of
real numbers.

1. [a,b] = {x ∈ R : a ≤ x ≤ b} the closed interval.

2. (a,b) = {x ∈ R : a < x < b} the open interval.

3. (a,b] = {x ∈ R : a < x ≤ b} half-open, half-closed

4. [a,b) = {x ∈ R : a ≤ x < b} half-open, half-closed

5. [a,+∞) = {x ∈ R : x ≥ a} unbounded

6. (a,+∞) = {x ∈ R : x > a} unbounded

7. (−∞,a] = {x ∈ R : x ≤ a} unbounded

8. (−∞,a) = {x ∈ R : x < a} unbounded

9. (−∞.+∞) = R unbounded

Definition 24: Subset

Let X and Y be sets. We say that X is a subset of Y , and write X ⊆ Y , if every
element of X is also an element of Y . Formally,

X ⊆ Y ⇐⇒ (∀x)[x ∈ X =⇒ x ∈ Y ].

Remark 1. The expression X ⊆ Y is a very convenient abbreviation for the statement
(∀x)[x ∈ X =⇒ x ∈ Y ]. To prove that X ⊆ Y you need to prove an implication with a
universal quantifier.

Example 44. N⊂ Z⊂Q⊂ R
Example 45. We write X ⊈Y for ¬(X ⊆Y ). Give a formal statement expressing X ⊈Y .

Example 46. Let X = {n ∈ Z | n is a multiple of 4} and Y = {n ∈ Z | n is even}. Prove
that X ⊆ Y .
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Proposition 2

Let X be a set. Then,

1. /0 ⊆ X .

2. X ⊆ X

Proof.

1. /0 ⊂ X follows from the fact that the implication x ∈ /0 =⇒ x ∈ X is always true
(i.e. a tautology) since x ∈ /0 is always false (i.e. a contradiction).

2. X ⊆ X follows from the fact that (x ∈ X) =⇒ (x ∈ X) is always true (indeed
P =⇒ P is a tautology).

Proposition 3: Transitivity of the subset relation

Let X , Y , and Z be sets. If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Proof. (Hint: Direct proof.) Assume that X ⊆Y and Y ⊆ Z. If X = /0 then X ⊆ Z holds
by Proposition 2. Otherwise, let x ∈ X then it follows from X ⊆Y that x ∈Y . Moreover,
it follows from Y ⊆ Z that x ∈ Z. Therefore X ⊆ Z.

Definition 25: Equality between sets

We say that two sets X and Y are equal, written X = Y , if they have the same
elements. Formally,

X = Y ⇐⇒ (∀x)(x ∈ X ⇐⇒ x ∈ Y ).

Proposition 4: Double inclusion

Let X and Y be sets. Then,

X = Y ⇐⇒ (X ⊆ Y )∧ (Y ⊆ X).

Proof. The statement follows from the fact that x∈X ⇐⇒ x∈Y is logically equivalent
to (x ∈ X =⇒ x ∈ Y )∧ (x ∈ Y =⇒ x ∈ X).

Example 47. Prove that X = {n ∈ Z | n+5 is odd} is the set of all even integers.
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Definition 26: Proper subsets

Let X be a subset of Y . We say that X is a proper subset of Y , and we write
X ⊂ Y , if X ̸= Y . Formally,

X ⊂ Y ⇐⇒ (X ⊆ Y )∧ (X ̸= Y ).

Example 48. Show that the set X = 33Z is a proper subset of Z.

4.2 Operation on sets

In this section we describe several natural operations on sets that can be used to create
new sets out of given sets.

4.2.1 Union and intersection of two sets

We start with the most natural operations on a pair of sets; union and intersection.

Definition 27: Union of two sets

Let X and Y be sets. The union of X and Y , denoted X ∪Y , is the set of all
elements that belong to X or to Y . Formally,

X ∪Y = {z | (z ∈ X)∨ (z ∈ Y )}.

Taking the union of two sets provides a set that is “bigger” in the sense that it con-
tains both sets. The following two properties can be deduced from logical principles.

Proposition 5

Let X ,Y,Z be sets. Then,

1. X ∪ /0 = X

2. X ∪Y = Y ∪X (commutativity of the union operation)

3. (X ∪Y )∪Z = X ∪ (Y ∪Z) (associativity of the union operation)

Proof.

1. X ∪ /0 = X follows from the fact that (x ∈ X)∨ (x ∈ /0) is logically equivalent to
(x ∈ X) since (x ∈ /0) is always false.

2. X ∪Y =Y ∪X follows from the fact that (z ∈ X)∨ (z ∈Y ) is logically equivalent
to (z ∈ Y )∨ (z ∈ X) (indeed P∨Q ≡ Q∨P).
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3. (X ∪Y )∪Z = X ∪(Y ∪Z) follows from the fact that ((a ∈ X)∨(a ∈Y ))∨(a ∈ Z)
is logically equivalent to (a ∈ X)∨ ((a ∈ Y )∨ (a ∈ Z)) (indeed (P∨Q)∨R ≡
P∨ (Q∨R)).

Proposition 6

Let X and Y be sets. Then,

1. X ⊆ X ∪Y

2. Y ⊆ X ∪Y

3. X ⊆ Y ⇐⇒ X ∪Y = Y

Proof.

1. If X = /0 the inclusion holds, otherwise let x ∈ X . Then x ∈ X ∪Y by definition
of the union, and thus X ⊆ X ∪Y .

2. If Y = /0 the inclusion holds, otherwise let y ∈ Y . Let y ∈ Y . Then y ∈ X ∪Y by
definition of the union, and thus Y ⊆ X ∪Y .

3. We first prove =⇒ :

Assume that X ⊆ Y . Observe first that X ⊆ X ∪Y always holds. If X ∪Y = /0 the
reverse inclusion holds, otherwise let z ∈ X ∪Y . Then either z ∈ Y or z ∈ X . But
in the latter case it follows from X ⊆ Y that z ∈ Y . In all cases z ∈ Y and thus
X ∪Y ⊆ Y . Combining the two inclusions we have X ∪Y = Y .

We now prove ⇐=:

Assume that X ∪Y = Y . If X = /0 the inclusion holds, otherwise let x ∈ X . Then
x ∈ X ∪Y by definition of the union and thus x ∈ Y follows from the assumption
X ∪Y = Y . Therefore, X ⊆ Y .

Definition 28: Intersection of two sets

Let X and Y be sets. The intersection of X and Y , denoted X ∩Y , is the set is
the set of all elements that belong to X and to Y . Formally,

X ∩Y = {z | (z ∈ X)∧ (z ∈ Y )}.

Taking the intersection of two sets provides a set that is “smaller” in the sense that
it is contained in both sets. The following two properties can be deduced from logical
principles.
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Proposition 7

Let X ,Y,Z be sets. Then,

1. X ∩ /0 = /0

2. X ∩Y = Y ∩X (commutativity of the intersection operation)

3. (X ∩Y )∩Z = X ∩ (Y ∩Z) (associativity of the union operation)

Proof.

1. X ∩ /0 = /0 follows from the fact that (x ∈ X)∧(x ∈ /0) is always false since (x ∈ /0)
is always false.

2. X ∩Y =Y ∩X follows from the fact that (z ∈ X)∧ (z ∈Y ) is logically equivalent
to (z ∈ Y )∧ (z ∈ X) (indeed P∧Q ≡ Q∧P).

3. (X ∩Y )∩Z = X ∩(Y ∩Z) follows from the fact that ((a ∈ X)∧(a ∈Y ))∧(a ∈ Z)
is logically equivalent to (a ∈ X)∧ ((a ∈ Y )∧ (a ∈ Z)) (indeed (P∧Q)∧R ≡
P∧ (Q∧R)).

Proposition 8

Let X and Y be sets. Then,

1. X ∩Y ⊆ X ,

2. X ∩Y ⊆ Y ,

3. X ⊆ Y ⇐⇒ X ∩Y = X .

Proof.

1. If X ∩Y = /0 then X ∩Y ⊆X . Otherwise let z∈X ∩Y , and then z∈X by definition
of the intersection, and thus X ∩Y ⊆ X .

2. If X ∩Y = /0 then X ∩Y ⊆Y . Otherwise let z ∈ X ∩Y , and then z ∈Y by definition
of the intersection, and thus X ∩Y ⊆ Y .

3. We first prove =⇒ :

Assume that X ⊆ Y . Observe first that X ∩Y ⊆ X always holds. If X = /0 the
reverse inclusion holds, otherwise let z ∈ X . Then z ∈ Y follows from the as-
sumption X ⊆ Y , and hence z ∈ X ∩Y . Therefore X ⊆ X ∩Y and combining the
two inclusions we have X ∪Y = Y .

We now prove ⇐=:
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Assume that X ∩Y = X . If X = /0 the inclusion holds, otherwise let x ∈ X . Then
it follows from the assumption X ∩Y = X that x ∈ X ∩Y , and hence x ∈ Y by
definition of the intersection. Therefore, X ⊆ Y .

Definition 29: Disjoint sets

We say that two sets X and Y are disjoint if they have no element in common,
or equivalently if their intersection is the empty set. Formally,

X and Y are disjoint ⇐⇒ X ∩Y = /0.

The distributivity properties of the union operation over the intersection operation,
and vice versa, follow from the two logical equivalences P∧(Q∨R)≡ (P∧Q)∨(P∧R)
and P ∨ (Q ∧ R) ≡ (P ∨ Q)∧ (P ∨ R), but you could try to write “double-inclusion
mathematician’s proofs”.

Proposition 9: Distributivity Properties

Let X , Y , Z be sets. Then,

1. X ∪ (Y ∩Z) = (X ∪Y )∩ (X ∪Z),

2. X ∩ (Y ∪Z) = (X ∩Y )∪ (X ∩Z).

4.2.2 Complement

The notion of complement is described in this section.

Definition 30: Complement

Let X and Y be subsets of some ambient set U . The complement of X in Y ,
denoted Y \X , is the set of elements that are in Y but not in X . Formally,

Y \X = {z ∈U | (z ∈ Y )∧ (z /∈ X)}.

For convenience, the set U \X will be simply denoted by X , and called the
complement of X . Formally,

X = {z ∈U | z /∈ X}.

Remark 2.

1. The set Y \X is always a subset of Y .

2. We always have that x ∈ X ⇐⇒ x /∈ X .
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3. The definition of the complement of X in Y does NOT assume that either set be
a subset of the other.

4. The alternative notation Y −X is also used for Y \X .

In the following proposition we record some elementary properties that can be ob-
tained from logical principles.

Proposition 10

Let X and Y be subsets of a universal set U . Then

1. U = /0,

2. /0 =U .

3. X \Y = X ∩Y ,

4. /0\X = /0,

5. X \ /0 = X .

6. X = X .

Proof.

1. U = {z ∈U : z /∈U}= /0, since (z ∈U)∧ (z /∈U) is always false.

2. /0 = {z ∈U : z /∈ /0}=U , since (z ∈U)∧ (z /∈ /0) is always true.

3. X \Y = {z ∈ U : (z ∈ X)∧ (z /∈ Y )} = {z ∈ U : (z ∈ X)∧ (z ∈ Y )} = X ∩Y , (by
definition of the complement and the intersection).

4. /0\X = {z ∈ /0 : z /∈ X}= /0, since (z ∈ /0)∧ (z /∈ X) is always false.

5. X \ /0 = {z ∈U : (z ∈ X)∧ (z /∈ /0)}= {z ∈U : z ∈ X}= X , since z /∈ /0 is always
true.

6. X = {z ∈U : z /∈ X}= {z ∈U : z ∈ X}= X (by definition of the complement).

Taking complements reverse the inclusion relationship.

Proposition 11: Complements of subsets

Let X and Y be subsets of some universal set U . Then X ⊆ Y if and only if
Y ⊆ X .
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Proof. We first prove the “if” part. Assume that Y ⊆ X . If X = /0 then X ⊆ Y . Oth-
erwise, let x ∈ X then x /∈ X by definition of the complement, and it follows from our
assumption that x /∈ Y . Therefore, x ∈ Y and thus X ⊆ Y .

The proof of the “only if” part goes as follows. Assume that X ⊆ Y . If Y = /0 then
Y ⊆ X . Otherwise, let z ∈ Y then z /∈ Y by definition of the complement, and hence
z /∈ X by our assumption. Therefore, z ∈ X and thus Y ⊆ X .

We now prove De Morgan’s laws, which state that the complement of the union is
the intersection of the complements, and that the complement of the intersection is the
union of the complements.

Theorem 12: DeMorgan’s Laws

Let X and Y be subsets of a universal set U . Then

1. X ∪Y = X ∩Y ,

2. X ∩Y = X ∪Y .

Proof.

1. We first prove the inclusion X ∪Y ⊆ X ∩Y . If X ∪Y = /0 then the inclusion holds,
otherwise let z ∈ X ∪Y . Then z /∈ X ∪Y (by definition of the complement), and it
follows that z /∈ X and z /∈ Y (by definition of the union). Thus, z ∈ X and x ∈ Y
(by definition of the complement), which means that z ∈ X ∩Y (by definition of
the intersection).

For the reverse inclusion, if X ∩Y = /0 then the inclusion holds, otherwise let
z ∈ X ∩Y . Then z ∈ X and z ∈ Y (by definition of the intersection), and thus
z /∈ X and z /∈ Y (by definition of the complement). It follows that z /∈ X ∪Y (by
definition of the union), and hence z ∈ X ∪Y (by definition of the complement).

Therefore, it follows from the definition of equality between sets that X ∪Y =
X ∩Y .

2. We first prove the inclusion X ∩Y ⊆ X ∪Y . If X ∩Y = /0 then the inclusion holds,
otherwise let z ∈ X ∩Y . Then z /∈ X ∩Y (by definition of the complement), and
it follows that z /∈ X or z /∈ Y (by definition of the intersection). Thus, z ∈ X
or z ∈ Y (by definition of the complement), which means that z ∈ X ∪Y (by
definition of the union). We just proved that X ∩Y ⊆ X ∪Y . For the reverse

inclusion, if X ∪Y = /0 then the inclusion holds, otherwise let z ∈ X ∪Y . Then
z ∈ X or z ∈Y (by definition of the union), and thus z /∈ X or x /∈Y (by definition
of the complement). It follows that z /∈ X ∩Y (by definition of the intersection),
and hence z ∈ X ∩Y (by definition of the complement). This shows the reverse
inclusion.



44 CHAPTER 4. INTRODUCTION TO ELEMENTARY SET THEORY

Remark 3. The proof above of the De Morgan’s laws, which is a basic-double inclusion
proof and uses the logic of connectives implicitly, is the typical proof a mathematician
would write. However, a logician will argue that the equality holds since he, or she,
will recognize that the truth of the statement follows from the logical equivalence of
two statement forms. Indeed, consider the predicates P(z) : “z ∈ X” and Q(z) : “z ∈Y ”.
From the logic standpoint X ∪Y = X ∩Y is actually a convenient abbreviation for the
proposition

(∀z ∈U)[¬(P(z)∨Q(z)) ⇐⇒ (¬P(z)∧¬Q(z))].

But, we have proven that ¬(P∨Q) is logically equivalent to (¬P∧¬Q) no matter what
statements are substituted for P and we can conclude that the equality actually holds!
Similarly, the second equality holds since from the logic standpoint X ∩Y = X ∪Y is
actually a convenient abbreviation for the statement

(∀z ∈U)[¬(P(z)∧Q(z)) ⇐⇒ (¬P(z)∨¬Q(z))].

But, as we have proven that ¬(P∧Q) is logically equivalent to (¬P∨¬Q) we conclude
as above.

4.2.3 Arbitrary unions and intersections
For all i ∈ I, where I is called the indexing set, let Xi be a subset of some universal
set. We use the notation {Xi | i ∈ I} or (Xi)i∈I to denote the collection of such sets. In
the previous section we defined the union of two sets. Based on the definition of the
union of two sets we can naturally recursively define the union of finitely many sets
X1,X2, . . . ,Xn, for n ≥ 2, this new set will be denoted by

⋃n
k=1 Xk, as follows:

2⋃
k=1

Xk = X1 ∪X2,

and for n ≥ 3
n⋃

k=1

Xk = (
n−1⋃
k=1

Xk)∪Xn.

Since the operation of taking union is associative these new sets are unambiguously
defined. Using a similar approach we can define the intersection of finitely many sets.
Unfortunately, we cannot use a recursive definition to define arbitrary infinite unions
or intersections (e.g. if the index I = R) and we need to proceed differently and define
arbitrary unions as the truth set of a certain predicate.

Definition 31: Arbitrary unions

Let I be a set and (Xi)i∈I be a collection of sets. The union of the collection
(Xi)i∈I , denoted

⋃
i∈I Xi is the set of all elements that belong to at least one set

of the collection. Formally,⋃
i∈I

Xi = {x | (∃i ∈ I)[x ∈ Xi]}.
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Remark 4. We can easily show using the principle of mathematical induction that the
set

⋃n
k=1 Xk that was recursively defined and the set

⋃
i∈{1,2,...,n} Xi where I = {1,2, . . . ,n}

defined using the truth set coincide and the two definitions are compatible. Since⋃n
k=1 Xk =

⋃
i∈{1,2,...,n} Xi we will use both notations interchangeably.

Remark 5. If I = N we write
⋃

∞
n=1 Xn for

⋃
n∈N Xi.

Proposition 12

Let (Xi)i∈I be a collection of sets. Then, for all j ∈ I one has X j ⊆
⋃

i∈I Xi.

Exercise 6. Let Xn = [1,1+ 1
n ] for n ∈ N. Compute

⋃
∞
i=n Xn.

Exercise 7. Let Xn = ( 3
n ,5n] for n ≥ 1. Compute

⋃
∞
n=1 Xn.

Solution: We will show that
⋃

∞
n=1 Xn = (0,∞).

• First, we show that
⋃

∞
n=1 Xn ⊆ (0,∞).

Let x ∈
⋃

∞
n=1 Xn, then there exists k ≥ 1 such that x ∈ Xk = ( 3

k ,5k] and hence
3
k < x ≤ 5k. Since it follows from k ≥ 1 that 3

k ≥ 3 > 0 and 5k < ∞ one has
0 < x < ∞ and thus x ∈ (0,∞). Therefore

⋃
∞
n=1 Xn ⊆ (0,∞)

• We now show that (0,∞)⊆
⋃

∞
n=1 Xn.

Assume now that x ∈ (0,∞), then x > 0 and also x
5 > 0. On the one hand, if fol-

lows from the Archimedean principle that there is some n1 ∈N such that n1 >
x
5 ,

so 5n1 ≥ x. On the other hand, 3
x > 0 and it follows from the Archimedean

principle that there exists n2 ∈ N such that 3
x < n2 and hence x > 3

n2
. Let

k = max{n1,n2} ≥ 1 then 3
k ≤ 3

n2
< x ≤ 5n1 ≤ k and hence x ∈ Xk. Therefore,

(0,∞)⊆
⋃

∞
n=1 Xn.

By combining the two inclusions we get
⋃

∞
n=1 Xn ⊆ (0,∞).

Using a similar approach we can define arbitrary intersections.

Definition 32: Arbitrary intersections

Let I be a set and {Xi | i ∈ I} be a collection of sets. The intersection of the
collection, denoted

⋂
i∈I Xi is the set of all elements that belong to all sets of the

collection. Formally, ⋂
i∈I

Xi = {x | (∀i ∈ I)[x ∈ Xi]}.

Remark 6. If I = N we write
⋂

∞
n=1 Xi for

⋂
n∈N Xn.

Proposition 13

Let (Xi)i∈I be a collection of sets. Then, for all j ∈ I one has
⋂

i∈I Xi ⊆ X j.
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Exercise 8. Let Xn = [1,1+ 1
n ] for n ∈ N. Compute

⋂
∞
n=1 Xn.

Exercise 9. Let Xn = ( 3
n ,4n] for n ≥ 1. Compute

⋂
∞
n=1 Xn.

Theorem 13: DeMorgan’s Laws for arbitrary unions and intersections

Let (Xi)i∈I be a collection of set. Then

1.
⋃

i∈I Xi =
⋂

i∈I Xi,

2.
⋂

i∈I Xi =
⋃

i∈I Xi.

Proof.

1. We first prove the inclusion
⋃

i∈I Xi ⊆
⋂

i∈I X i.

If
⋃

i∈I Xi = /0 then the inclusion holds, otherwise let z ∈
⋃

i∈I Xi. Then z /∈
⋃

i∈I Xi
(by definition of the complement), and it follows that z /∈ Xi for all i ∈ I (by defi-
nition of the union). Thus, z ∈ Xi for all i ∈ I (by definition of the complement),
which means that z ∈

⋂
i∈I X i (by definition of the intersection).

For the reverse inclusion, if
⋂

i∈I X i = /0 then the inclusion holds, otherwise let
z ∈

⋂
i∈I X i. Then z ∈ Xi for all i ∈ I (by definition of the intersection), and thus

z /∈Xi for all i∈ I (by definition of the complement). It follows that z /∈
⋃

i∈I Xi (by
definition of the union), and hence z ∈

⋃
i∈I Xi (by definition of the complement).

Therefore, it follows that
⋃

i∈I Xi =
⋂

i∈I X i.

2. We first prove the inclusion
⋂

i∈I Xi ⊆
⋃

i∈I X i.

If
⋂

i∈I Xi = /0 then the inclusion holds, otherwise let z ∈
⋂

i∈I Xi. Then z /∈
⋂

i∈I Xi
(by definition of the complement), and it follows that z /∈ Xi for some i ∈ I (by
definition of the intersection). Thus, z ∈ Xi for some i ∈ I (by definition of the
complement), which means that z ∈

⋃
i∈I X i (by definition of the union).

For the reverse inclusion, if
⋃

i∈I X i = /0 then the inclusion holds, otherwise let
z∈

⋃
i∈I X i. Then z∈Xi for some i∈ I (by definition of the union), and thus z /∈Xi

for some i ∈ I (by definition of the complement). It follows that z /∈
⋂

i∈I Xi
(by definition of the intersection), and hence z ∈

⋂
i∈I Xi (by definition of the

complement).

Therefore, it follows that
⋂

i∈I Xi =
⋃

i∈I X i.

4.2.4 Power set

We will now consider sets whose elements are sets themselves.
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Definition 33: Power set of a set

Let X be a set. The power set of X , denoted P(X) or 2X , is the set of all subsets
of X . Formally,

P(X) = {Y | Y ⊆ X}.

Remark 5

• Do not forget the empty set and the set itself in the power set! In partic-
ular, the power set of a set is never empty.

• If follows from the definition that

A ⊆ X ⇐⇒ A ∈ P(X).

Example 49. The power set of X = {1,2,3} is

P(X) = { /0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.

Example 50. The power set of X = /0 is

P( /0) = { /0},

and
P(P( /0)) = P({ /0}) =

{
/0,{ /0}

}
,

and

P(P(P( /0))) = P(P({ /0})) = P({ /0,{ /0}}) =
{

/0,{ /0},{{ /0}},{ /0,{ /0}}
}
,

etc...

Theorem 14

Let X and Y be sets. Then,

X ⊆ Y ⇐⇒ P(X)⊆ P(Y ).

Proof. We will prove the two implications separately.

• =⇒ : Assume that X ⊆ Y . Let A ∈ P(X) then A ⊆ X and by transitivity of the
subset relation since X ⊆ Y one has A ⊆ Y . Therefore A ∈ P(Y ), and P(X)⊆
P(Y ).

• ⇐=: Assume that P(X) ⊆ P(Y ). Since X ⊆ X then X ∈ P(X) and thus X ∈
P(Y ) by our assumption. Therefore, X ⊆ Y .

Exercise 10. Show that for all n ≥ 0, if X is a set with exactly n elements then the
number of sets in the power set of X is equal to 2n.

Hint. You could give a proof using induction.
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4.2.5 Cartesian products

To define the concept of Cartesian product we need to understand what is an ordered
pair. Consider a set with two elements {x,y}. This set does not convey a notion of order
since {x,y}= {y,x}. If one wants to introduce a notion of order we can formally define
the ordered pair (x,y) as the set {{x},{x,y}}. With this definition the characteristic
property of ordered pairs holds. Indeed,

(x1,y1) = (x2,y2) ⇐⇒ (x1 = x2)∧ (y1 = y2).

Also, with this definition it is clear that (x,y) ̸= (y,x) since {{x},{x,y}} is obviously
not the same set as {{y},{y,x}}= {{y},{x,y}}. We will not use the formal definition
of an order pair but we will use the concept of ordered pairs as well as the characteristic
property.

Definition 34: Cartesian product of two sets

Let X and Y be sets. The Cartesian product of X and Y , written X ×Y , is the
set of all ordered pairs (x,y) with x ∈ X and y ∈ Y . Formally,

X ×Y = {(x,y) | (x ∈ X)∧ (y ∈ Y )}.

The Cartesian product is named after René Descartes. It is a generalization of the
Cartesian coordinate system in the context of arbitrary sets (not just the real numbers).

Remark 6

It follows from the definition that

w ∈ X ×Y ⇐⇒ (∃x ∈ X)(∃y ∈ Y )[w = (x,y)].

Example 51. The Cartesian product R×R is nothing else but the 2-dimensional plane
usually simply denoted by R2.

The following property can be easily deduced form logical principles.

Proposition 14

Let X be a set. Then X × /0 = /0
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Remark 7

In general, the Cartesian product is not a commutative operation. This is clear
by considering the following elementary example. Let X = {0,1} and Y =
{2,3} then

X ×Y = {(0,2),(0,3),(1,2),(1,3)}

but
Y ×X = {(2,0),(2,1),(3,0),(3,1)},

and clearly X ×Y ̸= Y ×X .
In general, the Cartesian product is also not an associative operation but this is
slightly more subtle. Let X = {0}, Y = {1}, and Z = {2} then

(X ×Y )×Z = {((0,1),2)}

but
X × (Y ×Z) = {(0,(1,2))},

and clearly (X ×Y )×Z ̸= X × (Y ×Z).
However these two sets seem so similar that we want to identify them. This
will be done precisely using bijective functions in the next chapter.
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Chapter 5

Relations

5.1 Definitions and basic properties

Definition 35: Relations

Let X and Y be sets. A relation R from X to Y is a subset of X ×Y , i.e.,
R ⊆ X ×Y . If (x,y) ∈ R we simply write xRy. We simply say that R is a
relation on X if it is a relation from X to X . In other words, a relation R on a
set X is a subset of X ×X

Example 52. Below are classical examples of relations.

1. The relation of divisibility on Z defined as

R = {(x,y) ∈ Z×Z | y = kx, for some k ∈ Z}.

This relation is usually denoted by |. Then 2 | 4, 19 | 0, but 5 ∤ 2, etc.

2. The relation of congruence modulo 5 on Z defined as xRy ⇐⇒ x− y = 5k for
some k ∈ Z. This relation is usually denoted by ≡, and 12 ≡ 7 mod 5, but 1 ̸≡ 3
mod 5, etc.

3. The relation of equality at 0 on F(R), the set of functions f : R→ R, defined as
f Rg ⇐⇒ f (0) = g(0).

4. The subset relation on P(X) defined as ARB ⇐⇒ A ⊆ B.

5. The strict subset relation on P(X) defined as ARB ⇐⇒ A ⊂ B.

6. The “less or equal than” relation of R, defined as xRy ⇐⇒ x ≤ y.

7. The “strictly less than” relation of R, defined as xRy ⇐⇒ x < y.
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We now define a couple of important properties that a relation on a set can have.

Definition 36: Reflexivity

A relation R on a set X is reflexive if every element in X is in relation with
itself. Formally,

R is a reflexive relation on X ⇐⇒ (∀x ∈ X) xRx.

Divisibility, congruence modulo k, subset relation, “less or equal than” relation are
all reflexive relations. Strict subset relation and “strictly less than” relation are not
reflexive in general.

Definition 37: Symmetry

A relation R on a set X is symmetric if for all elements x,y ∈ X such that x is
in relation with y then y is in relation with x. Formally,

R is a symmetric relation on X ⇐⇒ (∀x ∈ X)(∀y ∈ X)[xRy =⇒ yRx].

Congruence modulo k is a symmetric relation. The divisibility , subset, strict sub-
set, “less or equal than”, and “strictly less than” relations are not symmetric in general.

Definition 38: Antisymmetry

A relation R on a set X is antisymmetric if for all elements x,y ∈ X such that x
is in relation with y and y is in relation with x then x = y. Formally,

R is an antisymmetric relation on X
⇐⇒

(∀x ∈ X)(∀y ∈ X)[((xRy)∧ (yRx)) =⇒ (x = y)].

The divisibility, subset, “less or equal than” relations are symmetric relations. The
strict subset relation and “strictly less than” relation are not symmetric in general.

Definition 39: Transitivity

A relation R on a set X is transitive if for all elements x,y,z ∈ X , whenever
x is in relation with y and y is in relation with z, then x is in relation with z.
Formally,

R is a transitive relation on X
⇐⇒

(∀x ∈ X)(∀y ∈ X)(∀z ∈ X)[((xRy)∧ (yRz)) =⇒ (xRz)].

All the relations in Example 63 are transitive.
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5.2 Equivalence relations and partitions

Definition 40: Equivalence relation

A relation R on a set X is an equivalence relation if it is reflexive, symmetric
and transitive.

For an equivalent relation R, xRy is often denoted by x∼ y and reads x is equivalent
to y.

Definition 41: Equivalence classes

If ∼ is an equivalence relation on a nonempty set X , and x ∈ X , the set [x] =
{y ∈ X | y ∼ x} is called the equivalence class of x. Elements of the same class
are said to be equivalent.

The set of all the equivalence classes is called the quotient set of X and denoted
X/∼, i.e., X/∼ = {[x] : x ∈ X}. Observe that if two elements are equivalent then their
equivalence classes coincide.

Lemma 1

Let ∼ be an equivalence relation on a nonempty set X . Let x,y ∈ X , then x ∼ y
if and only if [x] = [y].

Proof. If x ∼ y then [x]⊆ [y], indeed if z ∈ [x] then z ∼ x and by transitivity z ∼ y, and
thus z ∈ [y]. By symmetry it follows that [x] = [y]. As for the converse, assume that
[x] = [y], then since x ∈ [x] we have x ∈ [y] and thus x ∼ y.

The main purpose of defining an equivalence relation is to classify elements of a set
according to a certain property, and in some sense to generalize the concept of equality.
As we will see having an equivalence relation provides a procedure to partition a set.
We now introduce the concept of a partition. Let Y be a set and P a subset of P(Y ). We
use the notation

⋃
A∈P A for

⋃
A∈P XA where XA = A. In other words, the set

⋃
A∈P A

is the set of all elements that belong to at least one set of P, i.e.,
⋃

A∈P A := {z : (∃A ∈
P) (z ∈ A)}.

Definition 42: Partitions

Let X be a nonempty set. A partition of X is a subset P of P(X) such that

1. For all C ∈P, C ̸= /0 (non-empty clusters).

2.
⋃

C∈PC = X (covering property).

3. For all A,B ∈P, if A ̸= B, then A∩B = /0 (disjointness property).
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Theorem 15: Canonical partition generated by an equivalence relation

If ∼ is an equivalence relation on a nonempty set X , then the collection of
equivalence classes of ∼, namely {[x]}x∈X , forms a partition of X .

Proof. Thanks to reflexivity, every equivalence class [x] is nonempty since x ∈ [x].
Moreover, it also follows from the previous observation that X ⊆

⋃
x∈X [x] and thus the

covering property holds (the other inclusion always holds). It remains to show the
disjointness property. Let [x] and [y] be equivalence classes such that [x] ̸= [y]. Assume
for the sake of a contradiction that [x]∩ [y] ̸= /0. Let z ∈ [x]∩ [y] then z ∈ [x] and z ∈ [y],
and hence z ∼ x and z ∼ y. By transitivity x ∼ y and it follows from the lemma above
that [x] = [y], a contradiction.

Theorem 16: Canonical equivalence relation generated by a partition

Let P be a partition of a nonempty set X . Define a relation ∼P on X by x ∼P y
if and only if there exists C ∈ P such that x ∈ C and y ∈ C (in other words x
and y are in the same cluster). Then ∼P is an equivalence relation on X .

Proof. Observe that x ∼P x simply means that x is in the same cluster as itself, which
is plainly true, and hence ∼P is clearly reflexive. Also, ∼P is patently symmetric since
if x ∼P y then y ∼P x, indeed if x is in the same cluster as y then y is evidently in the
same cluster as x. It remains to observe that transitivity follows from the disjointness
property. Assume that x,y,z are pairwise distinct elements (i.e., x ̸= y, y ̸= z, and x ̸= z)
such that x ∼P y and y ∼P z. Then by definition of ∼P there exist C,D ∈P such that
x,y ∈ C and y,z ∈ D. Since y ∈ C and y ∈ D we have y ∈ C∩D. Necessarily C = D
otherwise it would contradict the disjointness property, and thus x ∼P z.



Chapter 6

Functions

6.1 Definition and Basic Properties
A function between two sets is a correspondence between elements of these two sets
that enjoy some special properties.

Definition 43: Functions

Let X and Y be nonempty sets. A function f from X to Y , and we write f : X →
Y , is a relation that assigns to every element in X one and only one element in
Y . Formally, a function f from X to Y is a subset f ⊆ X ×Y such that

[(∀x ∈ X)(∃!y ∈ Y ) (x,y) ∈ f ].

Let X and Y be nonempty sets. We denote F(X ,Y ) = { f | f : X → Y}, the set of
all functions from X to Y . If X = Y , we simply write F(X).

Remark 8: Convention

In the sequel when we say that f : X → Y is a function we always assume,
unless stated otherwise, that X and Y are nonempty.

Note that the logical formula [(∀x ∈ X)(∃!y ∈ Y ) (x,y) ∈ f ] is equivalent to the
logical formula

[(∀x ∈ X)(∃y ∈ Y ) (x,y) ∈ f ]

∧

[(∀x ∈ X)[((x,y1) ∈ f )∧ ((x,y2) ∈ F)] =⇒ (y1 = y2)]].

To verify that a relation f : X → Y is a function it is usually immediate that check
that every x ∈ X has at least an image in Y , but it might require some extra effort to
show that there is at most one image.
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Remark 9: Functional notation

Functions play a central role in set theory and in mathematics in general, and
we use specific terminology and notation. Since for every x ∈ X there is a
unique element y ∈ Y such that (x,y) ∈ f , we prefer a much more convenient
functional notation. Therefore, we will denote by f (x) the unique element that
is in relation with x. If f (x) = y we say that y is the image of x or that x is the
preimage of y. We call X the domain of f and Y the codomain. Therefore, a
map f : X → Y is a function if and only if

[(∀x ∈ X)(∃y ∈ Y ) y = f (x)]

∧

(∀x1 ∈ X)(∀x2 ∈ X)[(x1 = x2) =⇒ ( f (x1) = f (x2))].

Example 53. Let X = {1,2,3} and Y = {5,8,10}. The relation f defined by f (1) =
f (2) = 10, f (3) = 8 is a function from X to Y .

Example 54. The relation f : Z→ Z that is defined by

f (k) =


0 if k is even,
1 if k is odd,
2 if k is a multiple of 4.

is not a function from Z to Z since f (8) = 0 but also f (8) = 2.

Example 55. The identity function on X is the function iX : X → X such that for all
x ∈ X , iX (x) = x.

Example 56. For all a,b ∈ R the functions fa,b : R → R, defined by fa,b(x) = ax+ b
are called linear functions.

Example 57. Let Z∗ =Z\{0} and consider the relation ∼ on Z×Z∗ defined as (a,b)∼
(c,d) iff ad = bc. The relation ∼ is an equivalence relation on Z×Z∗. Define f : (Z×
Z∗)/∼ → (Z×Z∗)/∼ as f ([(a,b)]) = [(2a,b)]. Is f a function?

We now define what it means for two functions to be equal.

Definition 44: Equality for functions

Two functions f1 : X1 →Y1 and f2 : X2 →Y2 are equal, denoted f1 = f2, if they
have the same domain, the same codomain, and the same action on elements in
X . Formally,

f1 = f2 ⇐⇒ (X1 = X2)∧ (Y1 = Y2)∧ ((∀z ∈ X1)[ f1(z) = f2(z)]).

The next definition introduces the concept of image, or range, of a function.
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Definition 45: Image (or range) of a function

Let f : X → Y be a function. The image (or the range) of the function f is the
set, denoted Im( f ), of all elements in the codomain that are the image of an
element in the domain. Formally,

Im( f ) = {y ∈ Y | (∃x ∈ X)[y = f (x)]}.

Remark 10

The image of a function is a subset of the codomain of the function. It follows
from the definition that

y ∈ Im( f ) ⇐⇒ (∃x ∈ X)[y = f (x)].

Note also that an alternative description of the image of f is

Im( f ) = { f (x) | x ∈ X}.

Exercise 11. Let f : Z→ Z defined by f (k) =

{
k−1 if k is even,
k+3 if k is odd.

Then Im( f ) = Z.

The next definition introduces the concept of the graph of a function.

Definition 46: Graph of a function

Let f : X → Y be a function. The graph of the function f is the set, denoted
G f , of all ordered pairs (x,y) of elements x ∈ X and y ∈ Y that are in relation.
Formally,

G f = {(x,y) ∈ X ×Y | y = f (x)}.

Remark 11

The graph of a function is a subset of the Cartesian product of its domain with
its codomain. It follows from the definition that

z ∈ G f ⇐⇒ (∃x ∈ X)[z = (x, f (x))].

Exercise 12. Let f (x) =
3x+5
x−2

. Determine the domain, codomain, and graph of f .

6.2 Composition of Functions
Assume we are given two functions f and g. If the codomain of f coincides with the
domain of g then it is make sense to look at what element is obtained if we first apply
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f and then g to an element in the domain of f . This procedure gives a function from
the domain of f in the codomain of g.

Definition 47: Composition of functions

Let f : X → Y , g : Y → Z. We define a function g◦ f : X → Z, called the com-
position of f and g, by g◦ f (x) = g( f (x)), ∀x ∈ X .

Note that for the composition to be defined we just need the image of f to be a
subset of the domain of g.

Remark 12

In general, g ◦ f ̸= f ◦ g and the composition is not a commutative operation!
Indeed, consider the function f : R → R defined for all x ∈ R by f (x) = 3x
and the function g : R → R defined for all x ∈ R by g(x) = x2. It is easy to
see that g ◦ f and f ◦ g have the same domain and codomain, but for instance
g◦ f (1) = 9 ̸= 3 = f ◦g(1).

Proposition 15

Let f : X → Y be a function. Then f ◦ iX = f and iY ◦ f = f .

Proof. First we prove that ( f ◦ iX ) = f . Observe that X is the domain of both ( f ◦ iX )
and f , and that Y is the codomain of both f ◦ iX and f . It remains to show that for
all x ∈ X , ( f ◦ iX )(x) = f (x). By definition of the composition operation and of iX , it
follows that if x ∈ X then ( f ◦ iX )(x) = f (iX (x)) = f (x).

The proof is similar for the second statement. Observe that X is the domain of both
iY ◦ f and f , and that X is the codomain of both iY ◦ f and f . It remains to show that
for all x ∈ X , (iY ◦ f )(x) = f (x). By definition of the composition operation and of iY ,
it follows that if x ∈ X then (iY ◦ f )(x) = iY ( f (x)) = f (x), since f (x) ∈ Y .

The composition operation is associative.

Proposition 16: Associativity of the composition

Let f : W → X , g : X → Y , and h : Y → Z be functions. Then,

(h◦g)◦ f = h◦ (g◦ f ).

Proof. Observe that W is the domain of both (h ◦ g) ◦ f and h ◦ (g ◦ f ), and that Z is
the codomain of both (h◦g)◦ f and h◦ (g◦ f ). It remains to show that for all w ∈W ,
((h◦g)◦ f )(w) = (h◦(g◦ f ))(w). By definition of the composition operation it follows
that if x ∈ X then

((h◦g)◦ f )(w) = (h◦g)( f (w)) = h(g( f (w)))
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and
(h◦ (g◦ f ))(w) = h((g◦ f )(w)) = h(g( f (w))).

Therefore, ((h ◦ g) ◦ f )(w) = h(g( f (w))) = (h ◦ (g ◦ f ))(w) and the two functions are
equal.

6.3 Surjectivity, injectivity, and bijectivity of functions

6.3.1 Definitions and examples

A surjective function (or onto function) is a function whose image fills in completely
the codomain.

Definition 48: Surjective function

A function f : X → Y is surjective (or onto, or a surjection) if every element in
the codomain of f admits a preimage in the domain of f . Formally,

f : X → Y is surjective ⇐⇒ (∀y ∈ Y )(∃x ∈ X)[y = f (x)].

The following proposition is a characterization of surjectivity in terms of the image
of the function.

Proposition 17: Characterization of surjectivity in terms of the image

Let f : X → Y be a function. Then, f is surjective if and only if Im( f ) = Y .

Proof. We know that Im( f ) ⊆ Y always holds, but the definition of surjectivity says
that Y ⊆ Im( f ). Therefore Y = Im( f ).

Example 58. The identity function on X is surjective.

Example 59. Let f : (−∞,2)∪ (2,∞)→ R, defined by f (x) =
3x+5
x−2

. The function f

is not surjective since Im( f ) = (−∞,3)∪ (3,∞).

However, the function g : (−∞,2)∪ (2,∞) → (−∞,3)∪ (3,∞), defined by g(x) =
3x+5
x−2

is surjective.

Exercise 13. Let f : Z→ Z defined by f (k) =

{
k−1 if k is even,
k+3 if k is odd.

Show that the function f is surjective.

Exercise 14. Let f : R→ R, defined by f (x) = x+2|x|. Is f surjective?

A function is injective (or one-to-one often abbreviated as 1−1) if no two distinct
elements in the domain are assigned the same element in the codomain.
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Definition 49: Injective function

A function f : X → Y is injective (or one-to-one, or an injection) if
every two distinct elements in the domain have distinct images in the
codomain. Formally,

f : X → Y is injective
⇐⇒

(∀x1 ∈ X)(∀x2 ∈ X)[(x1 ̸= x2) =⇒ ( f (x1) ̸= f (x2))].

Remark 13

In practice, to show that a function is injective we need to prove either one of
the following two logically equivalent statements (the second statement is the
contrapositive of the first statement.):

• for all x1,x2 ∈ X if x1 ̸= x2 then f (x1) ̸= f (x2).

• for all x1,x2 ∈ X if f (x1) = f (x2) then x1 = x2.

Example 60. The identity function on X is injective.

Example 61. The projections πX : X ×Y → X ,(x,y) 7→ x and πY : X ×Y →Y,(x,y) 7→ y
are surjective.

Example 62. Let f : Z→ Z defined by f (k) =

{
k−1 if k is even,
k+3 if k is odd.

The function f is injective.

Example 63. Let f : (−∞,2)∪ (2,∞)→ R, defined by f (x) =
3x+5
x−2

. Is the function

f injective?

Example 64. Let f : R→ R, defined by f (x) = x+2|x|. Is f injective?

Definition 50: Bijective function

Let f : X → Y be a function. Then f is bijective (or a bijection) if f is simulta-
neously injective and surjective. In the case where X = Y a bijection is simply
called a permutation.

Example 65. The identity function iX : X → X is a permutation.

Example 66. Let f : (−∞,2)∪ (2,∞)→ R, defined by f (x) =
3x+5
x−2

. Is f bijective?

6.3.2 Injectivity, surjectivity and composition
In this section we show that injectivity, surjectivity, and bijectivity are stable under
composition.
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Proposition 18: Stability of injectivity under composition

Let f : W → X and g : X → Y be functions. If f and g are injective, then g◦ f
is also injective.

Proof. Assume that f and g are injective. Let w1,w2 ∈ W such that g ◦ f (w1) =
g ◦ f (w2), then g( f (w1)) = g( f (w2)) (by definition of the composition) and f (w1) =
f (w2) (by injectivity of g). Now it follows from the injectivity of f that w1 = w2, and
g◦ f is injective.

Proposition 19: Stability of surjectivity under composition

Let f : W → X and g : X → Y be functions. If f and g are surjective, then g◦ f
is also surjective.

Proof. Assume that f and g are surjective. Let y ∈ Y , then there exists x ∈ X such that
g(x) = y (by surjectivity of g). Since x ∈ X , there exists w ∈ W such that x = f (w)
(by surjectivity of f ). And hence, y = g(x) = g( f (w)) = g◦ f (w) (by definition of the
composition). We have just shown that for every y ∈ Y there exists w ∈ W such that
y = g◦ f (w), which means that g◦ f is surjective.

Proposition 20: Stability of bijectivity under composition

Let f : W → X and g : X → Y be functions. If f and g are bijective, then g◦ f
is also bijective.

Proof. Assume that f and g are bijective, then in particular they are both injective . By
Theorem 15, g ◦ f is then injective. A similar reasoning using Theorem 16 will show
that g◦ f is surjective, and hence g◦ f is bijective.

6.4 Invertible functions
In this section we take a look at those functions whose actions can be “undone”.

Definition 51: Invertibility

Let f : X → Y be a function. We say that f is invertible (or admits an inverse)
if there exists a function g : Y → X such that f ◦g = iY and g◦ f = iX .

Invertibility and bijectivity are intimely connected. Indeed, as we will see shortly
being invertible and being bijective are actually equivalent notions for functions! In-
vertibility and bijectivity is thus the same concept but in two different disguises. Bi-
jectivity is more intrinsic and analytic in the sense that it can be checked directly on
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the function, whereas invertibility has a more extrinsic and algebraic flavor since it in-
volves another function and the composition operation. The goal of this section is to
prove this equivalence. We first show that invertibility implies injectivity.

Theorem 17

Let f : X → Y be a function. If f is invertible then f is injective.

Proof. Assume that f is invertible. Then there is a function g : Y → X such that g◦ f =
iX and f ◦g = iY . If x1,x2 ∈ X and f (x1) = f (x2), then x1 = g( f (x1)) = g( f (x2)) = x2.
Thus f is injective.

A nice consequence of the injectivity of invertible functions is that the inverse of
an invertible function is uniquely determined.

Proposition 21: Uniqueness of the inverse

Let f : X → Y be a function. If f is invertible then f has a unique inverse.

Proof. Let f : X → Y be a function. Our goal is to show that if there are two functions
g1,g2 : Y →X such that f ◦g1 = iY , g1◦ f = iX , f ◦g2 = iY , and g2◦ f = iX , then g1 = g2.
Let y ∈ Y then ( f ◦ g1)(y) = iY (y) = y and ( f ◦ g2)(y) = iY (y) = y, thus ( f ◦ g1)(y) =
( f ◦g2)(y). It follows from the definition of the composition that f (g1(y)) = f (g2(y))
and since f is invertible, f is injective and hence g1(y)= g2(y). Therefore, g1 = g2.

Remark 14

If f is invertible, by Proposition 21 the unique function satisfying the condi-
tions of the definition is called the inverse of f and is denoted f−1.

We now show that invertibility implies surjectivity.

Theorem 18

Let f : X → Y be a function. If f is invertible then f is surjective.

Proof. Assume that f is invertible. Then there is a function g : Y → X such that g◦ f =
iX and f ◦g = iY . Let y ∈ Y , and put x = g(y). Then by definition of g, one has x ∈ X ,
and thus

f (x) = f (g(y)) (because f is a function)
= ( f ◦g)(y) (by definition of the composition)
= iY (y) (since f ◦g(y) = iY (y) by our assumption)
= y (by definition of the identity function on Y.)

Therefore f is surjective.
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Finally, we prove that bijectivity implies invertibility. This result is slightly more
difficult to obtain since it involves constructing an inverse for the function.

Theorem 19

Let f : X → Y be a function. If f is bijective then f is invertible.

Proof. Assume f is bijective. Given y ∈ Y , since f is surjective there is some x ∈ X
such that y= f (x), and since f is injective this x is unique. Indeed if there are x1,x2 ∈ X
such that f (x1) = y = f (x2), then x1 = x2 by injectivity of f . So for every y ∈Y there is
a unique xy ∈ X such that y = f (xy). We will define a function g : Y → X by assigning
to every element y ∈Y to the unique element xy ∈ X such that f (xy) = y, i.e. g(y) = xy.
By uniqueness of xy, g is a function.

Given y ∈Y , then g(y) = xy where f (xy) = y, and thus f (g(y)) = f (xy) = y (since f
is a function). It follows from the definition of the composition that ( f ◦g)(y) = y, and
by definition of the identity function that ( f ◦g)(y) = iY (y). Since y ∈ Y was arbitrary,
one has f ◦g = iY .

It remains to show that (g◦ f ) = iX . Now given x∈X , g( f (x)) is the element x0 ∈X
such that f (x0) = f (x). That is, g( f (x)) = x0 = x, since f is injective. Thus g◦ f = iX ,
and therefore f is invertible.

Combining the last three theorems we obtain the following corollary which was the
main goal of this section.

Corollary 1

Let f : X → Y be a function. Then,

f is invertible if and only if f is bijective.

Proof. Assume that f is invertible, then it follows by Theorem 17 that f is injective and
by Theorem 18 that f is surjective. Therefore, f is bijective. The converse is Theorem
19.

Since bijectivity is stable under composition it follows from Corollary 1 that invert-
ibility is also stable under composition. We give a direct and elementary proof of this
statement without invoking Corollary 1.

Proposition 22: Stability of invertibility under composition

Let f : X → Y and g : Y → Z be functions. If f and g are invertible, then
the function g ◦ f : X → Z is invertible and its inverse is given is (g ◦ f )−1 =
f−1 ◦g−1.
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Proof. Let g−1 and f−1 be the inverses of g and f respectively. It follows from the
associativity of the composition operation that,

(g◦ f )◦ ( f−1 ◦g−1) = g◦ ( f ◦ f−1)◦g−1

= g◦ iY ◦g−1

= g◦g−1

= iZ

and similarly,

( f−1 ◦g−1)◦ (g◦ f ) = f−1 ◦ (g−1 ◦g)◦ f )

= f−1 ◦ iY ◦ f )

= f−1 ◦ f

= iX .

Therefore, g◦ f is invertible and (g◦ f )−1 = f−1 ◦g−1.

6.5 Functions and sets
Recall that the image of a function f : X → Y is the set Im( f ) = {y ∈Y | (∃x ∈ X)[y =
f (x)]}. The image of a function is a particular case of the direct image of a subset
under the function.

6.5.1 Direct image

Definition 52: Direct image of a set

Let f : X →Y be a function. If Z ⊆X , the image of Z under f is the set, denoted
f (Z), of all elements in the codomain that are the image of at least one element
in Z. Formally,

f (Z) = {y ∈ Y | (∃z ∈ Z)[y = f (z)]}.

Remark 15

• Note that f (X) is simply the image of f , i.e., Im( f ) = f (X).

• It follows from the definition that

v ∈ f (Z) ⇐⇒ (∃z ∈ Z) [v = f (z)].

The following proposition states that inclusion is preserved under taking direct im-
ages.
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Proposition 23: Direct image and inclusion

Let f : X → Y be a function. Let W and Z be subsets of X . If W ⊆ Z, then
f (W )⊆ f (Z).

Proof. If f (W ) is empty then the conclusion holds. Otherwise, let v ∈ f (W ) then there
exists w ∈W such that v = f (w) (by definition of the direct image). But since W ⊆ Z
it follows that w ∈ Z and thus v ∈ f (Z) (by definition of the direct image). Therefore,
f (W )⊆ f (Z).

The following proposition states that the direct image of an union is the union of
the direct images.

Proposition 24: Direct image and union

Let f : X → Y be a function and W and Z be subsets of X . Then,

f (W ∪Z) = f (W )∪ f (Z).

Proof. The proof is a classical double-inclusion argument.

• We first show that f (W ∪Z) ⊆ f (W )∪ f−1(Z). If f (W ∪Z) is empty then the
conclusion holds. Otherwise, let y ∈ f (W ∪Z), then there exists x ∈W ∪Z such
that y = f (x) (by definition of the direct image) thus y = f (x) for some x ∈ W
or y = f (x) for some x ∈ Z (by definition of the union) and hence y ∈ f (W ) or
y ∈ f (Z) (by definition of the image) and y ∈ f (W )∪ f (Z) (by definition of the
union). Therefore f (W ∪Z)⊆ f (W )∪ f (Z).

• Now we show that f (W )∪ f (Z) ⊆ f (W ∪Z). If f (W )∪ f (Z) = /0 the inclusion
holds. Otherwise, let y ∈ f (W )∪ f (Z), then y ∈ f (W ) or y ∈ f (Z) (by definition
of the union) thus y = f (x) for some x ∈ W or y = f (x) for some x ∈ Z (by
definition of the image) and y = f (x) for some x ∈ W ∪Z (by definition of the
union) thus y ∈ f (W ∪Z) (by definition of the direct image). Therefore f (W )∪
f (Z)⊆ f (W ∪Z).

The situation is slightly different as far as intersection is concerned.

Proposition 25: Direct image and intersection

Let f : X → Y be a function and W and Z be subsets of X . Then,

f (W ∩Z)⊆ f (W )∩ f (Z).

Proof. If f (W ∩Z)= /0 then the inclusion holds. Otherwise, let y∈ f (W ∩Z), then there
exists x ∈ W ∩Z such that y = f (x) (by definition of the direct image), thus y = f (x)
for some x ∈ W and y = f (x) for some x ∈ Z (by definition of the intersection), and
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hence y ∈ f (W ) and y ∈ f (Z) (by definition of the direct image), and y ∈ f (W )∩ f (Z)
(by definition of the intersection). Therefore f (W ∩Z)⊆ f (W )∩ f (Z).

6.5.2 Inverse image

Definition 53: Inverse image of a set

Let f : X → Y be a function. Let Z be a subset of Y . Then the inverse image
of Z with respect to f , denoted f−1(Z), is the set of all elements in X that have
their image in Z. Formally,

f−1(Z) := {x ∈ X | f (x) ∈ Z}.

Remark 16

• In this context the symbol f−1 does not refer to the inverse of the function
f (which might not exist in the first place).

• If follows from the definition that v ∈ f−1(Z) ⇐⇒ f (v) ∈ Z.

The following proposition states that inclusion is preserved under taking inverse
images.

Proposition 26: Inverse image and inclusion

Let f : X → Y be a function. Let W and Z be subsets of Y . If W ⊆ Z, then
f−1(W )⊆ f−1(Z)

Proof. If f−1(W ) is empty then the conclusion holds. Otherwise, let v ∈ f−1(W ) then
f (v) ∈ W (by definition of the inverse image) and it follows from W ⊆ Z that f (v) ∈
Z, and hence v ∈ f−1(Z) (by definition of the inverse image). Therefore, f−1(W ) ⊆
f−1(Z).

The following proposition states that the inverse image of a union is the union of
the inverse images.

Proposition 27: Inverse image and union

Let f : X → Y be a function. Let W and Z be subsets of Y . Then,

f−1(W ∪Z) = f−1(W )∪ f−1(Z).

Proof. The proof is another classical double-inclusion argument.
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• We first show the inclusion f−1(W ∪Z)⊆ f−1(W )∪ f−1(Z). If f−1(W ∪Z) = /0
the inclusion holds. Otherwise, let x ∈ f−1(W ∪Z), then f (x) ∈W ∪Z (by def-
inition of the inverse image) thus f (x) ∈ W or f (x) ∈ Z (by definition of the
union) and hence x ∈ f−1(W ) or x ∈ f−1(Z) (by definition of the inverse image)
and x ∈ f−1(W )∪ f−1(Z) (by definition of the union). Therefore f−1(W ∪Z)⊆
f−1(W )∪ f−1(Z).

• Then we show that f−1(W )∪ f−1(Z)⊆ f−1(W ∪Z). If f−1(W )= /0 the inclusion
hols. Otherwise, let x ∈ f−1(W )∪ f−1(Z), then x ∈ f−1(W ) or x ∈ f−1(Z) (by
definition of the union) and f (x) ∈ W or f (x) ∈ Z (by definition of the inverse
image) and hence f (x) ∈W ∪Z (by definition of the union) thus x ∈ f−1(W ∪Z)
(by definition of the inverse image). Therefore f−1(W )∪ f−1(Z)⊆ f−1(W ∪Z).

The following proposition states that the inverse image of an intersection is the
intersection of the inverses images.

Proposition 28: Inverse image and intersection

Let f : X → Y be a function. Let W and Z be subsets of Y . Then,

f−1(W ∩Z) = f−1(W )∩ f−1(Z).

Proof. As you would expect the proof goes through a double inclusion argument.

• First of all the inclusion f−1(W ∩Z) ⊆ f−1(W )∩ f−1(Z). If f−1(W ∩Z) = /0
the inclusion holds. Otherwise, let x ∈ f−1(W ∩Z), then f (x) ∈W ∩Z (by def-
inition of the inverse image) thus f (x) ∈ W and f (x) ∈ Z (by definition of the
intersection) and hence x ∈ f−1(W ) and x ∈ f−1(Z) (by definition of the inverse
image) and x ∈ f−1(W )∩ f−1(Z) (by definition of the intersection). Therefore
f−1(W ∩Z)⊆ f−1(W )∩ f−1(Z).

• Second of all, the inclusion f−1(W )∩ f−1(Z) ⊆ f−1(W ∩ Z)]. If f−1(W )∩
f−1(Z) = /0 the inclusion holds. Otherwise, let x ∈ f−1(W ) ∩ f−1(Z), then
x ∈ f−1(W ) and x ∈ f−1(Z) (by definition of the intersection) and f (x) ∈ W
and f (x) ∈ Z (by definition of the inverse image) and hence f (x) ∈ W ∩Z (by
definition of the intersection) thus x ∈ f−1(W ∩Z) (by definition of the inverse
image). Therefore f−1(W )∩ f−1(Z)⊆ f−1(W ∩Z).



68 CHAPTER 6. FUNCTIONS

6.5.3 Remarks about the notation
We use the notation f (A) for the direct image of a subset of the domain, or f−1(B) for
the inverse image of a subset of the codomain. These are very convenient, intuitive,
and classical notations, however you should never forget what is their exact meaning.
It would actually be more appropriate and rigorous to use a different notation that
would make the distinction between the function f : X → Y and its direct image ,or
inverse image, that are functions defined on sets of sets. For instance we could use the
following notation :

• direct image:

fdirect : P(X) → P(Y )
A 7→ fdirect(A) := {y ∈ Y | (∃z ∈ A)[y = f (z)]}

• inverse image:

finverse : P(Y ) → P(X)
B 7→ finverse(B) := {x ∈ X | f (x) ∈ B]}

In the previous section we settled on the simpler notation f (A) instead of fdirect(A)
and f−1(B) in lieu of finverse(B). It is crucial that you understand that talking
about f−1(B) does not imply that f is invertible, and f−1(B) does not refer to
the inverse of f as a function but is only meant to refer to the inverse image,
which according to the definition makes sense for any function regardless of its
invertibility. In the case where f is actually invertible then the inverse image of
a subset becomes f−1(B) = { f−1(b) | b ∈ B]} where in the expression f−1(b),
f−1 is the inverse of the function f which goes from X onto Y .



Chapter 7

Introduction to the Cardinality
of Sets

7.1 Finite and Infinite sets

It is usual to denote by |X | the cardinality of X , i.e., the number of elements of X . If we
are dealing with finite sets we intuitively understand what |X |= |Y | means, but what if
the sets are infinite. Understanding a formal definition of “cardinality” and the concept
of “infinity” is the goal of this chapter.

Definition 54

A set X is said to be finite if there exist a natural number n ≥ 1 and a bijection
between X and {1,2, . . . ,n}. The number n is called the cardinality of X , and
is denoted by |X |.

Definition 55

A set X is said to be infinite if it is not finite, and we use the notation |X | = ∞

to express that X is infinite.

Proposition 29

If X and Y are finite then |X ×Y |= |X ||Y |.

Proposition 30

Let X and Y be finite disjoint sets. Then |X ∪Y |= |X |+ |Y |.

Using the Principle of Mathematical Induction one can prove the following corol-

69
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lary.

Corollary 1. Let X1,X2, . . . ,Xn be a collection of finite mutually disjoint sets, i.e. Xi ∩
X j = /0 if i ̸= j. Then ∣∣∣∣∣ n⋃

i=1

Xi

∣∣∣∣∣= n

∑
i=1

|Xi|.

Corollary 2. Let X and Y be finite sets. Then |X ∪Y |= |X |+ |Y |− |X ∩Y |.

7.1.1 The Pigeonhole Principle
The pigeonhole principle, in its simplest form, says that if k objects are places in n
containers and k > n, then at least one container will have more than one object in it.
The mathematical formulation is as follows.

Theorem 20: Pigeonhole Principle

Let X1,X2, . . . ,Xn be a collection of finite mutually disjoint sets. Let X =
n⋃

i=1

Xi.

If |X |= k and k > n, then, for some i, |Xi| ≥ 2.

Theorem 21: Generalized Pigeonhole principle

Let X1,X2, . . . ,Xn be a collection of finite mutually disjoint sets. Let X =
n⋃

i=1

Xi.

If |X |> nr for some positive integer r. Then, for some i, |Xi| ≥ r+1.

7.2 Comparing the size of sets

Definition 56: Equinumerability

Let X and Y be sets. We say that X and Y are equinumerous (or equipotent)
if there exists a bijection from X onto Y . If X is equinumerous to Y we write
X ≈ Y .

Proposition 31

Let X , Y , Z be sets. Then,

1. X ≈ X .

2. If X ≈ Y then Y ≈ X .

3. If X ≈ Y and Y ≈ Z then X ≈ Z.



7.2. COMPARING THE SIZE OF SETS 71

Proof. The three assertions are merely a reformulation, using the language of equinu-
merous relation, of results about bijective maps that have already been proven.

1. The identity function iX on any set X is a bijection.

2. If there is a bijection f from X to Y then the inverse of f , namely f−1, is a
bijection from Y to X .

3. The composition of two bijections is a bijection.

The proposition above suggests that ≈ seems to have all the attributes of an equiv-
alence relation that would be defined on the collection of all sets ... but there is an
issue with this last statement since the collection of all sets CANNOT be a set (this is
Russell’s Paradox), and we only introduced relations on sets! This is a delicate point
that can only be overcome using a rigorous axiomatic approach for set theory instead
of the elementary naive approach that we have undertaken.

In the next proposition we compare the size of a set to the size of its power set.

Proposition 32

Let X be a set.

1. There exists an injection from X into P(X).

2. There does not exist a surjection from X onto P(X).

Sketch of proof. 1. Consider the function f : X →P(X) defined by f (x) = {x} for
all x ∈ X . This function which assigns to an element x in X , the subset of X
that consists of the set {x} (the set with exactly one element that is equal to x) is
easily seen to be injective.

2. Let f be a function from X to P(X). Consider the set

Z = {x ∈ X : x /∈ f (x)}.

By definition Z is a subset of X and hence Z ∈ P(X). Assume that Z has a
preimage, i.e., Z = f (a) for some a ∈ X . By examining the two cases, a ∈ Z or
a /∈ Z, you will realize that it leads to a contradiction in both cases and thus Z
cannot have a preimage. Therefore, no function f from X to P(X) can ever be
surjective since the set Z will never have a preimage.

We write X ⪯ Y if there is an injection from X into Y , and X ≺ Y if X ⪯ Y and
X ̸≈ Y . Considering X = N, Proposition 32 tells you that N≺ P(N). It can be shown
that P(N)≈R and hence N≺R. The Continuum Hypothesis states that there does not
exist a set X such that Q ≺ X ≺ R. More informally, there is no set whose cardinality
lies strictly between the cardinality of the “discrete” set N and the “continuous” set R.
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