Exercise 2, Chapter 4. (Math 414-501, Spring 2020)

The function f(x) is given by

$$f(x) = \begin{cases} 2, & 0 \le x < 1/4, \\ -3, & 1/4 \le x < 1/2, \\ 1, & 1/2 \le x < 3/4, \\ 3, & 3/4 \le x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Since f is in V_2 , we can write in terms of the basis $\{\phi(2^2x - k)\}_{k=0}^3$ (cf. Definition 4.1 in the text):

$$f(x) = 2\phi(4x) - 3\phi(4x - 1) + \phi(4x - 2) + 3\phi(4x - 3)$$

There are two ways to do this problem. The first way to approach decomposing f into its components along V_0, W_0 , and W_1 is to use Lemma 4.10, which states that

$$\phi(2^{j}x) = (\phi(2^{j-1}x) + \psi(2^{j-1}x))/2$$

$$\phi(2^{j}x - 1) = (\phi(2^{j-1}x) - \psi(2^{j-1}x))/2.$$

Begin by getting the V_1 , W_1 parts. To do this, replace the functions $\phi(4x-k)$ as follows:

$$\phi(4x) = (\phi(2x) + \psi(2x))/2,$$

$$\phi(4x-1) = (\phi(2x) - \psi(2x))/2,$$

$$\phi(4x-2) = (\phi(2x-1) + \psi(2x-1))/2,$$

$$\phi(4x-3) = (\phi(2x-1) - \psi(2x-1))/2$$

Using these, put f into the form

$$\begin{aligned} f(x) &= (1 - 3/2)\phi(2x) + (1 + 3/2)\psi(2x) + (1/2 + 3/2)\phi(2x - 1) + (1/2 - 3/2)\psi(2x - 1) \\ &= \underbrace{-\frac{1}{2}\phi(2x) + 2\phi(2x - 1)}_{V_1} + \underbrace{\frac{5}{2}\psi(2x) - \psi(2x - 1)}_{W_1}. \end{aligned}$$

Finally, use $\phi(2x) = (\phi(x) + \psi(x))/2$ and $\phi(2x - 1) = (\phi(x) - \psi(x))/2$ in the equation above to obtain the desired decomposition:

$$f(x) = \underbrace{\frac{3}{4}\phi(x)}_{V_0} \underbrace{-\frac{5}{4}\psi(x)}_{W_0} + \underbrace{\frac{5}{2}\psi(2x) - \psi(2x-1)}_{W_1}.$$

There is a second method for solving this problem. The j = 2 level coefficients for f can be put in row vector form: $a^2 = \begin{bmatrix} 2 & -3 & 13 \end{bmatrix}$, where the first entry is a_0^2 , the last is a_3^2 . All other a_k^2 coefficients are 0.

The first step in the decomposition is to find the j = 1 level coefficients; that is, the a_k^1 's and b_k^1 . To do this, use the formulas below, which are found in Theorem 4.12.

$$a_k^{j-1} = \frac{a_{2k}^j + a_{2k+1}^j}{2}$$
 and $b_k^{j-1} = \frac{a_{2k}^j - a_{2k+1}^j}{2}$.

In our case, we have j = 2. Our aim is find a^0 , b^1 and b^0 ; these will give us the breakdown into V_0 , W_0 and W_1 .

We start by finding a^1 . Note that both $a_{2k}^2 = 0$ and $a_{2k+1}^2 = 0$ for k < 0 and k > 1. It follows that we only need to find a_k^1 and b_k^1 for k = 0, 1. Using the formulas above we obtain

$$a_0^1 = -\frac{1}{2}, \ a_1^1 = \frac{4}{2} = 2$$

so that $a^1 = \left[-\frac{1}{2}\ 2\right]$. Similarly, $b^1 = \left[\frac{5}{2}\ -1\ \right]$. Following the procedure above for a^0 , we see that $a_0^0 = \frac{3}{4}$; thus, $a^0 = \left[\frac{3}{4}\ \right]$. Similarly, $b_0^0 = \frac{-\frac{1}{2}-2}{2} = -\frac{5}{4}$. Thus, $b^0 = \left[-\frac{5}{4}\ \right]$. Finally, we have $f(x) = \frac{3}{4}\phi(x) - \frac{5}{4}\psi(x) + \frac{5}{2}\psi(2x) - \psi(2x - 1)$, which agrees with the answer from the previous method.